The present invention relates to power regulators generally, and more particularly relates to on-chip or internal voltage regulators.
Voltage regulators for use with electronics circuits are well known. It is also known to include a voltage regulator on the die of an integrated circuit. The difficulty with typical internal voltage regulator comes when power is first applied and the system, including the internal regulator, is initializing and reaching a stable state.
In a typical arrangement, when power is first applied an unregulated voltage source is applied to the regulator circuit. The unregulated voltage source typically may vary over a very wide range, including well in excess of twenty volts in many instances, and much higher—in excess of eighty volts—in at least some instances. More importantly, such voltages may—at least briefly at startup—be applied to the primary circuit that the regulator is designed to protect.
While the components of many integrated circuits can withstand the higher voltages, some circuits have components which cannot. Thus, for example, it is well known that certain types of transistors cannot withstand applied voltages greater than ten volts; others cannot withstand applied voltages at higher levels, but would still be damaged if those levels were exceeded.
As a result, there has been a need for a startup regulator system and method which provides appropriate protection to the load circuit during the startup process while still permitting the regulator to function once the regulator has stabilized. In addition, there has been a need for a regulator which offers protection to load circuits where the initial applied voltages exceeds the typical damage threshold for those components, for example on the order of eighty volts.
Referring to
While the foregoing circuit works very well in normal operation, more complicated issues arise during the power-on, or initialization, process. While the power-on process is brief, significant damage can occur to the downstream devices if the unregulated voltage VBAT is applied to those downstream devices. To avoid this, during start-up a switch 115 disconnects the output of the op amp 100 from its direct connection to the gate of the transistor 105. By opening the switch 115, bootstrap logic 120 is allowed to control the node VDD until the output of the op amp 100 reaches a stable state, at which time the switch 115 again closes and the bootstrap logic 120 is effectively disconnected until the next initialization of the circuit. The regulator and bootstrap logic shown in detail in
Referring next to
As discussed in connection with
To ensure that the gate of transistor 105 is pulled high when the part is disabled, transistor 140, shown as PHV3, is connected between VBAT and the gate of transistor 105, with the gate of transistor 140 being controlled by the EN_LS signal from node 130. In addition, transistor 145, shown as PHV2, is connected between VBAT and the gate of transistor 105 to prevent transistor 105 from turning on when the signal VCCON is applied. The gate of the transistor 145 is controlled by transistor pair 150A–150B, shown as PHV27 and NHV16, which cooperate to keep transistor 145 fully on while VCCON is high, and fully off while VCCON is low and also provide a slight delay to prevent race conditions. The permits the op amp 100 to have full control of transistor 105 when the regulator is operating at steady state. Thus, during start-up, the transistor 105 is prevented from conducting, thereby permitting the circuitry shown in
To establish VDD while VCCON is high and transistor 105 is held off, a current mirrored transistor 155, shown as PHV7, supplies power to the node VDD to help establish the reference voltage V2
The gates of transistors 175 and 180, designated PHV5 and NHV2 are driven by the externally-supplied EN signal on node 125. When the EN signal is high, the voltage on the gate of transistor 170 is low, which allows VBAT to be applied to the capacitor CBOOST, shown at 190. The voltage on the line 185, designated BIAS_ON, spikes as high as several diode drops; for example, six diode drops are shown in
As the transistor 155, or PHV7, is allowed to turn on to deliver power to VDD, the reference voltage V2
It will also be appreciated that, in some instances, VBAT may already be asserted even though the outside enable signal EN is kept low. In this instance, the part is off, and no power is consumed. In such circumstances, when the enable signal EN is switched high, the initial inrush of current onto the capacitor CBOOST through transistor 175 causes the same spike on the node BIAS_ON, which again turns on transistor 170 and the current mirror CC_BIAS, thus sending power to VDD.
Having fully described a preferred embodiment of the invention and various alternatives, those skilled in the art will recognize, given the teachings herein, that numerous alternatives and equivalents exist which do not depart from the invention. It is therefore intended that the invention not be limited by the foregoing description, but only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6037760 | Borghi et al. | Mar 2000 | A |
Number | Date | Country | |
---|---|---|---|
20050231256 A1 | Oct 2005 | US |