Stereophonic sound, or stereo, is a method of sound reproduction that creates the perception of directionality of sound. This is achieved by using two or more audio channels played through a configuration of two or more loudspeakers in order to create the impression that sound is coming from various directions. Today stereo sound is common in entertainment systems such as radio, TV, computers, and mobile devices.
In a two-channel audio system, an ideal stereo playback requires the careful placement of two loudspeakers in relations to the listener. The best results are obtained by using two identical speakers, in front of and equidistant from the listener, such that the listener and the two speakers form an equilateral triangle with equal angles of 60 degrees.
However, such a configuration is not always possible or desirable. For instance, many stereo speakers or systems comprise an all-in-one unit, such as a boombox, a sound bar, a cellphone, or speakers embedded into a computer or other device. Further, the configuration of a room may not make it possible for two speakers to be placed equidistantly from the listener. In these less-than-ideal situations, a stereo audio signal cannot be fully appreciated or perceived by the listener.
To compensate for these situations, a “stereo width” control may be implemented for a stereo audio system. A stereo width control allows the image width of a stereo signal to be increased or decreased using Mid/Side (“M/S”) processing. As the width is adjusted, the central sounds remain in the center, and the edges are pulled either inwards or pushed outwards. Specifically, the stereo width of a speaker system can be increased by increasing the level of side signal relative to the middle signal, or decreased by decreasing the level of side signal relative to the middle signal.
However, current static stereo width adjustment methods are not ideal, because different audio signals have different amounts of side signal. As such, it would be beneficial to dynamically control the stereo width adjustment of side signal relative to the middle signal dynamically in order to create a consistent immersive experience in a stereo audio system.
The present invention provides for methods and systems for digitally processing a two-channel audio input signal for stereo field enhancement. Specifically, some embodiments relate to digitally processing the two-channel audio input signal in a manner such that immersive studio-quality sound can be reproduced for a listener in a two-channel audio system.
The present invention meets the existing needs described above by providing for a method and system for dynamically controlling the relationship between middle and side signals for purposes of stereo width adjustment, while preserving and at times enhancing the overall sound quality and volume of the original input signal.
Accordingly, in initially broad terms, a two-channel audio input signal may first be split into a low frequency signal and a higher frequency signal based on a first cutoff frequency. This allows phase relationships of the low frequency signal to be maintained. In most situations, the lower the frequency, the less easy it is to determine the point of origin of a sound. As such, low frequencies do not need to be adjusted for stereo-width as it makes sense to share the load of reproducing them through both speakers equally.
The higher frequency signal is then further split into a middle signal and a side signal. The middle signal being the sum of the right channel and left channel of the higher frequency signal. The side signal being the sum of the right channel and the inverse of the left channel of the higher frequency signal. The middle signal is processed and used as a detection signal in order to dynamically modulate the side signal, and thereby adjusting the stereo width of the higher frequency signal. In other words, the modified middle signal or detection signal determines how strongly the side signal is modulated. The resulting gain-modulated side signal leads to a more consistent and immersive experience of sound for the listener.
In at least one embodiment, the gain-modulated side signal is further adjusted by a makeup gain. The makeup gain ensures that the side signal is at a gain level equal to or above the original side signal. Further, the gain-modulation of the side signal may be subject to a gain reduction ceiling. This gain reduction ceiling may be tied to the makeup gain in at least one embodiment of the invention. This for example, ensures that if 8 dB of side boost is desired, then the decrease in gain during modulation will never be more than 8 dB. Thus, the original stereo effect is not lost.
The resulting gain-modulated side signal and the middle signal are then recombined. In some embodiments, the earlier low frequency signal is also recombined in this stage in order to create a final output signal. In other embodiments, the recombined and processed higher frequency signal with the gain-modulated side signal is further processed for a delay of high frequency signal relative to midrange frequency signal.
Accordingly, the processed higher frequency signal is transmitted to a second filter in at least one other embodiment. The second filter splits the processed higher frequency signal into a high frequency signal and a midrange frequency signal based on a second cutoff frequency. The high frequency signal is then sent through a delay module to delay either the right or left channel, or both right and left channels up to 999 samples. The delayed high frequency signal, midrange frequency signal, and low frequency signal are recombined in this embodiment in order to create a final output signal. The final output signal may be sent to an output device for playback or for additional processing including but not limited to dynamic range processing.
