The present invention is directed to a system and method for suppressing fires in normally occupied areas, and more particularly to a system and method for sodium azide based suppression of fires.
Numerous systems and methods for extinguishing fires in a building have been developed. Historically, the most common method of fire suppression has been the use of sprinkler systems to spray water into a building for cooling the fire and wetting additional fuel that the fire requires to propagate. One problem with this approach is the damage that is caused by the water to the contents of the occupied space.
The “total flood” clean agent fire protection system industry provides high value asset protection for spaces, such as computer rooms, telecommunications facilities, museums, record storage areas, and those housing power generation equipment. “Total flood” protection in such applications is provided by automatically filling the protected compartment completely at a uniform concentration that assures that the fire will be extinguished, no matter where it might be located. The extinguishing medium used in such systems is expected to be “clean”—that is, leave no or very little residue behind after discharge that must be cleaned up.
Known total flood fire protection systems typically comprise a bank of several (commonly tens or more) thick-walled metal bottles for holding an extinguishant (either liquefied or in the gaseous state) at high pressure to permit high-density storage. The extinguishant is released via either manual or automatic activation of high-strength, special purpose valves on the bottles. In order to transmit an extinguishant at masses required to meet precise extinguishing concentrations within a tight tolerance band of room concentration required to meet both the extinguishing and inhalation toxicity requirements, a complex plumbing network designed for the space is required. Furthermore, independent capacities required for individual rooms in a typical multi-room protection scenario (such as a factory or high-rise building) using the same distribution network must be accounted for. Such design and corresponding installation work, including development of flow calculation methodologies for complex flow considerations, requires considerable up-front effort and expense.
High-pressure bottles require frequent inspection due to their propensity for leaks. Once a leak is identified, the leaking bottle may need to be sent to a central re-filling installation, resulting in protection down time at the customer site. Such down time can also be experienced in the event of a man-made or natural disaster, such as a gas leak explosion, tornado or earthquake, which can also damage the piping network itself.
The fluorocarbon known as Halon 1301 has been used in “total flood” systems because it is clean, somewhat non-toxic and highly efficient. Due to their use of ozone depleting greenhouse gases, however, systems employing Halon 1301 are being replaced by more environmentally friendly alternative systems, as mandated by the 1987 Montreal and 1997 Kyoto International Protocols. One example of a Halon 1301 alternative system uses the hydroflourocarbon HFC-227ea (e.g. Marketed as “FM-200” or “FE-227” in Fire Suppression Systems such as those manufactured by Kidde Fire Systems).
Such “first generation” Halon alternatives, including “clean” hydrofluorocarbons behave in a similar manner to Halon 1301, but have been found not to be as effective in comparison since they typically do not have the flame chemistry inhibition of Halon 1301. As a result, fire suppression systems using Halon replacements require from two to ten times the extinguishant mass and storage space, and are therefore more costly. Furthermore, the increased storage space required for the large increase in number of extinguishant bottles poses a difficult placement problem for facility engineers, and a considerable obstacle for those wishing to retrofit an existing Halon installation with a bottle “farm” many times bigger than its Halon predecessor in a limited storage space.
Most of these Halon alternative hydrofluorocarbons have human exposure toxicity limits very close to their required extinguishing design concentrations. They are therefore more sensitive to changes in room storage filling capacity in terms of occupant risk. Such exposure times are typically limited to five minute or less providing occupants with reduced evacuation capability. Occupants who are injured, aged, disabled and may also be medical patients may find this evacuation time challenging, and the increased cardio toxicity risk with many of these Halon alternative extinguishants makes limited exposure scenarios even more critical.
Once discharged into a room, known Halon alternatives of this type are hydrofluorocarbons having a propensity to decompose into large quantities of hydrogen fluoride, after exposure to an open flame. Hydrogen fluoride is an acid that can pose significant health hazards to occupants and rescue personnel, and can damage equipment. For this reason, at least the U.S. Navy has used water mist to wash out hydrofluoric acid after hydrofluorocarbon (“HFC”) discharge in a machinery space fire, in addition to cooling the compartments, to protect firefighter personnel. Furthermore, HFC chemicals have been determined to have long atmospheric lifetimes, thereby making them subject to subsequent global warming legislation worldwide in line with the Kyoto Protocol Treaty and proposed November 2009 changes to the Montreal Protocol Treaty. Also, the California Environmental Protection Agency's, Assembly Bill 32, the global warming solutions act of 2006, bans the eventual use of HFC's in fire systems.
