1. Field of the Disclosure
The present disclosure relates to the field of data mining. More particularly, the present disclosure relates to data mining for improving site operations by recording and notifying abnormalities.
2. Background Information
In a retail store or other site, workers and managers conduct multiple tasks and interact with customers based on designed work flow patterns to achieve efficient operation. While the work flow procedures cover frequently occurring patterns, abnormal situations periodically occur and cause service interruptions or customer complaints, resulting in the loss of sale opportunities.
In a store environment, some establishments have various systems that generate event logs including point-of-sale (POS), surveillance, access control, and the like. Current surveillance recorders can record camera video with limited event types related with surveillance devices such as motion detection, video loss, etc.; however, there are no surveillance recorders that can easily and readily accept various types of event sources, record, manage, index, and retrieve these events. Store managers not only need to monitor events and incidents from these systems, but they also need to manage employees' daily operations. Retail stores must rely on store managers to handle all the incidents via manually combining POS log; access control log; video surveillance alarm log; and searching and figuring out what went wrong. Although there may be partly-integrated systems available such as climate control with video surveillance, there is no easy way to quickly search and display all the correlated events and sequences from all events. For example, taking just the surveillance recorder alone, user interfaces are designed based on the assumption that the store will have the resources to monitor the surveillance recorder; however, many small to medium-sized businesses (SMBs) do not have such resources and time to monitor the user interface at all, while they are in need of surveillance technology.
Surveillance recorders available today can record video based on the occurrences of certain event types, such as, for example, motion detection and the like. Although users can combine several event types in the search criteria for access and retrieval of video, there is no system available to automatically perform mining and correlate all sub-events with certain high abnormal events (alarms) together, and manage these related events as a composite event log. Such conventional systems are described in, e.g., U.S. Pat. No. 7,667,596 and U.S. Patent Publication No. 2010/0208064, the disclosures thereof being expressly incorporated by reference in their entireties.
Current video surveillance systems can provide customer location and arrival information (based on, e.g., traffic in aisle or are in a camera's field-of-view). The information collected from multiple cameras are connected; however, the system is often unable to distinguish between a single person transitioning from one camera to another, and two different people, causing accuracy problems. Similarly, tracking of an object may be lost due to tracking errors or a moving object merging into the background, or the same object appears with a different identifier and system considers it a different object/person instead of the track of the same person.
Currently, there is no available system to systematically conduct abnormal event analysis in a practical, systematic manner. Thus, such analysis cannot be done systematically by a worker working on tasks defined in the normal work flow.
Further, no available system exists that can correlate individual systems, such as a security system, unified communication (UC) system, online ordering system, facility management system, access control system, face recognition system, radio-frequency identification (RFID) system, customer relations management (CRM) system. Nor can any available systems correlate integrated applications, such as, for example video analysis+security, video Analysis+marketing, POS+video analysis (e.g., phantom returns), wireless ordering system+POS, face recognition (age, gender)+POS+CRM; and UC+access control+security. As used herein “UC” is defined as the integration of real-time communication services such as instant messaging (chat), presence information, telephony (including IP telephony), video conferencing, data sharing (including web connected electronic whiteboards aka IWB's or Interactive White Boards), call control and speech recognition with non-real-time communication services such as unified messaging (integrated voicemail, e-mail, SMS and fax).
Due to the lack of integrated systems to monitor site operations, organized retail crime groups exploit security vulnerabilities of retail establishments (such as chain stores) and repeat their act on different branches of the same establishment. When closed circuit television (CCTV) is used, each branch has recorded video. However, LP (Loss Prevention) personnel must individually review these lengthy videos and determine patterns such as whether individuals are the same in different videos/establishments. Some solutions pull incident video data to a central server to make LP investigation easier, such as VSaaS (Video Surveillance as a Service solution), but such solutions still require manual investigation to be done by individuals, who may not be able to accurately remember the contents of all the videos watched.
The current integrated solutions are vertically integrated and not open such as (integration of POS and recorder, integration of speed detection and recording, integration of door contact with camera recording, etc.). Unfortunately, all these integrations are generally through wired connections and are not scalable and flexible.
In known drive-thru operation sites (e.g., a fast-food restaurant) order processing typically occurs in the following order: the taking of the order, food preparation, accepting payment, and giving the order to customer. Different sites design and combine these steps in different ways so that service windows match the task sequence. The order taking is generally handled by an audio call to employee on the floor with a headset. The employee accepts the order and enters it into an order processing system. The customer pick-up window(s) handles payment and serving of order. Unfortunately, store pick-up windows are also vulnerable to employee theft. Considering that more than 50% of the operating cost are often due to labor costs in drive-thru operations, any automation in order processing workflow will improve the financial bottom line.
In view of the above, there has thus arisen a need to cohesively organize received multimedia information (e.g., POS terminal, unified communication device, customer relations manager, sound recorder, access control point, motion detector, biometric sensor, speed detector, temperature sensor, gas sensor and location sensor) for a site's applications, as well as related event information, for situation awareness and incident management. There has also arisen a need to be able to search the captured content (from, e.g., cameras) annotated by various data obtained from external devices. Unfortunately, heretofore the integration by connecting other devices with a multimedia recorder is not feasible considering the many applications at a retail site (e.g., doors, POS, CO sensors, etc.).
By focusing on abnormality management efficiency, a non-limiting feature of the disclosure improves the total system efficiency because the occurrences of abnormalities in operations are strong indicators of inefficiencies of otherwise optimized operation flow in, e.g. managed chain stores.
According to a non-limiting feature of the disclosure, provided is a method for monitoring and controlling the work flow process in a retail store by automatically learning normal behavior and detecting abnormal events from multiple systems.
A non-limiting feature of the disclosure automates the analysis and recording of correlated events and abnormal events to provide real-time notification and incident management reports to a mobile worker and/or managers in real-time.
A non-limiting feature of the disclosure provides a system that can record and manage multiple events efficiently and also can provide business intelligence summary reports from multimedia event journals.
A non-limiting feature of the disclosure organizes and stores correlated events as an easily-accessible event journal. A non-limiting feature of the disclosure provides that the surveillance recorder is to be integrated with a unified communication system for real-time notification delivery as well as a call-in feature, to check the site remotely when needed.
In a non-limiting feature of the disclosure, the networked services with secure remote access allows, e.g., a store manager to monitor many stores (thereby increasing efficiency for chain stores since one manager can monitor plural stores) and saves the manager from making a trip to each store every day. Rather, the manager can spend most of his/her time monitoring the multiple site operations to improve customer service and store revenue instead of driving to each store locations, which otherwise wastes energy and time.
Therefore, a monitoring and notification interface according to a non-limiting feature of the disclosure provides an easy-to-comprehend, filtered and aggregated view of multimedia and event data pertinent to application's objectives.
A non-limiting feature of the disclosure provides easy creation of application-specific recorded multimedia annotation (through event sources such as POS, motion sensor, light sensor, temperature sensor, door contact, audio recognition, etc.) allows a user to define application specific events (customization, flexibility), define how to collect the annotation data from events; and to retrieve all incident-related multimedia data efficiently in a unified view (resulting in automation efficiency).
A non-limiting feature of the disclosure integrates different types of events to create a unified data model to allow for service process optimization and reduces the service and waiting time for the customer. A non-limiting feature of the disclosure focuses on abnormality detection management to improve the store operation based on normal customer demand to detect an abnormal event sequence and cross relationship of event sequences.
A non-limiting feature of the disclosure provides a data mining process that supports staffing decisions based on expected customer demand extracted from prior data collected from video based detection (counting, detecting balked customers), POS, and staff performance data (indicative of service levels for certain preparation tasks).
A system according to a non-limiting feature of the disclosure automatically creates event correlation based recordings, and generates video journals that are easy for workers and managers to view without significant manual operation. The recorded multimedia journal in a non-limiting feature of the disclosure includes multiple types of events and event correlations that are ranked, to facilitate fast browsing.
