HomeLink™ brand Wireless Control System (WCS) allows users to control various wirelessly controlled devices (e.g. garage doors, home lighting, gates, etc.) from a vehicle. Current techniques used for training the WCS involve users holding buttons down based on instructions in an instruction manual.
Bluetooth™-based hands-free systems have been integrated in vehicles to allow a user to initiate and conduct calls in a hands-free manner. The hands-free set in the vehicle may be configured to use some voice prompts to communicate to the user relating to operation of the hands-free phone system. The system may include a microphone integrated in the vehicle and may use the vehicle audio system to output the voice prompts and/or conduct a hands-free phone call.
The Bluetooth communications standard can enable small form factor, low-cost, short range RF links between mobile telephones, notebook computers, PDAs and other portable electronic devices. Bluetooth communication standard may provide secure, wireless communications links between portable electronic devices such as cellular phones, PDAs, computers and other electronic devices. The Bluetooth communications standard is presently an “open” standard that enables short range, secure, RF transmission of voice and/or data information between such portable electronic devices to thus eliminate the need for physical cables for interconnecting the devices. Its implementation is based on a high performance, but low cost, integrated RF transceiver chip set. The Bluetooth standard further provides the potential for automatic and rapid “ad hoc” wireless connections when two or more devices equipped with RF transceivers operating in accordance with the Bluetooth standard come into proximity with each other.
The present invention relates to a method of providing audible information related to a vehicle system for use in a vehicle. The method includes receiving a command to provide audible information related to the vehicle system; transmitting data related to audible information using a transmitter configured to send the data via a short-range communication protocol based on the command; receiving the data transmitted by the transmitter using a receiver configured to be in communication with the transmitter; and either playing or displaying audible information based on the data received by the receiver using a user interface configured to be in communication with the receiver.
The present invention relates to a method of providing audible information related to a wireless control system. The method includes receiving audible information related to the wireless control system; providing the audible information to a memory unit included in the wireless control system; and providing a user interface configured to play the audible information downloaded to the memory unit.
The present invention relates to a method of providing voice prompts related to a wireless control system that may be used in a vehicle. The method includes receiving a voice prompt related to the wireless control system; storing the voice prompt in memory; and providing a speaker configured to play the voice prompt.
The present invention relates to a vehicle system for use in a vehicle and configured to communicate information to an electronic module, the vehicle system includes a wireless control system; a memory configured to store audible information associated with the wireless control system; and a transmitter provided in a vehicle, coupled to the wireless control system, and configured for short-range wireless communication. The transmitter is configured to send data related to the audible information. A receiver is configured to communicate with the transmitter to transfer the data. A user interface is coupled to the receiver and configured to play audible information related to operation of the wireless control system based on the data received by the receiver.
With reference to
Referring to
The WCS 30 may be configured to learn signals from original transmitters (i.e. other transmitters that are configured to control a system of a receiver and exhibit characteristics representative of a signal configured to control the system of the receiver, etc.). For example, the vehicle system 10, as shown in
In operation, trainable transceiver 50 is configured to receive one or more characteristics of an activation signal sent from another transmitter (not shown). For example, the trainable transceiver 50 may be configured to act as a controller for other electronic systems. The electronic system may control a residential system (e.g., a garage door opener, security system, lighting module, home control module, gate opener and/or a computer system). An example of a trainable transceiver is a Homelink trainable transceiver, manufactured by Johnson Controls Interiors LLC, Holland, Mich. and may be constructed according to one or more embodiments disclosed in U.S. Pat. Nos. 6,091,343, 5,854,593 or 5,708,415, which are herein incorporated by reference in their entirety.
As will be appreciated, other implementations of the various exemplary embodiments could be made in connection with a home and/or vehicle. For example, in yet another implementation vehicle system 10 includes a proprietary speech recording/playback system that enables a driver or other vehicle occupant to speak directly/indirectly into a microphone to record any notes or other information which the user would otherwise write down on paper, but which cannot be accomplished easily while driving the vehicle 20. The notes or other information can be played back from the recording/playback system over a speaker once the user reaches his/her destination and prior to exiting the vehicle 20.