“Environmentally friendly” alternatives to the hydrofluorocarbons have been proposed and even fielded to a limited degree, but many also suffer from their own design and operational limitations. Water mist systems were devised to use less water than sprinkler systems, and hence cause less water-related damage, although such damage is only reduced, not eliminated. Even with considerable research and engineering expertise applied internationally, it has proven very difficult to design mist delivery systems for fire suppression around obstacles that are as effective as gases. The efficiency of suppression is largely influenced by the size and nature of the fire. Inert gas systems, such as those using nitrogen or argon, require up to ten times the number of bottles of their Halon predecessor (due to their inefficiency and inability to be liquefied under pressure in a practical manner). Such requires not only considerable additional storage space, but often larger diameter plumbing that would need to replace Halon-suitable pipes. The very high pressure bottles used in inert gas systems can also pose an additional safety hazard if damaged or otherwise compromised, including the thicker-walled distribution plumbing that might be vulnerable at any joint connections.
Another method for fire suppression involves dispersal of gases such as nitrogen, in order to displace oxygen in an enclosed space and thereby terminate a fire while still rendering the enclosed space safe for human occupancy for a period of time. For example, U.S. Pat. No. 4,601,344, issued to The Secretary of the Navy, discloses a method of using a glycidyl azide polymer composition and a high nitrogen solid additive to generate nitrogen gas for use in suppressing fires. This patent envisions delivery of a generated gas to a fire via pipes and ducts, and does not disclose any particular means by which to package the solid additive. Furthermore, the patent does not consider the challenges in distributing an appropriate quantity of generated nitrogen gas into a habitable space and does not to consider concentrations that would reliably extinguish fires, while permitting the safe occupancy and exposure to humans for a time.
According to the requirements for inert gas generator fire suppression systems inside a normally occupied space set by the National Fire Protection Association (NFPA) such as NFPA Standard 2001, the US United States Environment Protection Agency (EPA) such as the SNAP List, and UL/FM/ULC Listings & Approvals, a space must be able to be occupied for up to five (5) minutes. Furthermore, inert gases must be reduced to a maximum of 75 degrees Celsius or 167 degrees Fahrenheit at the generator's discharge port.
U.S. Pat. Nos. 6,016,874 and 6,257,341 (Bennett) disclose the use of a dischargeable container having self-contained therein an inert gas composition. A discharge valve controls the flow of the gas composition from the closed container into a conduit. A solid propellant is ignited by an electric squib and burns thereby generating nitrogen gas. This patent envisions delivery of a generated gas via a conduit into a space.
U.S. Pat. No. 7,028,782 (Richardson) and U.S. Patent Application Publication No. 2005/0189123 (Richardson et al.) disclose means of exploiting gas generator technology by use of non-azide propellants in a stand-alone system featuring multiple individual gas generator cartridges in a given container. Some non-azide materials produce water vapor, however, which can condense onto the walls and other surfaces of the compartment to be protected. Some end users prefer protection schemes that pose little or no possibility of any such water condensation that might harm paper records or other moisture-sensitive contents. Furthermore, the extinguishant from non-azide materials is typically extremely hot, and therefore must be cooled significantly for use in normally occupied spaces. Cooling is achieved with the use of a large mass of cooling bed material also stored in proximity to the multi-cartridge container. The large mass takes up space that could be filled with additional generators, thereby reducing the overall protection space efficiency of a given cartridge container.
Although systems exist for total flood fire suppression applications, improvements are of course desirable. It is an object of the present invention to provide a device and method for delivering a fire suppressing gas into a space.
According to an aspect, there is provided a device for delivering a fire suppressing gas to a space, comprising:
a housing disposed within the space;
at least one generator disposed within the housing and containing pre-packed sodium azide propellant;
an ignition device for igniting said sodium azide propellant and thereby generating a low-moisture fire suppressing gas; and
an opening in the housing for directing the fire suppressing gas mixture into said space.
According to another aspect, there is provided an apparatus for suppressing fires in a space comprising:
a sensor for detecting a fire;
at least one solid sodium azide based inert gas generator for generating and delivering a fire suppressing, substantially dry nitrogen gas mixture to the space upon receiving a signal from the sensor; and
an inert gas discharge diffuser to direct the fire suppressing gas mixture into said space.
According to another aspect, there is provided a method of suppressing fires in a space comprising:
generating a first fire suppressing gas mixture from at least one sodium azide based propellant chemical, the first fire suppressing gas mixture comprising primarily nitrogen,
filtering at least one of moisture, additional gases and solid particulates from the first fire suppressing gas mixture to produce a second fire suppressing gas mixture; and
delivering the second fire suppressing gas mixture into the space.