A non-limiting feature of the invention reduces the integration cost by only integrating abnormal events, thereby saving time. Also, customization costs may be reduced by extracting a normalized abnormal score from different system variables with different meaning and units.
An abnormality business intelligence report according to a non-limiting feature of the disclosure reduces the need to manually observe a long duration progressive change of fitness of optimization process of each system. Also, synchronizing the speed-up pace of a site worker in the order pipeline or addition of a worker when one is needed in real-time can reduce service wait time and total system cost.
A system according to a non-limiting feature of the disclosure can record multiple types of events and multimedia information besides video from various event information sources. The recorded information is organized and indexed not only based on time and event types, but also based on multiple factors such as correlated events, time, event sequences, spatial (location), and the like.
A system according to a non-limiting feature of the disclosure allows users to define a business intelligence application context to express application objectives for automated event journal organization.
A system according to a non-limiting feature of the disclosure captures event inputs with multimedia recording from multiple event sources, filters and aggregates the events. An event sequence mining engine performs event sequence mining, correlates the events with forward and backward tracking event sequence linkages with probability, and event prediction.
A system according to a non-limiting feature of the disclosure provides an automated online unified view with a summary dashboard for fast chain store business intelligence monitoring, and the retrieved multimedia recording is based on key events and can be easily browsed with all the linked sub events along the time, spatial, and chain store location (single/city/region/state/worldwide) scope. A system according to a non-limiting feature of the disclosure also seamlessly integrates automated notification via unified communication.
A system according to a non-limiting feature of the disclosure provides a multimedia event journal server supporting multi-model time-spatial event correlation, sequence mining, and sequence backtracking for daily business management event journaling and business intelligence for retail employee management, sales management, and abnormal incident management.
A multimedia event journal server according to a non-limiting feature of the disclosure can collect and record events, aggregate events, filter events, mining sequence of events, and correlate events from multiple types of event input sources in retail store business operations. It provides automated online real-time abnormal correlated events journal with business intelligence summary unified reporting view or dashboard and unified communication notification to store managers via computer or mobile device.
The event journal server system provides event collection via event APIs (application programming interfaces), an event sequence mining and correlation engine, multimedia storage for event and transaction journals, event journaling management, business intelligence summary reporting, and alert UC notification.
Features of an integrated abnormality detection system according to a non-limiting aspect of the disclosure are:
synchronizing the increase in work pace of a worker in an order pipeline, or adding a worker when needed in real-time, can reduce customer service wait time and total system cost.
The system allows users to define business intelligence contexts to express application objectives, and captures event inputs from devices with multimedia recording from multiple types of devices or sensors, combines events and sequences, and provides flexible notification via unified communication (UC), and supports an online real-time unified summary view dashboard for fast search and monitoring.
A multimedia event journal server according to a non-limiting feature of the disclosure provides an extensible system that allows integration of various events for application-specific composite event definition, detection, and incident data collection. The flexible framework allows the user to see all event related data in a unified view. The presentation layer can be customized for vertical application segments. An application event capture box may provide broadband connection to cloud-based services which can allow maintenance, configuration data backup, incident data storage for an extended period of time (instead of on-site recorders), business intelligence reports, and multi-site management.
The system according to a non-limiting feature of the disclosure receives the raw events from one single device or from multiple devices or sensors, which are then accumulated to detect application composite events which are composite of correlated events. Also, the system may perform event sequence “occurrence interval” statistic distribution based on either multi-step Markov chain model learning or Bayesian Belief network learning methods. After the system learns, the statistical linkages of events are automatically constructed and abnormal sequence based on time and space as well as “multiple previous events” can be backtracked.
Another feature of the system traces back all the abnormal events after one abnormal event has occurred. The results may be ordered based on the ranked abnormality score of the events. Also, managed events data and video may be provided to additional networked central management sites. The recorded multimedia may be annotated with the collected composite event information (e.g., allow a user to jump to a segment in which a selected grocery item has been scanned instead of watching the whole recording for investigation). User annotation can be collected from keyboard, speech, video recording, etc. The annotation may also include the identity of the annotating person and its speech-to-text data as well as her/his emotional state. All these annotations can be indexed and efficiently searched later as needed. Also, storing data from a security guard while the guard is annotating/evaluating an incident video may be performed because in the case where fraud is internal and organized, the searches on various abnormalities (including the annotations from guards) becomes important to discover internal fraud attempts, assuming that subjects will likely to cover traces in a surveillance system. In addition, the system can mine the assessment of guard/security officer with respect to a set of face feature data (extracted from LP records) to see whether there is any correlation between, e.g., the officer ID, cluster of faces, and assessment of LP record, thereby allowing a user to determine whether, e.g. a set of LP records (containing the set of same face feature vector sets) getting favorable assessment from a certain security guard. Further, the system may query assessment of LP cases by multiple security guards to cross-check the assessment honesty or deviations. For further review (or randomly), the system can flag certain LP case assessments by a certain security officer based on detected abnormalities. The system can hypothesize and open a virtual case for the aforementioned situation (kind of a hunch) and start collecting evidence, until there is substantial evidence to notify the supervisor to take a look at the virtual case file for human (supervisor) inspection.
Also, the system in accordance with a non-limiting feature of the disclosure may further include representing application-specific events based on raw events and their potential sequencing. Also provided may be detection representation combining the many events in representation for efficiency. Also, the defined application specific events may be dynamically updated (e.g., they may be added, deleted or modified) and stored in dynamic or permanent storage.
Major cost burdens in retail industry come from theft, return fraud and false injury/workman's compensation claims. Thus, a non-limiting aspect of the disclosure provides a feasible and efficient way to:
The system in accordance with a non-limiting feature of the disclosure provides an easy-to-use customization framework for users and solution providers to integrate various multimedia devices within a unified framework which enables efficient annotation of captured content with associated captured metadata.
The integration of multiple types of multimedia devices and sensor event capture modules allow an event mining module to learn abnormal operation patterns and/or events, including but not limited to the following:
When any of the above abnormal operations are observed by the system, the system has the ability to generate alerts or alarms.
The system in accordance with a non-limiting feature of the disclosure can provide online real-time event sequence journal and business intelligence summary reports and a dashboard with the scope of single store to multiple stores for store owners, as well as countrywide or global summary views for headquarters for business intelligence and sales analysis.
The system in accordance with a non-limiting feature of the disclosure performs event sequence mining and correlation to sensed events and generates alarms for correlated events. The system in accordance with a non-limiting feature of the disclosure manages events data and links related events together for alarms with unified views and annotation on video for easy access and playback display. During monitoring, the system in accordance with a non-limiting feature of the disclosure uses selected context to combine the video from the select regions of interest (ROIs) of each video mining scoring engine target (associated with a camera) and external data (POS transactions) into one unified view. For notification, the system in accordance with a non-limiting feature of the disclosure uses the selected context for delivery of notification with unified communication or unified view portal when the application specific complex event is recognized.
Context may be used as a mechanism to define the application-specific filtering and aggregation of video, audio, POS, biometric data, door alarm, etc. events and data into one view for presentation. With the help of context, the user only sees what the application requires. The context definition includes a set of video mining agent (VMA) scoring engines with their ROIs, complex event definition based on primitive events (POS, door alarm events, VMA scores, audio events, etc.).
A unified view portal provides a synchronized view of disparate sources in an aggregate view to allow the user/customer to understand the situation easily. Automated notification capability via unified communication to send external (offsite) notifications when an alarm is detected.
The system in accordance with a non-limiting feature of the disclosure with UC compatibility allows outside entities to login to the system and connects to devices for monitoring, maintenance, upgrade etc. purposes as well as communications.
