Surveillance systems commonly employ optical video cameras to monitor facilities. Historically, these cameras have transmitted analog video images of an area under surveillance to a security monitoring center for inspection and storage. In many facilities, analog video cameras are being replaced with digital cameras that detect and capture still images of events, such as the appearance of an intruder, a malfunction, or a fire within the area under surveillance. Digital cameras provide several advantages over analog video cameras. For example, digital cameras can be radio linked and battery powered to eliminate the need for the costly fixed infrastructure of video cables and power lines, making surveillance systems cheaper and easier to deploy.
However, digital cameras have limited sensitivity, and are not capable of imaging opaque or concealed items. For example, at a point-of-entry into a facility, such as a government building, school, airport or other structure, traditional analog or digital cameras are not able to identify concealed weapons or other contraband (e.g., explosives). Therefore, as a result of the need for improved surveillance systems, various microwave imaging systems have been proposed as alternatives to existing optical systems. Microwave radiation is generally defined as electromagnetic radiation having wavelengths between radio waves and infrared waves. Since microwave radiation is non-ionizing, it poses no known health risks to people at moderate power levels. In addition, over the spectral band of microwave radiation, most dielectric materials, such as clothing, paper, plastic and leather are nearly transparent. Therefore, microwave imaging systems have the ability to penetrate clothing to image items concealed by clothing.
At present, there are several microwave imaging techniques available. For example, one technique uses an array of microwave detectors (hereinafter referred to as “antenna elements”) to capture either passive microwave radiation emitted by a target associated with the person or other object or reflected microwave radiation reflected from the target in response to active microwave illumination of the target. A two-dimensional or three-dimensional image of the person or other object is constructed by scanning the array of antenna elements with respect to the target's position and/or adjusting the frequency (or wavelength) of the microwave radiation being transmitted or detected.
Microwave imaging systems typically include transmit, receive and/or reflect antenna arrays for transmitting, receiving and/or reflecting microwave radiation to/from the object. Such antenna arrays can be constructed using traditional analog phased arrays or binary reflector arrays. In either case, the antenna array typically directs a beam of microwave radiation containing a number of individual microwave rays towards a point or area/volume in 3D space corresponding to a voxel or a plurality of voxels in an image of the object, referred to herein as a target. This is accomplished by programming each of the antenna elements in the array with a respective phase shift that allows the antenna element to modify the phase of a respective one of the microwave rays. The phase shift of each antenna element is selected to cause all of the individual microwave rays from each of the antenna elements to arrive at the target substantially in-phase. Examples of programmable antenna arrays are described in U.S. patent application Ser. No. ______ (Attorney Docket No. 10040151), entitled “A Device for Reflecting Electromagnetic Radiation,” and Ser. No. ______ (Attorney Docket No. 10040580), entitled “Broadband Binary Phased Antenna.”
However, to maintain a desired resolution, the numerical aperture (size) of the antenna array is linear with distance. Thus, as the imaging distance increases, the aperture size and cost of the antenna array may become prohibitively high in many situations. In addition, imaging at large, standoff distances also necessarily increases the scanning volume of the system (i.e., the number of voxels to be scanned grows linearly with distance), which further increases the cost and computational complexity of the microwave imaging system.
Therefore, what is needed is a microwave imaging that is capable of performing standoff microwave imaging with sufficient resolution to identify objects of interest, such as contraband, in standoff regions. In addition, what is needed is a microwave imaging system that is capable of performing standoff microwave imaging with reduced cost and computational complexity.
Embodiments of the present invention provide a microwave imaging system for performing standoff microwave imaging. The microwave imaging system includes an antenna array with a plurality of antenna elements, each capable of being programmed with a respective direction coefficient to direct microwave illumination toward a target within a volume that includes a standoff region, and each capable of being programmed with a respective additional direction coefficient to receive reflected microwave illumination reflected from the target. A processor measures an intensity of the reflected microwave illumination to determine a value of a voxel within a microwave image of the volume. The processor constructs the microwave image with a resolution sufficient to identify objects of interest, such as contraband, within the standoff region.