According to another aspect, there is provided an apparatus for suppressing fires in a normally occupied and or un-occupied space comprising:
a sensor for detecting a fire;
at least one solid sodium azide based inert gas generator for generating and delivering a fire suppressing, substantially dry gas mixture including nitrogen to the space upon receiving a signal from the sensor; and
an inert gas discharge diffuser to direct the fire suppressing gas mixture into said space.
According to another aspect, there is provided a gas generator for generating and delivering a substantially dry fire suppressing gas mixture to a space, comprising:
a housing;
at least one pre-packed sodium azide propellant disposed within said housing;
a pyrotechnic device for igniting said sodium azide propellant and thereby generating said fire suppressing gas mixture; and
a discharge diffuser for directing the fire suppressing gas mixture within said enclosed space.
Previously, sodium azide based propellants were generally thought to be unsuitable for normally occupied spaces. Further research has revealed that sodium azide based propellants can now be provided which are indeed suitable for normally occupied spaces.
A sodium azide based propellant is preferable in many applications due to its ready availability and affordability, and its characteristic of producing nearly-pure nitrogen gas as its gaseous post-combustion by-product. The sodium azide may be mixed with other minor ingredients which serve as propellant binders or provide other operational performance enhancements, as is commonly known to those skilled in the art.
Advantageously, propellants generated by sodium azide based materials are typically 10% to 15% of the temperature those generated by non-azide based propellants. For example, it is typical for sodium azide propellants to burn at about 1500 degrees Fahrenheit for discharged at approximately 400 degrees Fahrenheit with use of a heat sink and non-azide propellants to burn at the 3,000 degrees Fahrenheit range. Thus, sodium azide based propellants require approximately only 10% to 15% of the bulk heat sink required for such non-azide based propellants. Use of sodium azide based materials therefore permits a significant reduction in size, or the inclusion of more propellant generators in a given volume.
In one embodiment, multiple, uniformly-sized solid propellant gas generator cartridges are incorporated into a single “tower” design installed in the space to be protected without piping or ducts. This design eliminates the need for remote bottle installation and a network of distribution plumbing that would otherwise be required.
Each tower may be configured to protect a given number of cubic feet of free compartment volume. For example, multiple towers with several cartridges may be used for large areas, while fractional volume coverage can be achieved by simply reducing the number of cartridges in a given tower.
These normally non-pressurized towers, when activated either manually or by use of a conventional fire alarm panel, in turn activate propellant generation by multiple generator cartridges in a tower, sequencing each of them in order after each cartridge has completed its individual discharge, or discharging all simultaneously as desired or required by the application.
Even though the cartridges can have a shelf life of many years if stored away from high moisture areas (possibly up to twenty), their replacement is made simple by simple removal and re-insertions of “fresh” cartridges, which can be performed by personnel on site without the need to ship units for refurbishment, nor requiring personnel with special training and tools for high-pressure equipment. This dramatically reduces cost of ownership.
The simplicity of the installation and maintenance approach provides opportunities for distributors that do not currently have deployed teams of pressurized equipment-experienced field personnel to offer products to their customers using their current personnel support infrastructure.
The solid gas propellant is housed within a tower system positioned within a space to be protected, and therefore requires no piping. This represents a dramatic reduction in cost and also results in minimal asset protection “down time” during replacement of existing Halon 1301 systems.
The towers of the present invention do not have to be removed from the location they are protecting in order to be recharged. Rather, the inventive system may be recharged on site through the use of pre-packed sodium azide-based propellant generators. The system is preferably operated to permit human life to be maintained for a period of time (e.g. by maintaining a sufficient mix of gases in the building to permit human habitation for a period of time while still being useful for suppressing fires).
According to an alternative embodiment, the gas generator units are suspended from the ceiling, or actually mounted on the ceiling or suspended above a drop ceiling and or in a raised floor space commonly used as electrical supply “race ways” inside computer, server net, programmable controller rooms, etc., utilized around the world. Such mounting locations can be selected to not impede personnel operations or occupation of usable space within the room. Protection units may be a single unit sized for the compartment volume to be protected or an assemblage of smaller individual cartridges mounted within a fixture, with sufficient cartridges added to protect a given protected volume. These singular and or multiple gas generators mounted in occupied or unoccupied spaces can have an external heat sink module added to each generator if required.
In one embodiment, a bracket is mounted in a sub-floor of, for example, a computer room and supports multiple generators.