An aspect of the disclosure also provides a system of store management by using face detection and matching for queue management purposes to improve site/store operations. Such a system may include a system to detect a face, extract a face feature vector, and transmit face data to a customer table module and/or a queue statistics module. Also included may be a system to collect and send POS interaction data to queue statistics module, as well as a system (such as a customer table module) to judge whether the received face is already in a customer table of the queue. Also provided may be a system (such as a queue statistics module) to: annotate video frame with POS events/data and face data (which may be part of metadata), obtain the customer arrival time to queue from a customer table module, obtain cashier performance data from a knowledge base, insert the cashier performance for each completed POS transaction to a data warehouse, assess the average customer waiting time for each queue, and send real-time queue status information to a display.
The display may display real-time queue performance statistics and visual alerts to indicate an increased load on a queue based on the real-time queue status and the cashier's expected work performance. The display may also communicate each queue status to an individual such as a manager by at least one of visual and audio rendering.
Additionally, the system to detect a face may be able to select a good-quality face feature to reduce the amount of data to be transferred, while increasing the matching accuracy. Also, the system to judge whether the received face is already in the customer table of the queue may select a set of good face representatives to reduce the required storage and increase matching accuracy. Further, annotated video frame data may be saved in an automated multimedia event journal server, linked by their content similarity by the automated multimedia event server, accessed by the display from the automated multimedia event server to browse the linked video footage to extract the location of the customer prior to entering to the queue.
Accordingly, a non-limiting aspect of the disclosure provides a method of notifying a user of site abnormalities via an application, the application configured to access an event server, the event server having a first sensor abnormality detector connected to a first sensor, for detecting first abnormal behavior of first sub-events sensed by the first sensor, the first abnormal behavior corresponding to a first abnormal behavior value representing the degree of the first abnormal behavior compared to statistical distributions determined from the first sub-events sensed by the first sensor, a second sensor abnormality detector connected to a second sensor, for detecting second abnormal behavior of second sub-events sensed by the second sensor of a type different from the first sensor, the second abnormal behavior corresponding to a second abnormal behavior value representing the degree of the second abnormal behavior compared to statistical distributions determined from the second sub-events sensed by the second sensor, a correlator for correlating the first and second abnormal behavior values and logging correlated values as a composite event, the composite event corresponding to at least one said first sub-event and at least one said second sub-event, a data store configured to store data associated with the first sensor and the second sensor, and data associated with the composite event, the method according to a non-limiting aspect includes receiving a request for the application from a device remote from the event server, transmitting the application to the device, and accessing the event server, the application having a viewer configured to show, on the device, data associated with a plurality of composite events, the viewer further configured to display the plurality of composite events in a temporal order.
According to a non-limiting aspect of the disclosure, the viewer is further configured to display, within each composite event, first sub-event data and second sub-event data associated with the second sensor. Also, the first sub-event data may be identified using a first icon type, and wherein the second sub-event data may be identified using a second icon type different from the first icon type. The viewer can further include a list, the list comprising first and second sub-events. Additionally, each composite event can be differently color coded by the viewer. Also, the viewer can further include a map of the site configured to show a location of each composite event in relation to the site. The application may be configured to access a plurality of networked event servers.
Also according to a non-limiting aspect of the disclosure, the method can further include selecting a displayed composite event, and displaying data associated with the selected displayed composite event, the data including at least one of recorded first sub-events sensed by the first sensor and recorded second sub-events sensed by the second sensor. Further, the data can further include metadata of at least one of recorded first sub-events sensed by the first sensor and recorded second sub-events sensed by the second sensor. Additionally, data associated with the first sensor and data associated with the second sensor may include metadata, the metadata including at least one of date, time, location, quality and keyword.
According to a further non-limiting aspect of the disclosure the first sensor is one of a camera, point-of-sale terminal, unified communication device, customer relations manager, sound recorder, access control point, motion detector, biometric sensor, speed detector, temperature sensor, gas sensor and location sensor, and the second sensor is another of a camera, point-of-sale terminal, unified communication device, customer relations manager, sound recorder, access control point, motion detector, biometric sensor, speed detector, temperature sensor, gas sensor and location sensor. The viewer may be further configured to backtrack and display the plurality of composite events in a temporal order. Also, at least one of the first sub-events and the second sub-events may include key and non-key sub events, and the non-key sub events may be correlated as a composite event based on back-tracking key-sub events to non-key sub events.
According to yet another non-limiting aspect of the disclosure, provided is a system for notifying a user of site abnormalities, the system having an event server having a first sensor abnormality detector connected to a first sensor, for detecting first abnormal behavior of first sub-events sensed by the first sensor, the first abnormal behavior corresponding to a first abnormal behavior value, a second sensor abnormality detector connected to a second sensor, for detecting second abnormal behavior of first sub-events sensed by the second sensor of a type different from the first sensor, the second abnormal behavior corresponding to a second abnormal behavior value, a correlator for correlating the first and second abnormal behavior values and logging the correlated values as a composite event, the composite event corresponding to at least one said first sub-event and at least one said second sub-event, and a data store configured to store data associated with the first sensor and the second sensor, and data associated with the composite event, and an interface configured to show data associated with a plurality of the composite events, the interface comprising a viewer configured to display the plurality of composite events in temporal order.
Also according to a further non-limiting aspect of the disclosure provided is at least one non-transitory computer-readable medium readable by a computer for notifying a user of site abnormalities, the at least one non-transitory computer-readable medium having a first sensor abnormality detecting code segment that, when executed, detects first abnormal behavior of first sub-events sensed by a first sensor, the first abnormal behavior corresponding to a first abnormal behavior value, a second sensor abnormality detecting code segment that, when executed, detects second abnormal behavior of second sub-events sensed by a second sensor of a type different from the first sensor, the second abnormal behavior corresponding to a second abnormal behavior value, a correlating code segment that, when executed, correlates the first abnormal behavior value and the second abnormal behavior value and logs the correlated value as a composite event, the composite event corresponding to at least one said first sub-event and at least one said second sub-event, and a data storing code segment that, when executed, stores data associated with the first sensor and the second sensor, and data being associated with the composite event, a displaying code segment that, when executed, displays data associated with a plurality of composite events, and a viewing code segment that, when executed, displays the plurality of composite events in a temporal order.
Also according to another non-limiting aspect of the disclosure, provided is a method of managing a plurality of queues at a site, the method including detecting, using a video imager, each face of a plurality of customers each in a queue of the plurality of queues, based on face data corresponding to a face value of a unique face, transmitting the face data to a customer table processor and a queue statistics processor, determining, using the face value and the customer table processor, how long each customer has been in a respective queue of the plurality of queues, determining, based on how long each customer has been in the respective queues, an average waiting time for each queue of the plurality of queues. The determining the average waiting time for each queue may further include using cashier performance data.
Also according to still another non-limiting aspect of the disclosure a method of personalized marketing is provided, the method including detecting, using at least one video imager of a plurality of video imagers located throughout a site, a unique customer based on a customer face at the site based on face data corresponding to a face value of a unique face, creating an image relating to advertised items to be displayed to the customer based on characteristics of the detected unique customer, tracking, using a trajectory of the customer determined by the plurality of video imagers, the detected unique customer throughout the site, determining, using data corresponding to the tracked detected unique customer, areas of the site visited by the unique customer, and correlating the areas of the site visited by the unique customer with the advertised items.
This method may further include altering the created image based on correlating the areas of the site visited by the unique customer with the advertised items, and may additionally include providing the unique customer with an incentive based on correlating the areas of the site visited by the unique customer with the advertised items.
In view of the foregoing, the present disclosure, through one or more of its various aspects, embodiments and/or specific features or sub-components, is thus intended to bring out one or more of the advantages as specifically noted below.
Referring to the drawings wherein like characters represent like elements,
In a networked deployment, the computer system may operate in the capacity of a server or as a client user computer in a server-client user network environment, or as a peer computer system in a peer-to-peer (or distributed) network environment, including but not limited to femtocells or microcells. The computer system 100 can also be implemented as or incorporated into various devices, such as a personal computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a mobile device, a global positioning satellite (GPS) device, a palmtop computer, a laptop computer, a desktop computer, a communications device, a wireless telephone, smartphone 76 (see
As illustrated in
In a particular embodiment, as depicted in
In an alternative embodiment, dedicated hardware implementations, such as application specific integrated circuits, programmable logic arrays and other hardware devices, can be constructed to implement one or more of the methods described herein. Applications that may include the apparatus and systems of various embodiments can broadly include a variety of electronic and computer systems. One or more embodiments described herein may implement functions using two or more specific interconnected hardware modules or devices with related control and data signals that can be communicated between and through the modules, or as portions of an application-specific integrated circuit. Accordingly, the present system encompasses software, firmware, and hardware implementations.