The vehicle system 10, as shown in
In some embodiments, the transmitter may have an extremely low power consumption relative to the device with which they are integrated. Accordingly, the transmitter 150 can be maintained in an “on” state even when the vehicle 20 is turned off
Transmitter 150 is configured to transmit data in response to a signal from processor 140. Transmitter 150 is configured to be in communication with a receiver 160. The transmitter 150 and receiver 160 include antennas 170, 180 (respectively) for enabling communication between the transmitter 150 and receiver 160. In one embodiment, the transmitter 150 is a transceiver and includes a second antenna (not shown) for enabling two way communications with a second receiver (also not shown). Receiver 160 accepts the data from the transmitter 150 and may be remotely located with respect to the transmitter 150. In the shown exemplary embodiment of
In the exemplary embodiment shown in
When the user interface system 40 comes into the vicinity of the vehicle 20, a high speed, automatic, wireless data link may be created between the transmitter and receiver. The required proximity will vary depending upon the power output of either transmitter/receiver. For example, on a 0 dBm (1 mW) power output, a transmission range of up to about 10 meters is provided. Providing a suitable external amplifier to increase the output power of the transmitter and/or receiver to a maximum of 20 dBm will increase the transmission range up to about 100 meters. It will be appreciated, however, that with even greater power amplifiers an even greater transmission range can be expected. Some standards have identified a 20 dBm maximum power output. In some embodiments, the transmitter 150 and receiver 160 may be continuously connected, in some embodiments transmitter 150 and 160 will be configured to automatically make a connection when a vehicle power setting is turned on (e.g. accessory on, engine on, etc.), in some embodiments transmitter 150 and receiver 160 will only make a connection when data is to be transferred, etc.
Thus, the user is not required to type in or otherwise give any commands to the user interface system 40 before the wireless communications link is established. Once established, the communications link enables data representative of audible information from the WCS circuit 130 to be automatically transmitted.
Once the wireless communications link is established between the transmitter 150 and receiver 160, data can be transmitted to the receiver 160 and audible information can be output to the vehicle's audio system or circuit 200 and/or visual information can be displayed on the display 210 in response to the data. Or the vehicle system 10 may not include a display.
WCS may send data related to audible information in any number of manners. In some embodiments, WCS 30 stores audible information that can be output from a memory associated with the WCS and is configured to send the audible information (e.g. prompts) to the system 40 (e.g. send data that encodes the audible information—e.g. an mp3 or way file to the system 40, send analog signals to the system 40, etc.) to be output by system 40. In some embodiments, WCS 30 stores (in a memory associated with the WCS, as part of a code for a program executed by processor 140, etc.) data corresponding to audible information provided in system 40 and is configured to transmit data to system 40 (based on the stored data) such that system 40 will output the audible information stored by system 40 in response to the data received from the WCS.
In some embodiments, a user may use system 40 to control WCS 30. In some embodiments, a user enters a voice command by having a user press a button. The button press causes the user interface system 40 (e.g., a hands-free system) to identify and interpret a voice command from a user. In some embodiments, the hands-free system identifies voice commands without using a button press. Other types of actuators/switches may be utilized e.g., knobs, dials, etc., or more advanced input devices, such as biometric devices including fingerprint or eye scan devices. In another embodiment, a voice-actuated input control circuit is included in the vehicle system 10 and configured to receive voice signals from a user and to provide data relating to the signals (e.g. the signals, data based on the signals, etc.) to the WCS control circuit 130. The user system 40 may include a voice user interface, graphical user interface and/or a multi-modal interface. The multi-modal interface can include soft keys and be configured to control several other devices in addition to the vehicle system 10.
The vehicle system 10 may be used to initiate voice-aided training Initiating voice-aided training may include transferring commands to the user interface system 40 to play prompts stored or transferred to the user interface system. Initiating voice-aided training may include transferring voice prompts stored/transmitted to the WCS. The wireless communication system may use a number of voice prompts, including but not limited to one or more of the voice prompts shown
Transmitter 150 may also be configured to send data to control a wireless system. In one embodiment the transmitter 150 is configured to generate a carrier frequency at any of a number of frequencies in the ultra-high frequency range, for example between 260 and 470 megaHertz (MHz), wherein the control data modulated on to the carrier frequency signal may be frequency shift key (FSK) or amplitude shift key (ASK) modulated, or may use another modulation technique. The data on the wireless control signal may be a fixed code or a rolling code or other cryptographically encoded control code suitable for playback on a remote electronic system. In other embodiments, these functions may be carried out by a separate transmitter which may be distinct from transmitter 150, and/or which transmitter may be connected to processor 140 and/or circuit 130.
In other embodiments, data may be transferred between WCS 30 and system 40 using a wired connection. For example, WCS 30 may be directly wired to system 40. As another example, data may be transferred between WCS 30 and system 40 over a data bus such as a vehicle's data bus.