The suppressing gas mixture permits the space to be habitable by human life for a predetermined time. Preferably, the predetermined time ranges from about one to five minutes, as per the requirements of the National Fire Protection Association's 2001 standard for clean agent Halon 1301 alternatives and the US EPA SNAP Listings for fire suppression use in occupied spaces.
In one embodiment, the apparatus further comprises at least one filter and screen for filtering any solid particulates and reducing the heat of the gas generated prior to the delivery of the fire suppressing gas to the normally occupied and or un-occupied space.
According to an aspect, there is provided a fire suppressing gas generator comprising:
a cylindrical housing comprising an array of discharge ports distributed generally uniformly therearound;
a cylindrical filter disposed within the housing and spaced from the interior wall of the housing;
a plurality of azide-based propellant grains inside the cylindrical filter; and
at least one ignition device associated with the propellant grains;
wherein the propellant grains when ignited by the ignition device generate a fire suppressing gas which passes through the filter and out of the discharge ports of the cylindrical housing for delivery into a space.
According to another aspect, there is provided a method of suppressing fires in a space, comprising:
providing a container containing a solid propellant chemical that when ignited produces a fire suppressing gas, the container having at least one discharge port;
delivering the fire suppressing gas into the space including directing the fire suppressing gas from the at least one discharge port generally tangentially along a surface of an object in the space thereby to encourage vorticity of the fire suppressing gas within the space.
According to still another aspect, there is provided a fire suppressing system comprising:
a tower comprising a frame;
a plurality of fire suppressing gas generators disposed within the frame, each fire suppressing gas generator comprising:
a cylindrical housing comprising an array of discharge ports distributed generally uniformly therearound;
a cylindrical filter disposed within the housing and spaced from the interior wall of the housing;
a plurality of azide-based propellant grains inside the cylindrical filter; and
at least one ignition device associated with the propellant grains;
wherein the fire suppression system further comprises:
an ignition controller electrically connected to the ignition devices for causing ignition of the ignition devices,
wherein the propellant grains when ignited by a respective ignition device generate a fire suppressing gas which passes through the respective filter and out of the discharge ports of the cylindrical housing for delivery into the space.
These together with other aspects and advantages which will be subsequently apparent, reside in the details of construction and operation as more fully hereinafter described and claimed, reference being had to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout.
Embodiments will now be described more fully with reference to the accompanying drawings, in which:
A pre-packed solid gas generator for generating a gas mixture from a sodium azide-based chemical that is suitable for suppressing a fire is provided.
According to the preferred embodiment, a solid chemical mixture is provided that is predominantly sodium azide (about 80.3 percent by weight) and sulphur (19.7 percent by weight), as is disclosed in U.S. Pat. No. 3,741,585. Such mixture can generate approximately 60 pounds of nitrogen gas per cubic foot of solid propellant blend. It will be understood that other azide-based blends exist in the current art that satisfy this requirement.
As shown in
A pyrotechnic device 9 (i.e. a squib) is attached to the pre-packed sodium azide propellant canister 3 by way of a connector 11, and to a fire detection and release control panel discussed in greater detail with reference to
A propellant retainer 12 may be provided along with various optional filters and/or heat sink screens 13, as discussed in greater detail below.
Turning to
With reference to
The fire suppressing gas mixture may contain trace amounts of carbon dioxide and water vapor, which are optionally filtered using filters 13 (
Heat sink screens may be used to reduce the temperature of the fire suppressing gas generated as a result of igniting the pre-packed sodium azide based propellant canister 3. Although the filters and screen(s) 13 are shown as being separate from the pre-packed canister 3, it is contemplated that at least the screen(s) may be incorporated as part of the canister structure. This is possible particularly due to the use of sodium azide based propellant generate, since as stated above the amount of heat sinking required is typically far less than that required of non-azide based generates.
Since there is no requirement to use compressed gas cylinders, discharge piping and discharge nozzles for the supply or transport of an extinguishing gas mixture, the system of
Secondly, the system benefits from simplified installation and control since all of the solid gas generators need not be provided at one central location. Instead, one or more solid gas generators or towers 1 are preferably positioned at the location where the fire will have to be suppressed. In this way, the generation of fire suppressing gases within the hazard area, substantially simplifies the delivery of the gases without the need of a piping system extending throughout a building or perhaps through one or two walls.
Thirdly, the provision of independently positioned towers 1 results in the gas being generated and delivered to the hazard area almost instantaneously as it is released. This increases the response time of the fire suppressing system and its ability to inert the hazard area and suppress the fire in a normally occupied and or un-occupied space. Each solid gas generator 1 is preferably designed to generate a quantity of gas needed to extinguish a fire within a specific volume divided by the actual total volume of space being protected by any one sodium azide based pre-packed propellant generator fire suppression system, should the need arise.