In accordance with various embodiments of the present disclosure, the methods described herein may be implemented by software programs executable by a computer system. Further, in an exemplary, non-limited embodiment, implementations can include distributed processing, component/object distributed processing, and parallel processing. Alternatively, virtual computer system processing can be constructed to implement one or more of the methods or functionality as described herein.
The present disclosure contemplates a computer-readable medium 182 that includes instructions 184 or receives and executes instructions 184 responsive to a propagated signal, so that a device connected to a network 101 can communicate voice, video and/or data over the network 101. Further, the instructions 184 may be transmitted and/or received over the network 101 via the network interface device 140.
Abnormality Detection Agent and Server
The agents 32, 34, 36, 38 and 40 are each connected to an abnormality event sequence correlation server (ACS) 52, schematically shown in
The auto-learning step includes two step processes. First, each agent 32, 34, 36, 38 and 40 collects event data from its respective sensor 42, 44, 46, 48, 50 used at a site and learns a normal pattern from a selected subset of the input and output of a selected sensor 42, 44, 46, 48, 50. Each event is given an abnormality score. The data mining is done automatically without human intervention. After the abnormality score is generated, only medium and high abnormal scores are sent to the abnormality event sequence correlation server (ACS) 52, schematically shown in
Secondly, the ACS 52 detects the meta properties (e.g., abstract value meta data (AVMD) 54) such that the dynamic and bursty distribution can be analyzed beyond the stationary distribution. The meta property of the score abnormal events is based on occurrences, inter-arrival rate, and correlation of the events of different types. The ACS 52 also performs cross arrival distribution pattern learning and detects an abnormal cross relationship between the events. Also, the system (at, e.g., the front end) can use deep packet inspection to capture application-level messages. The sensor data output sequence is logged and learned as a statistical distribution of patterns, when the corresponding sequence between the different sensors 42, 44, 46, 48, 50 becomes different from the normal sequences in a moving window. For example, a(i), b(j), c(k) are abnormality behavior scores from sensors a, b, c. which can form a composite distribution. A correlation abnormality can be defined in many ways. One exemplary way may be L2 distances (Minkowski distance when p=2, a.k.a., Euclidean distance) of all possible ordered sequences weighted by the occurrence frequency of each type of sequence. RMS((A(i)-a(i), B(j)-b(j), C(k)-c(k)) for all the combinations of a(i), b(j), c(k). The system may then detect abnormal orders and magnitude of abnormal behavior value among multiple sensors 42, 44, 46, 48, 50. For sequences that have very low occurrences or very different scores, the correlator can issue a sequence of composite abnormal behavior values for each input event or in bundled events at controllable intervals. Also in order to obtain abnormality values, an algorithm of the system obtains a matrix where each row represents one of above sensor inputs, and a column is obtained by time intervals. The time window of the last columns defines a matrix which captures state information. To utilize symbolic sequence mining based algorithms, the system can collect such matrix data and apply clustering to discover clusters. Then, each cluster is assigned a symbol (cluster symbol). This multidimensional sequence data is converted to a sequence of symbols to apply sequence learning and detection of abnormalities based on expected sequence patterns. Another feature of the disclosure supports robustness for time length variations, and the above-described matrix can be obtained by different time window sizes (1 sec, 2 sec, 4 sec, etc.). Wavelet transform can also be applied to these matrix data to obtain vectors that can be utilized for clustering and cluster symbol assignment in the above sequence. These are exemplary methods to learn sequences and detect abnormalities by using discovered sequences.
Exemplary types of cross relationship abnormalities at a site (for example, a fast-food restaurant) include, for example sequence abnormalities such as: a car entering a drive-thru area but did not stop at ordering or pickup areas; a customer enters the store without going to the ordering area; many cars enter in a burst that is much higher than a normal service rate at the time of the day; and the time interval that a car stays in an entrance of the drive-thru is too long, indicating a long queue or car breakdown.
Exemplary types of cross relationship event sequence abnormalities include situations where: a car drives in to order the food without a POS transaction; a POS transaction occurs after a customer leaves or occurs earlier than the customer enters the POS/cashier area (signaling possible opportunity for a loss prevention event); the kitchen makes much more food than is needed for normal business hours; the number of customers that are not greeted by a sales person is higher than normal (indicating possible absence of sales associates); the rate of customers entering the store is higher than normal (as determined by VMA) but sales are lower than normal (as determined by POS); linger time of a customer in a predetermined section of the store is significantly longer than a customer linger time in other areas, but the pattern has changed (indicating that there is a change in interest or effectiveness of special promotion).
Thus, the ACS 52 collects different types of events from multiple systems used at a site and builds/updates multiple data models/maps 56 based on these events, as shown in
An abnormality business intelligence report system 64 (see,
An additional feature of the invention is scalability for adding additional abnormality score detection engines 52 based on, e.g., plug-and-play devices such as an advanced video motion tracking device (e.g., a tracker output object bounding box). Thus, the system is customizable to a user's needs.
As shown in
One proposed use of the system is for workforce management. For example, in a retail environment, the action synchronization paging server 66 can inform the retail store manager if a customer has been assisted by a sales staff member when the number of customers is fewer than the number of sales staff. However, when the number of customers is greater than the number of sales staff, the action synchronization paging server 66 may not generate an alarm or page. When the sales staff member wears a marker, RFID or other way to locate and identify him/her, the system can track how the sales person interacts with customers.
The system is also able to collect transaction data from multiple mobile devices such as cell phone or active tag (such as an RFID system). These mobile devices enable the system to obtain location information, which can be combined with video images via a through the operation journal 72. The operation journal 72 contains cumulative store operation event sequences and abnormality events automatically detected by the system and logged in the journal. The mobile device also collects transaction data from the mobile devices and active tag.
The collected transaction data may include, for example:
To provide better customer service, the system is able to indicate which customer arrived at a site/store first. Emphasizing priority of arrival reduces “line-cutting” and customer aggravation. Such a system that produces data as to how long a customer spends time in the store provides a store with valuable insight about customer traffic.
The system collects multiple types of statistics from location information, estimated arrival time, and order processing workflow status. Using input and output of multiple sensors, the system can perform analyses that are not easy for a manager or worker to do manually, for example:
When abnormal events are determined, action can be automatically performed by the system, for example:
A feature of the disclosure tracks traffic data in addition to or as an alternative to tracking POS data. While POS data is used to track historical sales, transactions and inventory movement, traffic data is the ideal metric for understanding sales potential. Since the traffic data set is larger than the POS data set (since not all people who enter a store make a purchase), analyzing traffic data presents a site with an opportunity-based sales strategy. For example, if a store can deploy the right people in the right place at the right time, then it meets customer demand and expectations without incurring additional personnel costs (i.e., the system allows a store to maximize the utility of its staff). A further feature of the disclosure uses this traffic data to determine site revenue (or profit) per square foot, in order for the system to determine optimal site floor configuration (e.g., site size and/or floor plan).
Another feature of the disclosure allows a site to detect an unassisted customer. In such a situation, it is desirous to ensure that the customer is quickly assisted in order to avoid a potential loss of sale. In this regard, each sales staff member holds a location-identifying device (such as, for example, a mobile POS, RFID tag, tablet PC, mobile PC, pager, smartphone, and the like), and the identity and location of customer waiting is identified (using, e.g. face recognition, CRM, smartphone). Note that the actual identity (name, etc.) is not required for the system to work, only that a unique individual is identified (e.g., Asian male, aged 18-35).