In some embodiments, data may be transferred indirectly between WCS 30 and system 40. For example, data may be transferred (wireless or wired) to one or more intermediate systems which transfer data between WCS 30 and system 40. If intermediate systems are used, the intermediate system may simply be a pass-through conduit for data transfer, or one or more intermediate systems may process the data transferred to or from WCS 30 and/or system 40.
In some embodiments, WCS 30 may cause audible information to be provided without the use of system 40. For example, WCS 30 may include a speaker configured to output audible information in response to signals from processor 140. As another example, WCS 30 may be directly connected to a vehicle audio system such that WCS 30 directly controls (at least in part) output of audible information as discussed above by the audio system.
Referring to
The user may also program the user system through the VUI and/or GUI. For example, a user may edit a user button or command by saying “Edit” as shown at step 221. Or the user may utilize the GUI to edit/erase previous settings for user buttons as shown at step 222. Remote devices may also be programmed e.g., as shown at step 223 of
Various user prompts may be played to aid a user in using a system 10. For example, as shown in
Each prompt provides various information to the user regarding programming, editing, deleting and or system status information (e.g., prompts 232-238, 242-46, 252-54, 262-66, 272-76, 292-96, 302-04, 316, 322-29, 345, 352-54, 362-64, 372, 382-84, 386-88, 402-406, 412, 422-24, and 436-440). The prompts may aid the user in beginning programming e.g., 232 and 244; refer the user to other sources 234, 242 and 364; assist in resetting the system 236; alert a user to system status changes and/or the programming status of a button or channel and/or information associated with the button or channel 238, 246, 252, 272, and 324-329. Some voice prompts are dedicated to assisting the user in programming the system 10, e.g., 440 alerts the user of a programming status of the vehicle system 10. Other prompts alert a user to a result (e.g. success, failure, etc.) of a user action 276, 292, 324-329, 345, 386, 438 and 440. Some prompts let a user know which options are available 246, 254, 266, 296, 304 and 316.
The user may be provided with an audio and/or visual display as shown at step 630 to aid a user in continuing and/or initiating training of the WCS. The flow diagram 600 also includes a message provided to the user at step 640 to refer to other materials. If no further user inputs are received and the prompts 620, 630, 640 have been played, the prompting may conclude, and the programming sequence may shut down (as shown at step 650). The user may also end a programming message sequence at any time by briefly pressing the empty button (as shown at step 660).
If the user presses the button for a predetermined period of time to enter into any number of alternative programming sequences; the user may then enter a program mode (as shown at step 670). If the signal is successfully detected by the transceiver the user will be prompted to press the newly programmed button for a predetermined number of times, as shown at step 680. In the illustrated embodiment of
Other devices may utilize the learn button as well. The programming logic may be changed to end introduction prompts and start the programming sequence if the button is pressed and held (or upon actuation of any other predetermined setting(s)).
If a signal is not successfully received by the transceiver (e.g. within a predefined period, the system receives an unrecognizable signal such as a noise signal, etc.), the system prompts the user indicating that such information was not received (at step 710). Thereafter the system may shut down (as shown at step 650) and/or may reenter the programming mode (e.g. a predetermined number of times) at block 670.
Other methods are provided with respect to
In another embodiment, the programming sequence runs in a loop so that when the vehicle system includes a plurality of buttons all of the buttons may be programmed sequentially and the user is automatically prompted to program any empty buttons.
The prompt may be received from a remote location and/or stored by the vehicle system 10 (as shown for example in
In another embodiment, the vehicle system stores the voice prompts and outputs them on a display connected to the vehicle system and/or play them using a speaker connected to the vehicle system. In this embodiment, signals may or may not be transferred using a wireless network (e.g. Bluetooth network) connection. In an alternative embodiment, the voice prompts and outputs may be shown on the display connected to the user interface system.
In one embodiment, the prompt is received from a remote location such as a customer service center designated to assist users with the programming of the vehicle system 10. The vehicle system 10 may include a second receiver or transceiver configured to accept voice prompts from the customer service center. Voice prompts can be sent to the vehicle system 10 using a number of wireless protocols including, but not limited to cellular systems, the Internet, and other long/short range communication systems. In one embodiment, the vehicle system 10 may include a number of voice prompts that are stored within the vehicle system and auxiliary voice prompts may be downloaded and/or played from a remote location.