The potentially filtered fire suppressing gas mixture is delivered into the room (
According to Subsection 1-5.1.1 of the NFPA 2001 document:
Furthermore, the definition of clean agent is specified in Section 1-3.8 of the NFPA 2001 document as follows:
Referring now to the alternative embodiment of
Such “in-room” gas generator fire protection systems, with their local detection, power (if supplied with back up power from capacitors or small batteries) and discharge capabilities all present within the compartment, provides a robust protection system that is not impeded by power loss or loss of water pressure, or physical destruction of buildings or structures, or water mains (which would also render water sprinklers unusable) in the event of a catastrophic event at the facility in question, due to earthquakes or other natural disasters, explosions such as due to leaking gas mains, or even terrorist incidents, to continue to provide protection to critical compartments even if the rest of the facility is severely compromised.
An illustration of a particular sizing example will demonstrate the features of the configurations set forth in the alternative embodiments of
An oxygen concentration of 12% is a desirable target level to provide for occupancy of a space up to 5 minutes during efficient suppression of a fire. Prior testing of prototype gas generator units has shown successful fire extinguishment with units sized approximately 20 gallons in volume, producing 0.535 kg-moles of nitrogen inert gas, discharged into a 1300 cubic foot room, an equivalent volume to be protected by one standard canister of traditional compressed stored inert gas. Such a unit was not optimized in size in any respect, with copious and un-optimized quantities of cooling bed materials used to cool the discharged nitrogen gas.
If such an un-optimized unit were prorated in size, including its oversized cooling bed capacity, it can provide a vastly conservative estimate of sizing on individual units and cartridges necessary when considering current art in gas generator technology and performance. The 0.535 kg-moles of gas can be increased to 0.6884 kg-moles to add the 20% factor of safety required, to result in an acceptable oxygen concentration for the normally occupied space. Sizing for protection for only 100 cubic feet of room space, a total of 1.483 kg of nitrogen is needed, rounded up to 1.5 kg. Using the effective density of the tested unit, even with the un-optimized cooling bed, disc-shaped units of 24 inch diameter, and 1.5 inches thick, or rectangular units 4 inches thick by 9 inches wide and 18 inches long, can produce such quantities. Either unit variant is calculated to weigh 23.4 lbs., if scaling the previously tested 240 lb. unit. Numerous disc shaped units can be stacked for the floor or wall-mounted model; to protect the 1300 cubic feet space associated with a standard compressed inert gas canister, a unit 24 inches in diameter and 19.5 inches tall would be necessary (taking very little space in the room). Such a unit could be increased in room capacity if needed by making it wider or taller (theoretically up to the ceiling height), but it may be alternatively preferred to add additional floor units in a large room. For the ceiling mounted units, the aforementioned rectangular gas generator units could be employed. This would result in an extended fixture distance below the ceiling of the unit of just over 4 inches. The units that recess into the ceiling could be of approximately 10 inches in diameter and 8 inches tall. These individual units can be seen to be of a weight practical for an individual installation technician to lift and install into the overhead ceiling fixture.
If such fixtures are designed to hold up to eight gas generator cartridges per fixture, to protect a ten by ten floor space if an eight foot ceiling is present, then even the total maximum fixture weight of 187 lbs. is practical for mounting to ceiling joists (and less than some ornate lighting fixtures). The individual gas generator units would be designed to discharge their gas along opposite sides along their length through multiple orifices, with such a configuration canceling any thrust loads otherwise possible. Such eight-unit fixtures would only take the ceiling space of about three foot by three foot, including space between the gas generator units for gas to discharge and flow, which is roughly equivalent in area to two common ceiling tiles. The oxygen concentration will only fluctuate in an 800 cubic foot space of less than 1% as one adjusts and adds each additional discrete gas generator unit to adjust for extra room capacity, which is certainly an acceptable tolerance level. In addition, one or two of the additional individual gas generator units can be used under the sub-floor of common computer rooms, to provide required fire protection in those spaces as well. Having a standard size for the cartridges works in favor of reducing the cost in gas generator production, by making many units of one size. If gas generator propellants and units continue to be optimized in the future, individual units as small as 4 inches by 2.5 inches by 5 inches, and a weight of 3.3 lbs. are possible, and full eight-unit ceiling fixtures could fit within a 12 inch square with a four inch thickness, and a weight of 26.5 lbs. fully loaded, if unit efficiencies near 100% are approached.