In one embodiment, to minimize the size of the array, the microwave imaging system operates at a frequency necessary to produce the desired resolution in the standoff region. In a further embodiment, while operating at a higher frequency or while operating with an array of a size sufficient to produce the desired resolution, a sparse antenna array is provided, such that the plurality of antenna elements includes a first array of antenna elements arranged to direct a transmit beam of microwave illumination in a transmit beam pattern toward the target and a second array of antenna elements arranged to receive a receive beam of microwave illumination from the target in a receive beam pattern complementary to the transmit beam pattern. The voxel associated with the target is formed at an intersection of the transmit beam and the receive beam.
In another embodiment, to minimize the size of the volume, and hence the number of voxels in the microwave image, the microwave imaging system is augmented with an optical imaging system configured to capture an optical image of an object within the volume and to produce optical image data representing the optical image. From the optical image data, optical image information can be extracted for use by the processor to identify a region of interest within the volume that is associated with the object. The processor can further control the array to illuminate only targets within the region of interest to produce the microwave image with only that region of interest. In yet another embodiment, the number of voxels in the image can also be reduced by using a coarser resolution in the standoff region than in regions closer to the array.
The disclosed invention will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:
As used herein, the terms microwave radiation and microwave illumination each refer to the band of electromagnetic radiation having wavelengths between 0.3 mm and 30 cm, corresponding to frequencies of about 1 GHz to about 1,000 GHz. Thus, the terms microwave radiation and microwave illumination each include traditional microwave radiation, as well as what is commonly known as millimeter wave radiation. In addition, as used herein, the term “microwave imaging system” refers to an imaging system operating in the microwave frequency range, and the resulting images obtained by the microwave imaging system are referred to herein as “microwave images.” Furthermore, as used herein, the term “standoff” refers to a distance between an imaging device and an object that is approximately equal to or greater than nine feet. In exemplary embodiments, the term “standoff” refers to a distance between an imaging device and an object of between 9 feet and 450 feet.
Referring now to
As can be seen in
In one embodiment, the array 50 is a passive programmable reflector array composed of reflective or transmissive antenna elements 80 that reflect or transmit microwave radiation to and/or from one or more microwave antennas 60. For example, each of the reflective or transmissive antenna elements 80 can be programmed with a respective direction coefficient to reflect or transmit microwave illumination emitted from one of the microwave antennas 60 towards the target. In addition, each of the reflective or transmissive antenna elements 80 can be programmed with an additional respective direction coefficient to reflect or transmit microwave illumination reflected from the target towards one of the microwave antennas 60. A single microwave antenna 60 can serve as both the source and receiver of microwave radiation, or separate microwave antennas 60 can be used for illuminating the array 50 and receiving reflected microwave illumination from the array 50, the latter being illustrated in
In another embodiment, the array 50 is an active transmitter/receiver array composed of active antenna elements 80, each capable of producing and transmitting microwave radiation and each capable of receiving and capturing reflected microwave radiation. In this embodiment, microwave source/receive antennas 60 are not used, as the array 50 operates as the source of microwave radiation.
In operation, the array 50 emits microwave radiation over the volume 160, and receives reflected microwave illumination reflected from objects 150 within the illuminated volume 160 in order to capture a microwave image of that volume 160. Specifically, the microwave imaging system 10 captures a microwave image of the volume 160 addressable by the array 50 by scanning multiple targets within the volume 160 to measure the respective intensity of reflected microwave illumination from each of those targets. The measured intensity from each target represents a voxel within the microwave image of the volume 160. In an exemplary embodiment, the array 50 operates at a frequency that enables potentially millions of targets in a volume to be scanned per second.
To provide ongoing surveillance of the volume 160, the microwave imaging system 10 captures successive microwave images of the volume 160. For example, in one embodiment, the microwave imaging system 10 operates at a frame rate of approximately thirty frames per second. However, in other embodiments, the microwave imaging system 10 operates at a frame rate greater than or less than 30 frames per second, depending upon the desired image quality. Since the scanning frequency of the microwave imaging system 10 is orders of magnitude greater than the frame rate, any motion of objects 150 within the volume 160 during the capture of an image frame can be compensated for in software.