These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
As illustrated by the accompanying drawings, the present invention is directed to a system and method for stereo field enhancement in two-channel audio systems.
As schematically represented,
The higher frequency signal is then further split, as in 11, into a middle signal and a side signal. The audio input signal and the resulting higher frequency signal comprises a right channel signal and a left channel signal. As such, the middle signal comprises the sum of the right channel signal and the left channel signal. In contrast, the side signal comprises the sum of the right channel signal and the inverse of the left channel signal, or in other words the left channel signal is subtracted from the right channel signal. The higher frequency signal is split into the middle signal and side signal by use of an M/S splitter circuit. Specifically, the M/S splitter circuit may comprise a sum and difference circuit to add the left and right signals to create the middle signal, and correspondingly subtract the left from the right channel to create the side signal. The higher frequency signal may also be split by other appropriate circuits and/or circuit configurations.
The middle signal is further processed, as in 12, through a detection module in order to create a detection signal. In at least one embodiment, the detection module comprises at least two shelving filters, for instance a low shelf and a high shelf filter. The detection signal is used to modulate the compression module, which adjusts, as in 13, the gain of the side signal in order to create a gain-modulated side signal. Further, the gain of the side signal may be limited to an adjustable gain reduction ceiling. The adjustable gain reduction ceiling may generally be between 0 dB and 12 dB. The gain-modulated side signal is further adjusted, as in 14, with a makeup gain. The adjustable gain reduction ceiling in 13 may be further set to correspond with the makeup gain as in 14. This preserves the output volume of the modulated side signal, by ensuring that the final output is equal to or above the original side signal. In at least one embodiment, the compression module comprises a dynamic range compression module. More specifically, the compression module may comprise an automatic gain controller. The compression module may further comprise other circuits and/or circuit configurations appropriate for the gain modulation as described.
The resulting low frequency signal in 10, the middle signal in 11, and the gain-modulated side signal adjusted with a makeup gain in 14, are all combined to form a final output signal, as in 15. This final output signal is the input signal with the side signal modulated dynamically based on the middle signal. In other words, the stereo width of the input signal is dynamically adjusted in the resulting output signal. The signals are combined in at least one embodiment, using an electronic mixer or other mixer. The mixer may be an electrical circuit that combines two or more electronic signals into a composite output signal.
As schematically represented,
The middle signal and the gain modulated side signal are further combined in order to form a processed higher frequency signal, as in 20. The signals may be combined by a mixer or other electric circuit as aforementioned.
In certain applications it is further desirable to make adjustments to the stereo field by delaying high frequency information relative to midrange frequency. As such, the processed higher frequency signal is further split, as in 21, into a high frequency signal and a midrange frequency signal using a second cutoff frequency. The frequency above the second cutoff frequency are split into the high frequency signal, and the frequency below the second cutoff frequency are split into the midrange frequency signal. The second cutoff frequency may generally be between 1 kHz and 20 kHz. The second cutoff frequency may be adjustable in at least one embodiment of the present invention. The processed high frequency signal may be split by an electronic filter or other appropriate circuits and/or circuit configurations.
The resulting high frequency signal is delayed, as in 22, by use of a delay module to create a delayed high frequency signal. The delay interval may be between 1 and 999 samples in at least one embodiment of the present invention. The delay may be adjustable. The delay module may further comprise left and/or right sub-modules which are capable of delaying the left and/or right high frequency channels selectively or collectively. In at least one embodiment, the delay module may comprise comb filters to delay the signal. In other embodiments, the delay module may comprise other circuits and/or circuit configurations appropriate for delaying an audio signal.
The resultant low frequency signal in 10, the midrange frequency signal in 21, and the delayed high frequency signal in 22, are all combined to form a final output signal, as in 23. The final output signal in this embodiment is the input signal with the side signal modulated dynamically based on the middle signal, and the high frequency portion of that processed signal further delayed relative to the midrange. The signals again are combined in a mixer in at least one embodiment. The signals may also be combined by any other circuits and/or circuit configurations appropriate for combining multiple audio signals.