An illustration of a representative production tower design is shown in
Alternative configurations having respective advantages are contemplated. For example,
A set 1016 of sodium-azide solid propellant grains is disposed inside of housing 1012. In this embodiment, the propellant grain set 1016 comprises a central column 1018 of 36 (thirty-six) propellant grains including 34 (thirty-four) stacked cylinder-shaped “main” propellant grains 1022 capped on each of its ends with 1 (one) “end” grain 1024. Disposed generally in parallel with the central column and therearound are six outer columns 1020 each comprising 36 (thirty-six) stacked cylinder-shaped main propellant grains 1022. Between the central and outer columns of stacked propellant grains are silicone spacers 1026.
As can be seen, the end propellant grains 1024 in the centre column 1018 each have a large bore therethrough sized to receive a portion of an ignition device such as a squib 1150 (not shown in
Disposed between the set of propellant grains and the housing is a filter pad 1030. In this embodiment the filter pad 1030 comprises an inner coarse-screen steel mesh and an outer fine-screen steel mesh. Interposed between the coarse-screen mesh and the fine-screen mesh are layers of steel wool and preferably non-biopersistent (non-carcinogenic) ceramic “paper” material. In this embodiment, the steel wool is a fine #000 steel wool, with a 35 micron fiber size. Preferably, the steel wool is an extra fine #0000 fiber size.
In this embodiment the ceramic material is the UNIFRAX 1-2 micron fibre PC204 material, with a composition of 52% SiO2, 46% Al2O3, and 2% other material. Alternatives such as the UNIFRAX 2-4 micron fibre PC440 material may be used. The above-noted UNIFRAX materials are known as “Category 2” materials in the European Union's “FIBER DIRECTIVE”, otherwise known as Directive 97/69/EC. The inventors are also investigating the viability for use as alternatives of the following “Category 3” materials: an INSULFRAX 3.2 micron fibre, 64% SiO2, 30% CaO, 5% MgO, 1% Al2O3 material, an ISOFRAX 4 micron fibre, 75% SiO2, 23% MgO, 2% Other material, and a FIBROX 5.5 micron fibre, 47% SiO2, 23% CaO, 9% MgO, 14% Al2O3, 7% Other material. Thermal Ceramics Incorporated of Augusta, Ga., U.S.A. provides ceramic materials also that are being investigated for viability.
During manufacture, the outer fine screen mesh and the steel wool and ceramic layers are rolled together and formed into a cylinder around the coarse mesh screen to form the cylindrical filter pad 1030. If the steel wool and/or mesh screens being employed hold machine oil, then the filter pad 1030 is baked to burn off any machine oil attached thereto at this point. The burning off of the machine oil prior to use of the generator ensures that the machine oil does not get discharged along with the fire suppressing gas during use. It will be understood that, alternatively the steel wool and meshes could be baked prior to assembly.
The filter pad 1030 functions to inhibit escape of particulates from the interior of the generator 1000 when the grains 1022, 1024 are ignited, and also to absorb some of the heat generated upon ignition of the grains 1022, 1024.
More particularly, the ceramic fibers are considered the main filtration element, with the steel wool on the inner layers being the course filter element. The steel wool also advantageously inhibits or stops the tunneling that can occur otherwise if the ceramic material is locally attacked by sodium oxide (Na2O). The sodium oxide tends to cause the ceramic material to reach a lower melting point and as a result form holes in the filter. As such, when the sodium oxide hits the steel wool the local attack is blunted and spread out so that when it reaches the next ceramic layer is has a broad front. The outer fine steel mesh layer serves as a mechanical support, whereas the inner coarse mesh tube defines the inner diameter of the filter pad 1030.
Directly against the inner surface of the housing 1012 is a hermetic sealing layer (not shown) for preventing or significantly inhibiting ambient moisture from entering the housing 1012 through the discharge ports and being absorbed in the solid propellant grains. As shown in the figures, the discharge ports 1014 have a “figure eight” shape formed by drilling/punching two proximate and connected holes through the housing 1012. This shape of discharge port 1014 advantageously provides two sharp points at the midpoint of the discharge port 1014 against which the hermetic sealing layer is generally forced upon its expansion upon ignition due to internal pressure buildup. While preferably the hermetic sealing layer would be of such a material that would be ripped due to internal pressure alone, the sharp points provide increased chance of piercing of the hermetic sealing due to the increased internal pressure to allow the fire suppressing gas to escape. It will be understood that other shapes of holes could be provided that encourage piercing of the hermetic sealing layer in this manner.