The microwave imaging system 10 further includes a processor 100, computer-readable medium 110 and a display 120. The processor 100 includes any hardware, software, firmware, or combination thereof for controlling the array 50 and processing the received microwave radiation reflected from the target 155 for use in constructing a microwave image of the object 150. For example, the processor 100 may include one or more microprocessors, microcontrollers, programmable logic devices, digital signal processors or other type of processing devices that are configured to execute instructions of a computer program, and one or more memories (e.g., cache memory) that store the instructions and other data used by the processor 100. The memory 110 includes any type of data storage device, including but not limited to, a hard drive, random access memory (RAM), read only memory (ROM), compact disc, floppy disc, ZIP® drive, tape drive, database or other type of storage device or storage medium.
The processor 100 operates to program the antenna array 50 to illuminate multiple targets 155 on the object 150. In exemplary embodiments, the processor 100 programs respective amplitude/phase delays or amplitude/phase shifts into each of the individual antenna elements 80 in the array 50 to illuminate each target 155 on the object 150. In addition, the processor 100 programs respective amplitude/phase delays or amplitude/phase shifts into each of the individual antenna elements 80 in the array 50 to receive reflected microwave illumination from each target 155 on the object 150. In embodiments using phase shifts, the programmed phase shifts can be either binary phase shifts or continuous phase shifts.
The processor 100 is further capable of constructing a microwave image of the object 150 using the intensity of the reflected microwave radiation captured by the array 50 from each target 155 on the object 150. For example, in embodiments in which the array 50 is a reflector array, the microwave receiver 60b is capable of combining the reflected microwave radiation reflected from each antenna element 80 in the array 50 to produce a value of the effective intensity of the reflected microwave radiation at the target 155. The intensity value is passed to the processor 100, which uses the intensity value as the value of a pixel or voxel corresponding to the target 155 on the object 150. In other embodiments in which the reflected microwave radiation represents the intensity of an area/volume of voxels, for each microwave image of a target 155 (area/volume in 3D space), the processor 100 measures a Fourier transform component of the desired image of the object 150. The processor 100 performs an inverse Fourier transform using the measured Fourier transform components to produce the image of the object 150.
The resulting microwave image of the object 150 can be passed from the processor 100 to the display 120 to display the microwave image. In one embodiment, the display 120 is a two-dimensional display for displaying three-dimensional microwave images of the object 150 or one or more one-dimensional or two-dimensional microwave images of the object 150. In another embodiment, the display 120 is a three-dimensional display capable of displaying three-dimensional microwave images of the object 150.
In a similar manner, as shown in
In operation, microwave illumination 65 transmitted from horn 60 is received by various antenna elements 80 in the array 50. The antenna elements 80 in array 50 are each programmed with a respective transmission coefficient to direct transmitted microwave illumination 40 towards a target 155 on the object 150. The transmission coefficients are selected to create positive interference of the transmitted microwave illumination 40 from each of the antenna elements 80 at the target 155. Reflected microwave illumination 45 reflected from the target 155 is received by various antenna elements 80 in the array 50. The antenna elements 80 in array 50 are again each programmed with a respective transmission coefficient to direct transmitted microwave illumination 85 towards horn 60.
The horn 60 combines the transmitted microwave radiation 85 from each antenna element 80 in the array 50 to produce a value of the effective intensity of the reflected microwave radiation 45 at the target 155. The intensity value is passed to the processor 100, which uses the intensity value as the value of a pixel or voxel corresponding to the target 155 on the object 150. The processor 100 constructs a microwave image of the object 150 using the intensity of the reflected microwave radiation 45 captured by the array 50 from each target 155 on the object 150. The resulting microwave image of the object 150 can be passed from the processor 100 to the display 120 to display the microwave image.
The reflecting antenna element 200 is formed on and in a printed circuit board substrate 214 and includes the surface mounted FET 222, the patch antenna 220a, a drain via 232, a ground plane 236 and a source via 238. The surface mounted FET 222 is mounted on the opposite side of the printed circuit board substrate 214 as the planar patch antenna 220a and the ground plane 236 is located between the planar patch antenna 220a and the surface mounted FET 222. The drain via 232 connects the drain 228 of the surface mounted FET 222 to the planar patch antenna 220a and the source via 238 connects the source 226 of the surface mounted FET 222 to the ground plane 236.