Referring to
Referring to
Furthermore, the matching module 82 processes the object trajectory data ObjTi, ObjTj coming from different cameras for real time similarity search to recover the object trajectories belonging to the same person by utilizing the set of face data/feature associated with object trajectory data. Also, object trajectory data could be used for multi-camera calibration purpose.
Also, to speed up the tracking process, the matching module 82 can prune the candidates based on learned time-space associations between cameras. After the above trajectory grouping is accomplished, the system can update the appeared and disappeared time stamp of a person to determine, e.g., which customer was first, how long customer has been waiting, how long customer has been in the store (possibly displayed on monitor) by using persons table 84. Such information can be used, e.g., to determine which queue to offload, to determine cashier performance. Again, note that the actual identity (name, etc.) is not required for the system to work, only that a unique individual is identified
The system is also able to judge whether an obtained facial image is of good quality, can judge whether a set of representative facial images is of good quality, can calculate the similarity between one face and set of representative faces (and can be camera aware).
When the matching of trajectories is completed in object table 86, these matching trajectories are mapped to person view in which system can assign a unique identifier and extract the person arrival time, using persons table 84.
Cashier performance may thus be evaluated by combining the queue time information, how many customers balked (left the store without making a purchase), number of POS transactions, items, and amount, and the like. In the case of multiple cashiers, then the store manager could immediately see the average customer waiting time for each cashier. The measurement of loss opportunity is often important for the store to make proper forecasts of expected customer traffic. From the POS alone, a store can only know who was patient enough to wait and then pay for merchandise; however, according to a feature of the disclosure, the aforementioned collected information may be converted to performance metrics for each cashier. Then, video recordings of high-performing cashiers can be utilized for training other cashiers, e.g., to show other cashiers how to efficiently handle busy periods.
The customer (object) waiting the longest is the one with the minimum timestamp. This information can be inserted into camera video streams along with the tracker metadata “Meta.” The customer waiting time or the amount of time the customer has been in the store may be displayed when the metadata of object is displayed, using for example, a Real-time Transport Protocol RTP. In this way, the profile of an average shopper's average shopping time could be utilized to provide an alert to monitoring personnel that a specific object/person is in the store way for longer than average, which could be a pre-screening for loss prevention. This information may be stored in a Network Video Storage (NVR).
In a situation where there is no idle employee to assist the customer, the system uses a revenue expectancy model to assist the customer. For example, if there is an unassisted customer holding a high-value item such as, e.g., a computer (determined by, e.g., an RFID tag on the item) or lingering in a high value location of the store (e.g., the computer aisle), and there is another customer being assisted holding a lower value item (e.g., a video game cartridge) or lingering in a low-value aisle of the store (e.g., the video game aisle), then the employee assisting the customer holding a lower value item or lingering in a low-value aisle of the store is directed to leave that customer to assist the customer holding the high-value item or lingering in a high value location of the store. In this way the customer with the greater revenue expectancy is prioritized. The system also can store the sales and education skill set of each sales associate, which can then be matched with type of merchandise. The system can utilize the skill set information to select a sales associate (out of multiple idle sales staff, out of multiple busy sales staff) to dispatch to the area of the store stocking the appropriate type of merchandise.
A further feature of the disclosure monitors the location of a plurality of customers, and determines the period of time each customer not being assisted has been unassisted, whereupon sales staff may be dispatched to the customers in order of which customer has been waiting the longest
Another feature of the disclosure provides a system and method for deciding appropriate customer waiting time depending on the type of merchandise. In a store, each aisle/section carries a different type of merchandise, and customers spend different amounts of time depending on the type of merchandise in the aisle/section, and will accordingly often look for sales assistance.
As described above, the system is able to use video data mining techniques to detect and/or predict the expected wait time of a customer. The system utilizes the RFID tracking (staff and merchandize) and video (customer, staff, merchandize) to provide the functions. When the system detects that a customer stayed longer than expected, the system dispatches a sales associate. The collected transaction data records the aisle the customer waited, how long he/she waited, when the sales associate arrived, sale associate ID, how long sales associate assisted the customer, whether the assistance resulted in sales, and amount. The system records when customer left without any sales associates having assisted him/her (loss opportunity). A conversion rate (the rate based on whether or not the assistance to the customer resulted in a sale) is calculated as to whether or not the purchase occurred (using, e.g., RFID tag data). The system can then adjust the customer stay threshold depending in the observed conversion rate success. A further feature of the disclosure may provide “help” buttons in store aisles, which can be utilized to judge when customers reach out for help. A combination of video based data, lingering time, and when the “help” button pressed is processed by system, and this information may be utilized to pre-dispatch an associate to strike a balance between giving the customer an adequate amount of time to browse and being on time to offer assistance, thereby resulting in less frustration and anxiety on the part of the customer side, and provide a better shopping experience. The system can also generate aisle-specific such expectancy models, and can generate aisle and customer demographic specific expectancy models when the ‘demographics’ of the customer is also available. Other video based technologies could be utilized by the system when appropriate, such as remote emotion identification by using object gait, face, etc. to extract further data about the customer (e.g., whether relaxed, happy/smiling, anxiety level high, agitated, puzzled, paces back and forth, etc.). Such data could be used to identify aisles which gives the most anxiety/frustration to our customers as well as the “happy aisles” where customers spend less time with lots of picked up goods.
The captured video (which leads to conversion) can be utilized for training of other associates. Assets such as this allow human resource departments to train and re-train their sales associates with captured and missed opportunities
After the POS transaction data is collected per store, the system can aggregate the data of time periods together with weather information and holiday information. This aggregation produces the basic models for predicting the sales, sales items, and demand for staff. After the individual store data is collected in a centralized data warehouse, another algorithm aggregates them by geographic location of stores, thereby providing the geographical similarity and dissimilarity models. This measure can be used to detect abnormal store performance in which the high performing stores help headquarters learn more about which sales and/or marketing techniques are working, so that low performing stores are either put on a program or closed. A further feature of the disclosure allows for the comparison of ‘floor plan’ testing or any other market testing), which can be easily realized by:
Using the above, the system in accordance with a non-limiting feature of the disclosure allows headquarters to run very disciplined comparable improvement tests (and see the comparative results in real-time, daily or hourly.
The determination of expected sale items will allow delivery of goods to individual stores, and an aggregate view can be utilized to optimize the delivery of goods to various sites. Supply trucks can be packed with the goods for multiple store locations, thereby improving the supply delivery as well as inventory on each individual store where each store will have the goods that sell the most until the arrival of next supply truck. Using this data, the system can compare the cost of being out-of-stock and the cost of dispatching a supply truck. This constant information collection, aggregation, prediction, and turning into various business actions will increase the efficiency of site operations.
According to another feature of the disclosure, integrated car (or smartphone) navigation systems and customer ordering systems can give actual driving distance to nearest reachable shop. Furthermore, the integrated system can combine the real time traffic congestion data with historical data to come up with a new definitions of “nearest shop” which depends on the time of day, roads, road work, customer's current location, customer's order, shop working hours, etc. For example, the current location of a customer may be the same for day one and day two, but the “nearest store” data returned to the user differs from day one to day two due to, e.g., scheduled road repairs or a road closure/blockage (due to, e.g., a visiting dignitary) for day two.
When the order is passed from one station to another (during the order fulfillment process for example in warehouse, which has pick, pack, ship, steps and the like), cameras can get snapshots of the order during this pipeline to record or journal how the order is fulfilled by the system. Loss prevention personnel can investigate loss or complaint cases by accessing the journal which explains how the particular order has been filled. In practice, this operation can be realized by efficient integration of multiple technologies. For example, tracking, order processing, cameras, and control module which knows the location and FOV (field-of-view) of cameras, processed orders, instructs the cameras to prepare to capture images and store them in a multimedia server. The controller may preconfigure each camera with an action which is triggered by a tag read event and matched with the expected tag number (which is associated with the order). The controller may preconfigure all the cameras which may capture the image of the order in response to tag read events. Also, each action also includes instructions as to where to store the captured multimedia information. Furthermore, controller also configures an action which is triggered if the expected tag read event is not observed within a given time window to detect if the order did not show up at the expected location. Additionally, the time window is learned based on the prior data collected from similar/same orders. Still further, if the expected read did not happen, such event can raise an exception/abnormality alarm to direct the manager's attention to investigate and fix the problem. In such case, the system may initiate a UC communication between manager and the worker while notifying the manager.