Another embodiment, directed to a wireless communication system, includes a first transceiver for communicating with devices using a first wireless method. The wireless communication system also includes a second transceiver for communicating with devices using a second wireless method different than the first method.
In some embodiments, the user interface system 40 may be configured to control the vehicle system 10 based on voice commands from a user. In these embodiments, the hands-free system may interpret the voice input from the user and send a command message to the vehicle system 10 over the wireless network (e.g. Bluetooth network) connection based on the interpreted voice input.
One embodiment regards a method of providing audible information related to a vehicle system for use in a vehicle. The method includes receiving a command to provide audible information related to the vehicle system; transmitting data related to audible information using a transmitter configured to send the data via a short-range communication protocol based on the command; receiving the data transmitted by the transmitter using a receiver configured to be in communication with the transmitter; and either playing or displaying audible information based on the data received by the receiver using a user interface configured to be in communication with the receiver.
Another embodiment relates to a method of providing audible information related to a wireless control system. The method includes receiving audible information related to the wireless control system; providing the audible information to a memory unit included in the wireless control system; and providing a user interface configured to play the audible information downloaded to the memory unit.
Another embodiment relates to a method of providing voice prompts related to a wireless control system that may be used in a vehicle. The method includes receiving a voice prompt related to the wireless control system; storing the voice prompt in memory; and providing a user interface configured to play the voice prompt.
In some embodiments, the wireless network (e.g. Bluetooth network) connection may be used to offer enhanced support. For example, the wireless network (e.g. Bluetooth network) module may communicate over a user's wireless network (e.g. Bluetooth network) enabled cell phone, the vehicle system 10 may communicate diagnostic information to a remote site, the vehicle system may receive commands from a remote site, and/or other various features.
In some embodiments, the wireless network (e.g. Bluetooth network) connection provides two-way communication. In some embodiments, the wireless network (e.g. Bluetooth network) connection may only provide one-way communication.
In some embodiments, the wireless network (e.g. Bluetooth network) system may always maintain a connection (e.g. in some of the embodiments using voice commands from the hands-free system to the WCS). In some embodiments, the wireless network (e.g. Bluetooth network) system may not always maintain a connection (e.g. in some of the embodiments that only use voice-aided training)
The Bluetooth standard makes use of the free, universal 2.4 GHz Industrial, Scientific, and Medical (ISM) band and a frequency hopping scheme using 1600 hops/second. Encryption and authentication are built into the Bluetooth standard along with an automatic “output power adaptation” feature that automatically reduces the output power of the RF transceiver to only (and exactly) that amount of power which is needed to accomplish the data transmission.
The specific protocol or standard may be the Bluetooth communications standard or the Shared Wireless Access Protocol-Cordless Access (SWAP-CA) specification, or any other suitable wireless communications specification that enables voice and/or data information to be transmitted between the transmitter and receiver. Accordingly, while the Bluetooth or SWAP-CA specifications may be referenced throughout the discussion of the various preferred embodiments, it should be understood that the claims appended hereto should be not be limited to the use of one or the other of these specifications, or necessarily to any specific communications.
The vehicle system may operate as shown in and/or include a transmitter circuit having any number of structures such as those disclosed in one or more of U.S. Pat. Nos. 5,442,340; 5,479,155; 5,583,485; 5,614,885; 5,614,885; 5,614,891; 5,646,701; 5,661,804; 5,699,054; 5,708,415; 5,854,593; 5,903,226; 6,137,421; 6,703,941; and/or 7,057,494. The disclosures of these U.S. patents is hereby incorporated by reference in their entirety to the extent they are consistent with the reminder of the disclosure of this application. In addition to (or as an alternative to) the structures of the above listed patents, the vehicle system may operate as shown in and/or the transmitter circuit may have a structure such as that disclosed in one or more of U.S. Pat. Pub. Nos. 2006/0217850; 2006/0214813; 2006/0198523; 2006/0181428; 2006/0158344; 2005/0024229; 2004/0110472; 2003/0216139; and/or 2003/0197594. The disclosures of these U.S. patent publications are hereby incorporated by reference in their entirety to the extent they are consistent with the reminder of the disclosure of this application.
The user interface system may operate as disclosed in any of US Pat. Pub. No. 2006/0168627; US Pat. Pub. No. 2005/0090279; US Pat. Pub. No. 2005/0046545; US Pat. Pub. No. 2004/0203379; US Pat. Pub. No. 2004/0110472; US Pat. Pub. No. 2004/0051337; US Pat. Pub. No. 2004/0048622; US Pat. Pub. No. 2003/0228879; and/or US Pat. Pub. No. 2002/0197955. The disclosures of these U.S. patent publications are hereby incorporated by reference in their entirety to the extent they are consistent with the reminder of the disclosure of this application.