In exemplary embodiments, the reflector antenna array is connected to a controller board 240 that includes driver electronics. The example controller board 240 depicted in
The patch antenna element 220a functions to reflect with more or less phase shift depending on the impedance level of the reflecting antenna element 300. The reflecting antenna element 200 has an impedance characteristic that is a function of the antenna design parameters. Design parameters of antennas include but are not limited to, physical attributes such as the dielectric material of construction, the thickness of the dielectric material, shape of the antenna, length and width of the antenna, feed location, and thickness of the antenna metal layer.
The FET 230 (non-ideal switching device) changes the impedance state of the reflecting antenna element 200 by changing its resistive state. A low resistive state (e.g., a closed or “short” circuit) translates to a low impedance. Conversely, a high resistive state (e.g., an open circuit) translates to a high impedance. A switching device with ideal performance characteristics (referred to herein as an “ideal” switching device) produces effectively zero impedance (Z=0) when its resistance is at its lowest state and effectively infinite impedance (Z=∞) when its resistance is at its highest state. As described herein, a switching device is “on” when its impedance is at its lowest state (e.g., Zon=0) and “off” when its impedance is at its highest state (e.g., Zoff=∞). Because the on and off impedance states of an ideal switching device are effectively Zon=0 and Zoff=∞, an ideal switching device is able to provide the maximum phase shift without absorption of electromagnetic radiation between the on and off states. That is, the ideal switching device is able to provide switching between 0 and 180 degree phase states. In the case of an ideal switching device, maximum phase-amplitude performance can be achieved with an antenna that exhibits any finite non-zero impedance.
In contrast to an ideal switching device, a “non-ideal” switching device is a switching device that does not exhibit on and off impedance states of Zon=0 and Zoff=∞, respectively. Rather, the on and off impedance states of a non-ideal switching device are typically, for example, somewhere between 0<|Zon|<|Zoff|<∞. However, in some applications, the on and off impedance states may even be |Zoff|<=|Zon|. A non-ideal switching device may exhibit ideal impedance characteristics within certain frequency ranges (e.g., <10 GHz) and highly non-ideal impedance characteristics at other frequency ranges (e.g., >20 GHz).
Because the on and off impedance states of a non-ideal switching device are somewhere between Zon=0 and Zoff=∞, the non-ideal switching device does not necessarily provide the maximum phase state performance regardless of the impedance of the corresponding antenna, where maximum phase state performance involves switching between 0 and 180 degree phase states. In accordance with one embodiment of the invention, the reflecting antenna element 200 of
Further, the antenna element 200 is configured as a function of the impedance of the non-ideal switching device (FET 230) in the on state, Zon, and the impedance of the non-ideal switching device 230 in the off state, Zoff. In a particular embodiment, the phase state performance of the reflecting antenna element 200 is optimized when the antenna element 200 is configured such that the impedance of the antenna element 200 is conjugate to the square root of the impedance of the non-ideal switching device 230 when in the on and off impedance states, Zon and Zoff. Specifically, the impedance of the antenna element 200 is the complex conjugate of the geometric mean of the on and off impedance states, Zon and Zoff, of the corresponding non-ideal switching device 230. This relationship is represented as:
Zantenna*=√{square root over (ZonZoff)}, (1)
where ( )* denotes a complex conjugate. The above-described relationship is derived using the well-known formula for the complex reflection coefficient between a source impedance and a load impedance. Choosing the source to be the antenna element 200 and the load to be the non-ideal switching device 230, the on-state reflection coefficient is set to be equal to the opposite of the off-state reflection coefficient to arrive at equation (1).
Designing the antenna element 200 to exhibit optimal phase-amplitude performance involves determining the on and off impedances, Zon and Zoff of the particular non-ideal switching device that is used in the reflecting antenna element 200 (in this case, FET 230). Design parameters of the antenna element 200 are then manipulated to produce an antenna element 200 with an impedance that matches the relationship expressed in equation (1) above. An antenna element 200 that satisfies equation (1) can be designed as long as Zon and Zoff are determined to be distinct values.