In the case of retail POS transactions, loss prevention (LP) personnel investigate certain operations, such as cash transactions, returns above certain price threshold or certain items of interest (based on, e.g., SKU number), transactions with coupons or discounts, payment segment, certain credit card type, certain cashier, etc. It is beneficial for the LP personnel to be able to pinpoint the “segment” of multimedia (video, audio, face, etc.) record containing the pertinent part. Giving the LP personnel the necessary multimedia segments enables the LP personnel to do their job more efficiently.
An aspect of the disclosure provides location aware order handling for sites such as fast food drive-thru operations or any other site which accepts pre-ordering for later pickup, as shown in
Thus, labor and transaction time and expenses may be reduced, transaction time may be reduced, LP opportunities may be reduced due to automated payment collection, consumer waiting time may be reduced, and per store profit and revenue may be increased by serving more customers due to reduced congestion.
To further increase efficiency of the store/site, orders may be scheduled and prepared based on estimated arrival time of the customer. For example, after the system accepts the order through the cell phone 76 from the customer, the system estimates the arrival time by receiving customer location information from the in-car or cell phone 76 navigation system and informs order processing system 78 (which may be cloud-based or at the location of the pickup site) which in turn combines the arrival time information with the estimated order preparation time to determine when to schedule the preparation of the customer's order. By preparing just-in-time orders, the customer receives the food (or other item) freshly prepared, thereby improving the customer's satisfaction. Further, the kitchen at the store is then enabled to prepare the food more efficiently.
In an aspect of the disclosure, the order processing system 78 may also send the customer a facial image of the worker who will prepare and/or provide the customer with the order. When the customer arrives to the drive thru, the customer shows the facial image of worker to a face recognition system, which informs the worker about the pick-up of the customer's order through a notification system (such as a pager, voice communication system, and the like). The order processing system 78 sends a code (such as a quick response “QR” code and the like) that is associated with the order and payment. When the customer arrives to the drive thru, the customer shows the code (which may be an image on wireless device/phone 76) to an order code recognition system that informs the worker of the arrival of customer for order pickup.
Also, using a customer count based on demographics (age, sex, race, etc.), the work force management system can match the work force with the demographics of expected customer traffic, thus improving customer care and experience.
Referring now to
When the customer places the order, data including an image of the customer's face may be provided to the system (either from the customer's smartphone, pre-stored through the CRM, etc.), so that the store employee can easily identify the customer by matching the face image attached to the order by looking at the face of customer. Alternatively, instead of a store employee visually confirming the matching of the customer's face, a face detection and recognition system may be utilized to compare the face of the customer picking up the order with the image of the ordering customer's face. To increase operational efficiency, in the event that the face recognition system cannot verify the identity of the customer picking up the order, the face recognition system can alert the worker that the worker needs to further verify the face of customer. Using a graphical user interface (GUI), the worker can wear enhanced eye glasses which can show the face image of expected person who will pick up the order.
The order making process is revised and the order handling service also returns an order code (including but not limited to a QR code) which customer will show to pick up the order. The QR code sent to the customer includes encoded information obtained from, e.g., customer name, unique device identifier (UDID) of a mobile device, mobile phone number, CRM member number, license plate, order number, etc. This code is also provided to the site.
At Step S103 the customer shows the QR code on her mobile phone, whereupon a QR recognition module detects the code, extracts, and decodes the code. The QR recognition module checks the information against the ordered items, information collected by the LPR and wireless protocol system in the order handling system. Since two or more items of (or alternatively all) information is required for an acceptable match, the system can verify that the customer picking up the order is the customer who ordered.
The aforementioned system can be enhanced in terms of how the QR code is encoded (i.e., it may be encrypted by using a key derived from UDID, face image, etc.). In alternative embodiments, the system can check the location of phone (by GPS or other geolocation) or social media sites (if member's information is known).
The aforementioned system can determine the arrival rate of the customer. For example, a camera 44 or other sensor observes the entrance of the drive thru and detects whether a car entered the drive thru lane. The system then collects these “enter” events and produces per-hour arrival count data. The arrival rate for any given hour is calculated by taking the mean of count samples of the same time interval.
The aforementioned system can also detect a rate of customer arrival that is abnormally higher than expected, by using the continuously learned models and current observations. The system can generate a report or alarm when the number of arrivals within the last service time (moving window) with respect to the expected/learned arrival rate for the current time interval and last alarm time stamp.
The aforementioned system can further detect a rate of customer arrival that is abnormally less than expected, by generates a report or alarm based on the prior learned models and the current observations. The system can periodically check the last arrival events against the expected inter arrival time for the current time interval. If the distance in the time dimension grows larger than expected with respect to the learned inter-arrival time for the current time stamp and the last alarm time stamp is more than the expected inter arrival time, then the method generates an alarm or report to inform the situation.
The aforementioned system can additionally arrange the sequence of customer orders based on the customer sequence of arrival, as shown in
An aspect of the present disclosure assists in avoiding loss prevention by linking loss prevention/store security videos (which may be from multiple stores) in an automated multimedia event server to discover their affinities, to help identification of organized theft rings. LP cases are ranked based on their content similarity. LP personnel can investigate the LP videos and validate their linkage (which increases the linkage between LP videos for browsing them with Event Multimedia Journal 72). Linked browsing enhances the effectiveness of LP personnel by reducing the number of videos to be investigated and focusing LP personnel to a less lengthy, more relevant set of videos. LP personnel can thus more easily remember the similarities of video contents, thereby reducing investigation costs while improving system efficiency by sorting and linking LP multimedia data.
A feature of the disclosure uses sets of face data for correlating between LP cases, as shown in
In
Further, when pan-tilt-zoom (PTZ) is used, the home position information becomes a part of Accuracy function (i.e., the PTZ coordinate information should be also considered), as defined by Accuracy(TimeInterval,AreaOfCamera,Camerald,PTZ) ε [0, . . . , 100]. Face detection accuracy depends on the view of camera and in PTZ, the “home” position is one way to specify the view. The home position of PTZ also becomes important when linking object trajectories between cameras since the linkage between viewpoints of cameras (static and PTZ) is affected by the view of PTZ cameras. This information is carried in video stream metadata.
It is also noted that to increase accuracy, in addition to the metadata containing the face features, the metadata may additionally contain, e.g., POS transaction data, cahier information and the like may also be associated with the video images.
According to another aspect, each LPi is modeled as a node of a graph and an algorithm can assign a strength value to the link, connecting LP1 to LP2, as a function of LP1∩LP2. Then, a ranking algorithm can select the group of LP cases with strong connections (islands in the graph) due to strength of connectivity of LP videos.
In addition to or as an alternative for recognizing face data to prevent theft, the system has the ability to record and store loss prevention sub-event data as a composite event, as it relates to retail theft, and create real-time alerts when a retail theft is in progress. For example, if a certain retail theft ring has a standard modus operandi for each retail theft event, such as the following sequence: 1) Person A distracts a clerk in the rear of the store; 2) Person B pretends to have a medical emergency by falling on the floor; and 3) Person C grabs cigarettes and runs out of the store, data (including multimedia and metadata) related these sub-events are stored by the system and identifying as corresponding to a certain retail theft ring. Subsequently, when sequences 1 and 2 begin and are identified by the in-store sensors 42, 44, 46, 48, 50, the system alerts management as to a possible retail theft in progress, thereby giving the manager time to intervene.
An aspect of the loss prevention system described above may use face features to validate returns in order to minimize return frauds. Also, in case of loyalty programs handled by CRM system, there could be many face features associated with the customer account.