As schematically represented,
The input device 100 is at least partially structured and/or configured to transmit a two-channel audio input signal 200 into the first filter 101. The input device 100 may comprise at least portions of an audio device structured and configured for audio playback. The input device 100 may comprise a stereo system, a portable music player, a mobile device, a computer, a sound or audio card, and any other device or combination of electronic circuits that is suitable for audio playback.
The first filter 101 is structured to filter or split the two-channel audio input signal 200 to result in a higher frequency signal 201 and a low frequency signal 202, based on a first cutoff frequency. The higher frequency signal 201 is transmitted to an M/S splitter 102, while the lower frequency signal 202 is transmitted to a processing module 105. The higher frequency signal 201 comprises frequencies above the first cutoff frequency. Similarly, the lower frequency signal 202 comprises those frequencies below the first cutoff frequency. The first filter 101 may be further structured with a configurable or adjustable first cutoff frequency. In at least one embodiment, the first filter 101 may comprise an adjustable first cutoff frequency generally between 20 Hz and 1000 Hz. In other embodiments, the first filter 101 may comprise a static first cutoff frequency generally between 20 Hz and 1000 Hz. The first filter 101 may comprise electronic circuits or combinations of circuits structured to filter or split the two-channel audio input signal 200 into a higher frequency signal 201 and a low frequency signal 202. In at least one embodiment, the first filter 101 comprises a frequency bypass crossover employed to split low frequency signal 202 from higher frequency signal 201.
The M/S splitter 102 is structured to split the higher frequency signal 201 into a side signal 203 and a middle signal 204. The side signal 203 is transmitted to a compression module 104, while the middle signal 204 is transmitted to a processing module 105 as well as a detection module 103. The two-channel input audio signal 200 and resultant signals such as the higher frequency signal 201 comprise a left channel and a right channel. The middle signal 204 comprises the sum of the right channel signal and the left channel signal. The side signal 203 comprises the sum of the right channel signal and the inverse of the left channel signal. As such, the M/S splitter 102 comprises circuits and/or combinations of circuits structured to split the higher frequency signal 201 comprising a left channel and a right channel into a middle signal and a side signal. In at least one embodiment, the M/S splitter 102 comprises a sum and difference circuit. In other embodiments, the M/S splitter 102 may comprise adder and invert circuits.
The detection module 103 is structured to modify the middle signal 204 into a detection signal 206. The detection signal 206 is then transmitted to the compression module 104. In at least one embodiment, the detection module comprises at least two shelving filters. More particularly, in at least one embodiment, the detection module comprises a low shelf filter and a high shelf filter structured to create a 24 dB differential between high and low frequencies within the middle signal 204, in the creation of the detection signal 206.
The compression module 104 is structured to modulate the side signal 203 based on the detection signal 206 to create a gain-modulated side signal 207. In other words, the detection signal 206 determines how strongly the compression module 104 will modulate the side signal 207. In at least one embodiment, the compression module 104 is further configured with an adjustable gain reduction ceiling. As such, the gain reduction ceiling ensures that the side signal 207 is never reduced more than a predetermined dB level. In at least one embodiment, the gain reduction ceiling is generally between 0 dB and 12 dB. The compression module may further be configured with an adjustable gain reduction ceiling corresponding to a makeup gain configured in the processing module 105. In some embodiments, the gain reduction ceiling may be static. The compression module 104 may comprise any device or combination of circuits that is structured and configured for dynamic range compression.
The processing module 105 is configured to combine the low frequency signal 202, the middle signal 204, and the gain-modulated side signal 207 to form a final output signal 208. In at least one embodiment, and before combining the signals, the processing module 105 may be further configured to adjust the gain-modulated side signal 207 with a makeup gain. In other embodiments, the makeup gain is adjusted to the gain-modulated side signal 207 from within the compression module 104. In at least one embodiment, the compression module 104 has an adjustable gain reduction ceiling which corresponds to the makeup gain set or configured in the processing module 105. This ensures that the gain-modulated side signal 207 is at an output level equal to or above the original side signal 203. For example, if a 8 dB of side boost is set and configured, then the compression module 104 will never decrease the gain of the side signal 203 more than 8 dB. The processing module 105 may comprise circuits or combination of circuits, such as but not limited to a mixer, structured to combine the aforementioned signals. The processing module 105 may further comprise circuits or combination of circuits for adjusting signal 207 with a makeup gain.