Directly inside the hermetic sealing layer surrounding the filter pad is a plenum space formed by a spacer, which in this embodiment is 1/16 inch wire 1032 that is wrapped around the filter pad 1030. The wire 1032 functions to provide the plenum space between the filter pad 1030 and the interior wall of the housing 1012 so that fire suppressing gas, generated upon ignition first at the ends of the housing 1012 and then progressively inwards from the ends, can exit from numerous additional discharge ports 1014 and not only those that are located directly adjacent the burning propellant grains 1022, 1024. Thus, internal pressure built up during ignition can be distributed through the plenum space assured by the wire 1032 across the set of discharge ports 1014, which serves to limit the buildup of internal pressure during use. The wire 1032 also beneficially functions to maintain the filter pad 1030 in a cylindrical shape for insertion of the propellant grains 1022, 1024 therein particularly during manufacture of the generator 1000. The wire 1032 also absorbs some of the heat generated upon ignition of the grains 1022, 1024.
A silicone sealing gasket 1034 (see also
Each end cap 1038 has a central bore 1040 therethrough for receiving a squib barrel in a strong snap- or threaded fit. The squib barrel extends through the end cap 1038 and extends at least partially into the central bore of the end propellant grain 1024. The sealing gasket 1036 held in place by the end cap 1038 functions to substantially prevent the exit of generated fire suppressing gas through the ends of the filter pad 1030 and out of the housing 1012. This ensures that the generated fire suppressing gas escapes through the discharge ports 1014 of the housing 1012 via the filter pad 1030.
In certain situations, it is useful to direct the fire suppressing gas exiting a generator 1000 in a particular direction, rather than in 360 degrees. For example, in armored vehicle applications, where occupant safety is of primary concern, directing the fire suppressing gas away from the occupants is advantageous.
A surprising advantage to redirecting fire suppressing gas away from occupants was discovered when, during testing, the fire suppressing gas from two generators 1000 was redirected generally along the wall of the test enclosure using an auxiliary diffuser sleeve placed during installation over a housing 1012 of a generator 1000. During the test, two generators 1000 were bracketed at opposite corners of a 260 cubic foot, rectangular steel test box. Auxiliary diffuser sleeves similar to those shown in
Without citing any particular theory, it is believed that the advantageous extinguishing of the flame as described above was due to the tendency of the elements in the fire extinguishing gas to spin. The increased spinning, or increased “vorticity”, was assisted by the tendency of the elements adjacent to the walls to cling to the walls, an effect related in principle to the Coanda effect. The present inventors are not aware of any prior art fire suppression systems that purposely discharge fire suppression gas along an object in the room such as a wall of the room or a wall in the room, or other object so as to create a cyclone effect as described above to increase its fire suppressing effectiveness. Preferably, to produce this effect the fire suppressing gas is discharged so as to provide the largest possible circulation pattern unbroken by intervening objects. Thus, in one embodiment the fire suppressing gas would be discharged from a corner of a room along the longest wall of the room.
While the above embodiments have been described in detail, alternatives that fall within the scope and purpose of the present invention are possible. For example, while seven columns of stacked propellant grains are shown in
One configuration being contemplated is a column of stacked propellant grains that are cylinder-shaped and have a 4.5 inch outer diameter and a 0.5 inch inner diameter, with a fast burning booster column similar to that known in the field of automotive technology positioned within the shaft that is formed by 0.5 inch inner diameter of grains in the stack. Different thicknesses of grain may be contemplated for different applications. For example, a 4.5 inch/0.5 inch cylinder shaped grain such as that described above being 0.125 inches thick would burn in approximately 0.2 seconds, whereas a thicker grain could be used for slower burns. For fire suppression applications, it is often desirable to provide high initial flow of fire suppressing gas to first remove the flame from the fuel before shortly thereafter reaching a low enough oxygen concentration level to inert the space preventing re-ignition.
Furthermore, in alternative embodiments, propellant grains could be provided having different sizes and/or formulations within the same generator 1000 or in different generators in a particular tower 1100. The provision of propellant grains of different sizes would enable different profiles of fire suppression. For example, in order to rapidly produce fire suppressing gas for a cyclone effect to suppress an explosive fire ball but to in combination provide prolonged discharge of the fire suppressing gas to ensure the oxygen content of the room is kept sufficiently low for a period of time to inhibit re-ignition of flames.
Furthermore in alternative embodiments the filter pad could comprise layers of either course-mesh or fine-mesh steel wool.