Once the customer makes a purchase, a camera near the POS captures an image of the customer's face, and face detection and feature extraction is subsequently performed. Thereafter, the transaction is stored with the extracted face features. When a customer visits the store to return an item, a camera near the POS captures an image of the face of the customer returning the item, whereupon the face features of the customer returning the item are validated against the stored face features of the customer who purchased the item, in addition to the POS transaction items. The return transaction is evaluated for fraud based at least in part on whether the face features of the customer returning the item match the face features of the customer who purchased the item. This at least gives cashier an opportunity to validate who purchased the return item and evaluate the customer's answer.
The system may be used for multiple applications, such as in a situation where the item is purchases from store A but the item is returned to store B, by using a centralized or peer-to-peer architecture for authentication and authorization of return.
POS-face detection and feature extraction may be followed by verification against the credentials obtained from customer's credit card or other customer-associated account (which could contain biometrics data or service address for authentication of biometrics data).
Also, the return multimedia record can include the face of both customer and cashier in the case that the POS has face detecting cameras on both sides of terminal. The cashier-facing camera can become a deterrent for employee theft, since cashiers will know that the POS transactions will include video images which can include their face, and that these video images can be used by the system for emotion analysis to further automatically annotate these videos for further analysis.
The camera facing to customer can be used to measure customer satisfaction (e.g., emotion detection from face & gait from video, sound) with the experience
[Note that: more retailers are asking ids to prevent fraud] The return multimedia record can include the emotional classification of customer and cashier from their visual and audio/speech data, in order to provide the appropriate level of customer service.
The system can check whether the customer returning the item was in the store before coming to the return desk (generally the item return or customer service counters are at the entrance, and the expected behavior is that the customer returning the item comes directly to the item return counter. Although, this assumption can be verified when data is collected and analyzed to see whether this assumption is correct or not. The fact that the customer returning the item was walking around the store could be indicative that the customer picked up the item at that time and is trying to fraudulently return it.
Alternatively, the POS-face detection and feature extraction may be used by the customer in lieu of a receipt, e.g., in the event that the customer returning the item cannot find the receipt, the system can retrieve the customer information associating his/her face with the prior purchase of the item, thereby enhancing the customer's shopping experience.
Referring to
The store manager display 96 shows real-time queue performance statistics and visual alerts to indicate an increased load on a queue Q1-Q5 based on the real-time queue status and the cashier's expected work performance data (WID, WID_ServiceTime). The store manager display 96 can also communicate each queue status to the manager by visual and/or audio rendering.
The aforementioned system is able to select a good-quality face feature to reduce the amount of data to be transferred, while increasing the matching accuracy. Also, the customer table module 92 selects a set of good face representatives to reduce the required storage and increase matching accuracy. Further, annotated video frame data may be saved in an automated multimedia event server 72, linked by their content similarity by the automated multimedia event server, accessed by the store manager display 96 from the automated multimedia event server to browse the linked video footage to extract the location of the customer prior to entering to the queue. With this information, the store manager can decide whether to move a customer to another queue, open a new queue, or close the queue.
At Step S161 the customer enters the site or store, whereupon at step S162 her identity is detected using the multi-camera face detection and matching system described above. Note that the actual identity of the person (name, etc.) is not required for the system to work, only that a unique individual is identified and tracked throughout the store. Alternatively or additionally, the customer may “check-in” using a wireless device such as a smartphone 76 (via geolocation or other wireless system) or store kiosk, whereupon the actual identity of the person is obtained. Once the identity (actual or not) of the customer is detected, identity characteristics are extracted, such as age, gender, demographics, hair color, body type, etc. At step S163 ad content personalization agent 202 uses the extracted identity characteristics to determine custom/personalized ad content. Once the ad content is determined, one or more advertisements A1, A3, A5 are sent to the customer via either an in-store display 204 or the customer's wireless device for viewing by the customer at step S164. These displayed ads are stored in a database for later retrieval. Preferably, steps S161-S163 occur before step S164. It is also noted that the determined custom ad may be retrieved from a series of pre-made ads 206, or a unique ad may be prepared on a just-in-time basis (which may also include, e.g. a user's name and/or face) to create a unique shopping experience. Also, the displayed ad(s) may route the customer to an area of the store.
After viewing the custom ad, at step S165 the customer is tracked throughout the store using video cameras 44 or other sensors (e.g., sensors for tracking the signal of the user's wireless device), wherein the areas of the store visited by the customer are detected and stored, including data related to how long the customer lingered in each area, whether the customer asked for assistance, and the like. After the customer leaves the store, at step S166 it is determined whether or not the customer made any purchases, and if so, whether those items purchased were communicated to the customer in the ad. This information is then stored for future reference and analysis. For example, based on the areas of the store visited by the customer, a different set of ads may be displayed to the customer upon the customer's next visit to the store.
With this information, aggregated analysis of the store customer traffic is utilized to rank to ad content effectiveness by measuring, e.g., where the customers went after watching the ad, the number of customers who watched the ad content, how many customers went to the targeted location in the ad after watching the ad, the demographics of the customers who went to the targeted location in the ad after watching the ad, the average time spent by the customer in the targeted location, how many customers who saw a given ad purchased the targeted item. In this way the effectiveness of the ads presented to customers may be determined, including the effectiveness of the ads with respect to each customer demographic. It is also noted that the present system may be used across multiple stores, including event management with a networked/cloud service.
As an example of the system for personalized advertisement and marketing effectiveness, if a shopper identified in a store is shown advertisements for shoes and baby clothes, but only visits and makes a purchase from the shoe department, then the system may log the shoe ad as a success and the baby clothes ad as a failure, whereupon store management may decide on a different type of marketing campaign for the customer's demographic or overall. If this customer visits the baby clothes department and spends a significant amount of time in the store without making a purchase, then perhaps the type and/or placement of merchandise may need to be evaluated by store management. Also in such a situation, upon leaving the store, the customer may be presented with additional ads, or some type of incentive (such as a coupon, discount code, etc.) based on the areas of the store the customer visited or didn't visit the expected target areas.
Referring to
As shown in
With integration of networked services 240, the system can further support multiple store event managements including data mining, filtering, and aggregation for intelligently finding business intelligence (across multiple sites) about abnormal correlated events with an abnormal score reference. Organized views of composite events for easy viewing and searching, and automated UC notification with a multimedia recorder combining unified communication capabilities, and filtering and aggregation of abnormal events detection from system components (sensors 44, 42, 46, 210, 212, 48, 214, 216) across multiple sites.
Area D3 shows an interactive abnormality intensity pattern viewer in which sub-events are linked using link lines L to show a composite event E5, E14, E23. D3 shows sub events for various sensor inputs 44, 42, 46, 210, 212, 48, 214, 216. While five types of sensor inputs are shown in Area D3 (camera motion, POS, AC/RFID, face detection, location/heat map), those skilled in the art should appreciate that greater than or fewer than five sensor types may be displayed. Each sensor shows sub events across Area D3 in temporal sequence, from earliest, on the left side of Area D3, to the latest, toward the right of Area D3. In this way, the user can rewind and fast forward through composite events and sub-events, much like in a digital video recorder, by, e.g., using pointing device 170 to display the desired event or sub-event. It is also noted that the composite events E5, E14, E23 are displayable in Area D1, showing the location of the composite event(s) in relation to the site.
Area D3 shows the following sensor events: camera events C1, C2, C3, C4, C5, C6, C7, C8; POS events P1, P2, P3, P4; AC/RFID event A1; face recognition event F1, F2, F3, F4; and location/heat map events L1, L2. Each sensor may be represented by a different icon or color for ease of use (here, camera events are shown by ovals, POS events are shown by rectangles, AC/RFID events are shown by pluses, face recognition events are shown by smiley faces and location/heat map events are shown by globes. Similarly, link lines L linking sub-events may be color coded or otherwise uniquely identifiable for each composite event.