Another type of switching device, other than the surface mounted FET 230 shown in
In a reflector antenna array that utilizes FETs as the non-ideal switching devices, the beam-scanning speed that can be achieved depends on a number of factors including signal-to-noise ratio, crosstalk, and switching time. In the case of a FET, the switching time depends on gate capacitance, drain-source capacitance, and channel resistance (i.e., drain-source resistance). The channel resistance is actually space-dependent as well as time-dependent. In order to minimize the switching time between impedance states, the drain of the FET is preferably DC-shorted at all times. The drain is preferably DC-shorted at all times because floating the drain presents a large off-state channel resistance as well as a large drain-source capacitance due to the huge parallel-plate area of the patch antenna. This implies that the antenna is preferably DC-shorted but one wishes the only “rf short” the antenna sees be at the source. Therefore, the additional antenna/drain short should be optimally located so as to minimally perturb the antenna.
It should be understood that other types of antennas can be used in the reflecting antenna element 200, instead of the patch antenna 220a. By way of example, but not limitation, other antenna types include dipole, monopole, loop, and dielectric resonator type antennas. In addition, in other embodiments, the reflecting antenna element 200 can be a continuous phase-shifted antenna element 200 by replacing the FETs 230 with variable capacitors (e.g., Barium Strontium Titanate (BST) capacitors). With the variable capacitor loaded patches, continuous phase shifting can be achieved for each antenna element 200, instead of the binary phase shifting produced by the FET loaded patches. Continuous phased arrays can be adjusted to provide any desired phase shift in order to steer a microwave beam towards any direction in a beam scanning pattern.
As used herein, the term symmetric antenna 310 refers to an antenna that can be tapped or fed at either of two feed points 311 or 313 to create one of two opposite symmetric field distributions or electric currents. As shown in
The symmetric antenna 310 is capable of producing two opposite symmetric field distributions, labeled A and B. The magnitude (e.g., power) of field distribution A is substantially identical to the magnitude of field distribution B, but the phase of field distribution A differs from the phase of field distribution B by 180 degrees. Thus, field distribution A resembles field distribution B at ±180° in the electrical cycle.
The symmetric antenna 310 is connected to the symmetric switch 315 via feed lines 316 and 317. Feed point 311 is connected to terminal 318 of the symmetric switch 315 via feed line 316, and feed point 313 is connected to terminal 319 of the symmetric switch 315 via feed line 317. As used herein, the term symmetric switch refers to either a SPDT or DPDT switch in which the two operating states of the switch are symmetric about the terminals 318 and 319. For example, if in a first operating state of a SPDT switch, the impedance of a channel (termed channel α) is 10 Ω and the impedance of another channel (termed channel β) is 1 kΩ, then in the second operating state of the SPDT switch, the impedance of channel α is 1 kΩ and the impedance of channel β is 10 Ω. It should be understood that the channel impedances are not required to be perfect opens or shorts or even real. In addition, there may be crosstalk between the channels, as long as the crosstalk is state-symmetric. In general, a switch is symmetric if the S-parameter matrix of the switch is identical in the two operating states of the switch (e.g., between the two terminals 318 and 319).
Referring now to
To reduce the cost of producing an array 50 capable of performing standoff microwave imaging using a large array or a small array at higher frequencies, the number of antenna elements 80 in the array 50 can be reduced by providing complementary transmit and receive antenna arrays 510 and 520, respectively, in the array 50, as shown in
Turning now to the details of
The complementary transmit and receive arrays 510 and 520 shown in
If the transmit and receive arrays 510 and 520, respectively, are reflector arrays, as shown in
However, it should be understood that in other embodiments, the microwave source 60a and microwave receiver 60b may be collocated radiators. In addition, it should be understood that in other embodiments, the transmit and receive arrays 510 and 520, respectively, may be transmission arrays, in which the horns 60a and 60b are located behind the array 50, as shown in
Referring now to
The optical imaging system includes a camera 810 for receiving reflected light from the object 150 to capture an optical image of the object 150. The reflected light is directed by a lens (not shown) to a sensor (not shown) within the camera 810. In one embodiment, the sensor includes a plurality of pixels for capturing the optical image of the object 150 and producing optical image data representing the optical image. The optical imaging system may also include a light source (not shown) for illuminating the object 150 with light. The light source can be any suitable source of visible or near IR light. For example, the light source can include one or more light emitting elements, such as one or more point light sources, one or more collimated or structured light sources, one or more arrays of light sources, or any other combination of light sources suitable for use in the optical imaging system.