In at least one embodiment, rather than combining the middle signal from signal 204, the processing module 105 may recombine the middle signal or information directly from signal 201, as illustrated in
The output device 106 may be structured to further process the final output signal 208. In at least one embodiment, the output device 106 may be equipped for dynamic range processing of the stereo field enhanced final output signal 208.
As schematically represented,
In this embodiment, the system of the present invention similarly comprises an input device 100 structured and/or configured to transmit a two-channel audio input signal 200 into a first filter 101. The first filter 101 is structured to split the two-channel audio input signal 200 into a higher frequency signal 201 and a low frequency signal 202, based on a first cutoff frequency. The higher frequency signal 201 is transmitted to an M/S splitter 102; however, the lower frequency signal 202 is transmitted to a combination module 152. The M/S splitter 102 is structured to split higher frequency signal 201 into a side signal 203 and a middle signal 204. The side signal 203 is transmitted to a compression module 104, and the middle signal 204 is transmitted to a processing module 105. The detection module 103 is structured to modify the middle signal 204 into a detection signal 206, similar to the previous embodiment as in
The processing module 105 combines the middle signal 204 and the gain-modulated side signal 207 in order to form a processed higher frequency signal 250. The processed higher frequency signal 250 is then transmitted to a second filter 150. The processing module 105 may similarly be configured to adjust the gain-modulated side signal 207 with a makeup gain. In other embodiments, the makeup gain is adjusted to the gain-modulated side signal 207 from within the compression module 104. In at least one embodiment, the compression module 104 has an adjustable gain reduction ceiling which corresponds to the makeup gain set or configured in the processing module 105. This ensures the gain-modulated side signal 207 to be an output level equal to or above the original side signal 203. The processing module 105 may comprise circuits or combination of circuits, such as but not limited to a mixer, structured to combine middle signal 204 and gain-modulated side signal 207. The processing module 105 may further comprise circuits or combination of circuits for adjusting gain-modulated side signal 207 with a makeup gain.
In at least one embodiment, rather than combining the middle signal from signal 204, the processing module 105 may recombine the middle signal or information directly from signal 201, as illustrated in
The second filter 150 is structured to filter or split the processed higher frequency signal 250 into a high frequency signal 251 and a middle frequency signal 252 using a second cutoff frequency. The high frequency signal 251 is transmitted to a delay module 151, while the midrange frequency signal 252 is transmitted to a combination module 152. The high frequency signal 251 comprises frequencies above the second cutoff frequency. Similarly, the midrange frequency signal 252 comprises those frequencies below the second cutoff frequency. The second filter 150 may be further structured with an adjustable or configurable second cutoff frequency. In at least one embodiment, the second filter 150 may comprise an adjustable second cutoff frequency generally between 1 kHz and 20 kHz. In other embodiments, the second filter 150 may comprise a static second cutoff frequency generally between 1 kHz and 20 kHz. The second filter 150 may comprise electronic circuits or combinations thereof structured to filter or spilt the processed higher frequency input signal 250 into a high frequency signal 251 and a midrange frequency signal 252. In at least one embodiment, the second filter 150 comprises a frequency bypass crossover employed to split midrange frequency signal 252 from high frequency signal 251.
The delay module 151 is structured and/or configured to delay the high frequency signal 251 in order to create a delayed high frequency signal 253. The delayed high frequency signal 253 is transmitted to the combination module 152. The delay module 151 may further be structured with an adjustable delay interval generally between 1 and 999 samples. In other embodiments, the delay module 151 may comprise a static delay interval generally between 1 and 999 samples. In at least one embodiment, the delay module 151 may selectively delay the left or right channels of the high frequency signal 253. The delay module 151 may also delay both the left and right channels of the high frequency signal 253. This allows the delay module 151 to create a comb filtering effect and acoustic phase decorrelation, which may be effective in creating a more immersive stereo field for the listener. The delay module 151 may comprise any circuit or combination of circuits structured and configured for creating a delayed signal. In at least one embodiment, the delay module 151 may comprise comb filters.