Area D4 shows a camera view of the site, which could be either video or still images. The camera view could be either a live feed of the site or recorded images associated with the composite event or sub-event. Also, the camera view may be annotated with data relating to the image, such as sub-event, type of merchandise, cashier ID, and the like. Area D5 shows a list of the most recent composite events E5, E14, E23 for quick reference by the user. Area D6 shows a list of the most recent sub-events, including correlated sub-events.
It is also noted that the user can click on, mouse-over, or otherwise actuate the sub-events or composite events shown in one area of the dashboard to obtain further information in other areas of the dashboard relating to the event or sub-event. For example, by actuating composite event E14 in, the user can obtain images (and other multimedia information, including but not limited to sound, geoposition, POS data, site access data, customer information, and the like) of the composite event in area D4 and/or correlated event details in area D6
With the above-described system BI dashboard 232 can display video and related information associated with key sub-events and non-key sub events in a unified view as a dashboard or in reports to computers 100 and mobile devices 76. The system can automatically generate journals for managers to view activities of interest based on incidence or in a business intelligence context, thereby saving the manager/user time by not requiring him or her to view lengthy recordings.
As an example, in a situation where employees fight with each other in the kitchen of a fast-food restaurant, no food is produced during this time. Also, a drive thru customer has ordered food and the cashier has opened the register just prior to the fight. Since no food comes out of the kitchen, the cashier leaves the register and goes to investigate what is happening in the kitchen. Due to this delay, more and more drive thru customers are queued in the drive thru lane. The POS register drawer is open for a certain period of time without closing and no cashier is on the scene. Eventually, some customers decide to leave the drive thru without ordering (referred to as a “bail out” or “balk”).
As described below, an “opened register without cashier and drive-thru bail out composite event” E14 is created as a journal or record (see
“Non-key” sub events are camera abnormal count and wandering events C5, POS sales event P2, no people movement (no cashier) C6 sub-events. The system organizes and links all these events together as an OPEN POS abnormality incident key sub-event and bail out key sub-event with links to related “non-key” sub event details and media (video, snapshots and the like). The detection of ‘no cashier’ can be inferred by the system from no moving object detected from video, no face detected from video of camera facing the cashier in POS terminal, or reading employee tag from wireless, etc. The condition of ‘no cashier’ can additionally or alternatively be inferred by single input or in conjunction with other inputs directly from raw data (e.g., wireless), processed data (metadata from video), or in some combination (metadata from video for motion object and face detection, or checking a color histogram of a moving object to discern whether sales associates are present or not, or checking a logo on the upper body of moving object to discern whether or not the object is a sales associate/employee, etc.).
The system shows the alert with video images on the location map in area D2 of the BI dashboard screen 232, and sends UC notifications to store manager's PC 100 and mobile device 76 automatically.
The integration of data into a unified view allows the user to digest the evidence and process the cases efficiently. The hyperlinked views of composite events (also referred to as composite event folders) provide a unique query result presentation to user, and these links allow user to move between composite event folders based on their relevance and allow the user (such as a security officer or guard) to easily comprehend a given situation. The ability to link prior multimedia LP recordings from the same or other stores allows the user to immediately see associations between these events. It allows the user to immediately evaluate the ongoing situation with instant prior data. The LP cases can also be utilized to extract common trajectories to discover favored vulnerable aisles. This can cue in the system to improve/increase system awareness (kind of a LP prediction) by: (a) improving resolution for certain areas when motion is detected or a similar face is detected, and/or (b) changing the monitored videos in front of the viewing user to increase the opportunity to catch the incident while it is happening. The system thus becomes more proactive and helpful to users in daily operations.
For example, a composite event folder may contain data from the POS record, image from one top-down camera correlated with every scan, a face image from another camera, the name of the cashier from the POS terminal, and the like. In case of organized retail crime, when the composite event folders are linked by using these available attributes as well as similarity based relevance (such as face similarity causes a link between composite event folders). The loss prevention officers can efficiently access and investigate these linked composite event folders.
The composite events are based on the primitive events that contain additional data captured by a sub-event sensor. The presenter collects dependent event data into unified view in which the data is represented in XML formatted document. This representation can be rendered or processed.
In another example, the system in accordance with a non-limiting feature of the disclosure may be used to identify a slow drive-thru and bailout situation. Where an especially large order of food is placed as a drive-thru order, this situation can occupy kitchen resources (e.g., a microwave) and slow down the production of a particular type of food (e.g., a muffin) for another drive-thru customer. The delay of this single customer can cause blocking in the head of queue of the whole drive-thru lane. As a result, customers bail out from the long and slow drive thru lane. The system in accordance with a non-limiting feature of the disclosure detects car bailout sub-events and long POS transaction interval sub-events with long queue sub-event in the drive-thru lane. The system can readily understand the situation back-tracking to the abnormally large order sub-event with time proximity The system can thus notify the store manager or owner when the high abnormal incident happens with correlated sub-events summary information and details in the form of an abnormal composite event journal, then provide the information to manager, so that the customer who placed the large order gets pulled from the queue, whereupon he or she can receive a free order and in exchange for him/her moving out of the queue.
In a further example, the system in accordance with a non-limiting feature of the disclosure may be used to identify a situation where the operational efficiency of a cashier is slower than normal. The motion and POS events may be aggregated for each cashier and recorded in memory 120. The slow cashier can be detected and filtered out from the particular cashier's aggregated events compared with system event mining results. Slow operation can thus be easily detected.
In yet another example, the system in accordance with a non-limiting feature of the disclosure may be used to identify a situation where a cashier opens cash register without a customer present in front of refund area should trigger alarm for suspecting phantom refund. The system correlates a POS open event with video behavior event and biometric events (face detection/recognition), and finds the absence of a customer for this return transaction. The system produces a notification of possible return fraud events.
In a still further example, the system in accordance with a non-limiting feature of the disclosure may be used to identify a situation where an access control alarm is triggered, and the system generates a call to a security guard to acknowledge the alarm and handle the call accordingly. If there is no response from security guard within certain period of time which learned from past response time experience (e.g., due to either the guard being incapacitated or in league with criminal elements), the system can dispatch another call to other security guard based on skill and location data.
The present invention may operate under the following assumptions:
Although the invention has been described with reference to several exemplary embodiments, it is understood that the words that have been used are words of description and illustration, rather than words of limitation. Changes may be made within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the invention in its aspects. Although the invention has been described with reference to particular means, materials and embodiments, the invention is not intended to be limited to the particulars disclosed; rather the invention extends to all functionally equivalent structures, methods, and uses such as are within the scope of the appended claims.
While the computer-readable medium is shown to be a single medium, the term “computer-readable medium” includes a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. The term “computer-readable medium” shall also include any medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a computer system to perform any one or more of the methods or operations disclosed herein.
In a particular non-limiting, exemplary embodiment, the computer-readable medium can include a solid-state memory such as a memory card or other package that houses one or more non-volatile read-only memories. Further, the computer-readable medium can be a random access memory or other volatile re-writable memory. Additionally, the computer-readable medium can include a magneto-optical or optical medium, such as a disk or tapes or other storage device to capture carrier wave signals such as a signal communicated over a transmission medium. Accordingly, the disclosure is considered to include any computer-readable medium or other equivalents and successor media, in which data or instructions may be stored.
Although the present specification describes components and functions that may be implemented in particular embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. For example, standards for Internet and other packed switched network transmission (e.g., WiFi, Bluetooth, femtocell, microcell and the like) represent examples of the state of the art. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same or similar functions are considered equivalents thereof.
The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while other proportions may be minimized. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.
One or more embodiments of the disclosure may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any particular invention or inventive concept. Moreover, although specific embodiments have been illustrated and described herein, it should be appreciated that any subsequent arrangement designed to achieve the same or similar purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all subsequent adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the description.
The Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b) and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all of the features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining separately claimed subject matter.
The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments which fall within the true spirit and scope of the present disclosure. Thus, to the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.