The cylindrical generator structure described above provides a generally uniform discharge of fire suppressing gas in 360 degrees from the columns of stacked cylindrical propellant grains. This provides advantages that relate to thrust neutrality and also to the uniform discharge in a space for total flood applications. The multiple discharge ports distributed generally uniformly across the housing both over generally 360 degrees but also along the housing so as to correspond to grain positioning within the housing also enables gas generated by grains at each physical location within the housing to quickly makes its own escape into a space. This causes only little backpressure when compared with prior systems that do not provide multiple discharge ports distributed generally uniformly across the housing as described and shown herein.
The grains are stacked in 6 columns adjacent to the central column in order to ensure that the cylindrical grains maintain contact with each other, thereby to increase the opportunity for faster and efficient burning throughout.
It is contemplated that a housing that is generally rectangular, square or elliptical in cross-section could be employed, having discharge ports distributed generally uniformly across and along all sides in a similar manner to the cylindrical structure. While a wire plenum as a spacer has been described that has the additional advantage of structurally holding the cylindrical filter pad together, other spacers may be contemplated. For example, alternatively or in some combination studs or rings or other structures around the filter pad or protruding from the inner wall of the housing could be provided. Such structures could also serve to carry out the spacer's function of providing a plenum for inhibiting buildup of undue backpressure by enabling generated gas to exit from numerous discharge ports and not only those that are located directly adjacent the particular burning propellant grains that are generating the escaping gas.
Although preferably the propellant grains are of a sodium azide solid propellant chemical, the generator structure described herein could house and ignite non-azide solid propellant chemical also, though in order to control the heat of gases discharged modifications to the heat sinking would likely be required, accordingly increasing the size of the generator.
There are thus described novel structures and features to provide fire suppression systems for occupied spaces employing azide based propellant gas generators, which meet all of the objectives set forth herein and which overcome the disadvantages of existing techniques.
The many features and advantages of the invention are apparent from the detailed specification and, thus, it is intended by the appended claims to cover all such features and advantages of the invention that fall within the true spirit and scope of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Although embodiments have been described, those skilled in the art will appreciate that variations and modifications may be made without departing from the spirit and scope of the invention defined by the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/878,999 filed on Jul. 30, 2007, which claims priority under 35 U.S.C. 119(e) from U.S. Provisional Patent Application No. 60/873,979 filed Dec. 11, 2006.
Number | Name | Date | Kind |
---|---|---|---|
5507890 | Swann et al. | Apr 1996 | A |
5585597 | Faigle et al. | Dec 1996 | A |
5610359 | Spector et al. | Mar 1997 | A |
5660236 | Sears et al. | Aug 1997 | A |
5865257 | Kozyrev et al. | Feb 1999 | A |
6024889 | Holland et al. | Feb 2000 | A |
6089326 | Drakin | Jul 2000 | A |
6116348 | Drakin | Sep 2000 | A |
6136114 | Johnson et al. | Oct 2000 | A |
6213501 | Hock | Apr 2001 | B1 |
6328906 | Lundstrom et al. | Dec 2001 | B1 |
20050115721 | Blau et al. | Jun 2005 | A1 |
20050150665 | Wierenga et al. | Jul 2005 | A1 |
20070007019 | Wierenga et al. | Jan 2007 | A1 |
20080135266 | Richardson et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
19546528 | Jun 1997 | DE |
19717044 | Oct 1997 | DE |
0 672 563 | Sep 1995 | EP |
9315793 | Aug 1993 | WO |
9419060 | Sep 1994 | WO |
03024534 | Mar 2003 | WO |
Entry |
---|
Jul. 13, 2011 Office Action for U.S. Appl. No. 11/878,999 and Notice of References Cited. |
Yang, J. et al., “Solid Propellant Gas Generators: An overview and their application to fire suppression ”, International Conference on Fire Research and Engineering, Orlando, Florida, Sep. 10-15, 1995. |
Transmittal; International Search Report; and the Written Opinion of the international Searching Authority for International Application No. PCT/CA2010/001287, mailed Nov. 19, 2010. |
“Pyrogen Simply Better Than Halon” Announcement Pyrogen, XX, XX, 1998, p. Complete05 XP000669776. |
Fletcher M: “Fighting Fire With Fire” Eureka (Inc. Engineering Materials and Design), Findlay Publications, Horton Kirby, Kent, GB, vol. 20, No. 1, Jan. 2000, p. 17 XP000877927 ISSN: 0261-2097. |
Number | Date | Country | |
---|---|---|---|
20100170684 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
60873979 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11878999 | Jul 2007 | US |
Child | 12577011 | US |