The optical image data is used by the microwave imaging system in capturing a microwave image of the object 150. For example, in one embodiment, the optical image data is used to identify a spatial region of interest 165 (i.e., data points) within the volume 160 addressable by the microwave imaging system. The identified data points corresponding to the spatial region of interest can be used to direct microwave radiation to the spatial region of interest 165.
The optical image processor 180 receives from sensor 150 within camera 810 (shown in
The image data 170 is converted from analog to digital by A/D converter 410 and passed to image processor 420 that processes the digital image data 170. For example, if the sensor 150 is a color sensor incorporating a color filter array, the image processor 420 can demosaic the image. Demosaicing is a process by which missing color values for each pixel location are interpolated from neighboring pixels. There are a number of demosaicing methods known in the art today. By way of example, but not limitation, various demosaicing methods include pixel replication, bilinear interpolation and median interpolation. Other types of processing that the image processor 420 can perform include noise filtering and image enhancement.
Extraction processor 430 is connected to receive the processed image data from image processor 420, and operates to extract optical image information 175 from the processed image data. There are a number of fast and simple known algorithms that can be used to extract the optical image information 175 from the image data 170. For example, in one embodiment, extraction processor 430 extracts the 3D surface of an object using an image construction algorithm for three dimensional images. An example of an image construction process for three-dimensional images is described in co-pending and commonly assigned U.S. patent application Ser. No. 10/392,758, in which an illumination gradient is used to spatially vary the intensity and/or spectral characteristics of the reflected illumination from the object in order to determine surface gradients at spatial locations on the surface of the object. The surface gradients are then used to construct a three-dimensional image of the object. Other three-dimensional image construction processes include laser triangulation, stereoscopic imaging, structured light and photometric stereo. For example, various three-dimensional image construction processes are described in Horn et al., “Toward Optimal Structured Light Patterns,” IEEE Proceedings International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottowa, Ontario, Canada, May 12-15, 1997, pp. 28-35 and Beraldin et al., “Optimized Position Sensors for Flying-Spot Active Triangulation System,” IEEE Proceedings International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Banff, Albertta, Canada, Oct. 6-10, 2003, pp. 29-36.
In another embodiment, extraction processor 430 extracts features of the object that are of interest. It should be understood that as used herein, the phrase “features of the object” includes measurements of the object, components on a surface of or within the object or other indicia of the object. In further embodiments, extraction processor 430 extracts any other information from the image data 170 that is desired.
The optical image information 175 is output by the extraction processor 430 to the microwave processor 100 for use in constructing the microwave image. The optical image information 175 is also transmitted from the extraction processor 430 to the display 120. Microwave processor 100 includes transceiver logic 440, A/D converter 450 and image construction processor 460. In one embodiment, transceiver logic 440 and image construction processor 460 are ASICs or FPGA circuits configured to perform the functions described below. In another embodiment, transceiver logic 440 and image construction processor 460 are combined in a general-purpose processor that executes algorithms to perform the functions described below.
As is understood, the transceiver logic 440 receives microwave measurements 480 representing the intensity of microwave illumination reflected from a target associated with the object from a receive microwave node (e.g., microwave receiver 60b). The microwave measurements 480 are converted from analog to digital by A/D converter 450 and passed to image construction processor 460 to construct a microwave image of the object. The image construction processor 460 produces microwave image data 490 representing the microwave image of the object and transmits the microwave image data 490 to the display 120.