Reference to a receiver in the claims may include a receiver, a transceiver, or any other device capable of receiving data. Reference to a transmitter in the claims may include a transmitter, a transceiver, trainable transmitter, trainable transceiver, or any other device capable of transmitting information.
Reference to a display or displaying may include any type of audio/visual display and is not limited to visual displays.
While the exemplary embodiments illustrated in the FIGS. and described above are presently preferred, it should be understood that these embodiments are offered by way of example only. Those skilled in the art can appreciate from the foregoing description that the broad teachings of the present disclosure can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the claims appended hereto should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings and the present specification. Moreover, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.
This application claims priority to U.S. Provisional Application No. 60/840,153 entitled “System and Method for Short-Range Communication for a Vehicle” (filed on Aug. 25, 2006), U.S. Provisional Application No. 60/876,885 entitled “System and Method for Short-Range Communication for a Vehicle” (filed on Dec. 22, 2006) and U.S. Non-Provisional application Ser. No. 11/511,071 entitled “System and Method for Enrollment of a Remotely Controlled Device in a Trainable Transmitter” (filed on Aug. 28, 2006) which are herein incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/076814 | 8/24/2007 | WO | 00 | 2/24/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/025007 | 2/28/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4543957 | Friedman et al. | Oct 1985 | A |
5414426 | O'Donnell et al. | May 1995 | A |
5550930 | Berman et al. | Aug 1996 | A |
5583844 | Wolf et al. | Dec 1996 | A |
5614885 | Van Lente et al. | Mar 1997 | A |
5646701 | Duckworth et al. | Jul 1997 | A |
5689245 | Noreen et al. | Nov 1997 | A |
5793300 | Suman et al. | Aug 1998 | A |
5893920 | Shaheen et al. | Apr 1999 | A |
6091343 | Dykema et al. | Jul 2000 | A |
6271765 | King et al. | Aug 2001 | B1 |
6326889 | Van Horn et al. | Dec 2001 | B1 |
6392534 | Flick | May 2002 | B1 |
6563430 | Kemink et al. | May 2003 | B1 |
6580838 | Oliver et al. | Jun 2003 | B2 |
6877097 | Hamid et al. | Apr 2005 | B2 |
7161466 | Chuey | Jan 2007 | B2 |
7346374 | Witkowski et al. | Mar 2008 | B2 |
20020075133 | Flick | Jun 2002 | A1 |
20020186144 | Meunier | Dec 2002 | A1 |
20020190872 | Suman et al. | Dec 2002 | A1 |
20020197954 | Schmitt et al. | Dec 2002 | A1 |
20030053378 | Lovin et al. | Mar 2003 | A1 |
20040001095 | Marques | Jan 2004 | A1 |
20040048622 | Witkowski et al. | Mar 2004 | A1 |
20040061591 | Teich | Apr 2004 | A1 |
20050024185 | Chuey | Feb 2005 | A1 |
20050242970 | Blaker et al. | Nov 2005 | A1 |
20060153383 | Bejean | Jul 2006 | A1 |
20060279399 | Chuey | Dec 2006 | A1 |
20070057810 | Bos et al. | Mar 2007 | A1 |
20070149189 | Yang et al. | Jun 2007 | A1 |
20080022323 | Koo | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
2295975 | Dec 1999 | CA |
1 176 392 | Jan 2002 | EP |
1 202 525 | May 2002 | EP |
1 202 525 | Mar 2006 | EP |
2 362 681 | Nov 2001 | GB |
2001-238274 | Aug 2001 | JP |
2002-186055 | Jun 2002 | JP |
2002-517643 | Jun 2002 | JP |
4227105 | Feb 2009 | JP |
WO 9402920 | Feb 1994 | WO |
WO 9963308 | Dec 1999 | WO |
WO 0075905 | Dec 2000 | WO |
WO 0128187 | Apr 2001 | WO |
WO 03056531 | Jul 2003 | WO |
WO 2004034352 | Apr 2004 | WO |
WO 2005043484 | May 2005 | WO |
WO 2008025007 | Feb 2008 | WO |
WO 2008027830 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100240307 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
60840153 | Aug 2006 | US | |
60876885 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11511071 | Aug 2006 | US |
Child | 12438723 | US |