In accordance with embodiments of the present invention, the optical image information 175 output by the extraction processor 430 is received at either one or both of the transceiver logic 440 and the image construction processor 460. In one embodiment, the optical image information 175 identifies data points corresponding to spatial regions of interest associated with the object. In one implementation embodiment, the transceiver logic 440 uses the optical image information 175 to provide transmit instructions 470 to the transmit microwave node (e.g., microwave source 60a) to direct the microwave radiation to the spatial regions (or regions) of interest. In another implementation embodiment, the image construction processor 460 uses the optical image information 175 to construct the microwave image using the measurements 480 corresponding to the identified data points.
With the optical image information 175, the actual volume occupied by the object being interrogated can be identified to determine what data points in the volume really need to be solved for. Thus, in the discrete-sampling of the space, only relevant data points need to be addressed. Depending on the maximum allowed volume to analyze, and the minimum that can be encountered, the computational load can be significantly reduced.
Referring now to
However, as can be seen in
At block 1135, the intensity of reflected microwave illumination reflected from the target is measured to determine a voxel value in the microwave image of the volume. If there are more targets to be scanned in the current microwave image, at block 1140, the antenna elements are again programmed at blocks 1120-1135 to measure the intensity of reflected microwave illumination reflected from other targets on the object. If the current scan is complete, at block 1145, a microwave image of the volume is constructed with the determined resolution from all of the measured voxel values.
At block 1210, the resolution needed to identify contraband at a target within the volume is determined based on the distance of the target from the array. At block 1215, a determination is made whether the microwave imaging system is augmented with an optical image system to capture a microwave image of the target with sufficient resolution while minimizing the scanning volume. If such a bi-modal imaging system is present, at block 1220, a region of interest (ROI) within the volume addressable by the microwave imaging system is identified by the optical imaging system.
Thereafter, even if a bi-modal imaging system is not present, at block 1225, each of the individual antenna elements within the array is programmed with a respective direction coefficient to direct microwave illumination towards a target within the volume (or ROI) at block 1230. Microwave illumination reflected from the target is received at the array at block 1235 by programming each of the individual antenna elements within the array with a respective additional direction coefficient.
At block 1240, the intensity of reflected microwave illumination reflected from the target is measured to determine a voxel value in the microwave image of the object. If there are more targets to be scanned in the current microwave image, at block 1245, the resolution of the other targets is again determined to enable variable resolution at block 1210, and then the antenna elements are again programmed at blocks 1225-1240 to measure the intensity of reflected microwave illumination reflected from other targets in the volume (or ROI). If there are no more targets in the microwave image, at block 1250, the current scan is complete and a microwave image of the volume (or ROI) is constructed with the determined resolution from all of the measured voxel values.
As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a wide rage of applications.
Accordingly, the scope of patents subject matter should not be limited to any of the specific exemplary teachings discussed, but is instead defined by the following claims.
This application is related by subject matter to U.S. patent application Ser. No. ______ (Attorney Docket No. 10040151), entitled “A Device for Reflecting Electromagnetic Radiation,” U.S. patent application Ser. No. ______ (Attorney Docket No. 10040580), entitled “Broadband Binary Phased Antenna,” and U.S. patent application Ser. No. 10/996,764, entitled “System and Method for Security Inspection Using Microwave Imaging” all of which were filed on Nov. 24, 2004. This application is further related by subject matter to U.S. patent application Ser. No. ______ (Attorney Docket No. 10050095), entitled “System and Method for Efficient, High-Resolution Microwave Imaging Using Complementary Transmit and Receive Beam Patterns,” U.S. patent application Ser. No. 11/088,831, entitled “System and Method for Inspecting Transportable Items Using Microwave Imaging,” U.S. patent application Ser. No. ______ (Attorney Docket No. 10050533), entitled “System and Method for Pattern Design in Microwave Programmable Arrays,” U.S. patent application Ser. No. ______ (Attorney Docket No. 10050534), entitled “System and Method for Microwave Imaging Using an Interleaved Pattern in a Programmable Reflector Array,” and U.S. patent application Ser. No. ______ (Attorney Docket No. 10050535), entitled “System and Method for Minimizing Background Noise in a Microwave Image Using a Programmable Reflector Array” all of which were filed on Mar. 24, 2005.