The combination module 152 is structured to combine the low frequency signal 202, the midrange frequency signal 252, and the delayed high frequency signal 253 in order to form a final output signal 208. The combination module 152 comprises circuits or combinations of circuits, such as but not limited to a mixer, structured to combine signals 202, 252, and 253. The final output signal 208 is transmitted to an output device 106, which may be structured to further process the final output signal 208. In at least one embodiment, the output device 106 may be structured and configured for dynamic range processing of the final output signal 208.
As illustrated in
The input device 100 may comprise any device capable of creating a two-channel audio input signal 200 which includes a right channel and a left channel. The input device 100 may comprise a stereo system such as a home entertainment system, a portable music player such as a MP3 player, a radio or device capable of receiving radio signals such as a FM, AM, or XM receiver, a computer which may include a sound or audio card, or a mobile device such as a phone or tablet.
The first filter 101 may comprise any circuits or combinations of circuits capable of splitting frequency signals based on a first cutoff frequency. In at least one embodiment, the first filter 101 comprises an audio crossover 101′, such that low frequencies, or those below the first cutoff frequency, are passed through the crossover as 202. On the other hand, higher frequencies above the first cutoff frequency are directed as 201 for further processing. The second filter 150 may employ similar circuits capable of splitting frequency signals based on a second cutoff frequency, such as an audio crossover.
The M/S splitter 102 is structured to split a stereo signal comprising a left channel and a right channel into a middle signal and a side signal. The middle signal is created by adding the right and left channels together. The side signal is created by inverting the left channel then adding the inverted left channel to the right channel. As such, at least one embodiment of the M/S splitter 102 comprises a sum and difference circuit 102′. In at least one embodiment, the sum and difference 102′ may comprise adders and inverters structured to create a middle and a side signal from a two-channel audio signal.
Detection module 103 and signals 204 and 206 form a sidechain path in at least one embodiment of the present invention. In at least one embodiment, the detection module 103 comprises a low shelf filter and a high shelf filter 103′, which together create a 24 dB differential between high and low frequencies in the middle signal 204 in order to create a detection signal 206. The compression module 104 uses the detection signal 206 to modulate the gain of the incoming side signal 203. In at least one embodiment, the compression module 104 comprises an automatic gain controller 104′ (“AGC”). The AGC 104′ may comprise standard dynamic range compression controls such as threshold, ratio, attack and release. Threshold allows the AGC 104′ to reduce the level of the side signal 203 if its amplitude exceeds a certain threshold. Ratio allows the AGC 104′ to reduce the gain as determined by a ratio. Attack and release determines how quickly the AGC 104′ acts. The attack phase is the period when the AGC 104′ is decreasing gain to reach the level that is determined by the threshold. The release phase is the period that the AGC 104′ is increasing gain to the level determined by the ratio. The AGC 104′ may also feature soft and hard knees to control the bend in the response curve of the output or gain-modulated side signal 207, and other dynamic range compression controls. In some embodiments, a makeup gain is added to the gain-modulated side signal 207 within the AGC 104′. Further, the AGC 104′ may comprise a gain reduction ceiling that corresponds to the makeup gain. In at least one embodiment, the gain reduction ceiling may vary from 0 dB to 12 dB. The compression module 104 may also comprise other gain reduction devices or compressors.
Processing module 105 is structured to combine the gain modulated side signal 207 with the middle information from the earlier signal 201. Alternatively, the processor module 105 may also recombine the gain modulated side signal 207 with the middle signal as from 204. Regardless of the different circuit pathways, the processing module 105 is structured to recombine signal or information that was earlier split by the first filter 101 and the M/S splitter 102. As such, the processing module 105 may comprise a mixer 105′ in at least one embodiment of the present invention. The mixer 105′ may be an electronic mixer structured to combine two or more signals into a composite signal. Similarly, combination module 152 may also comprise a similar mixer 152′ that may be an electronic mixer structured to combine two or more signals.
Delay module 151 is structured to delay a high frequency signal 251. The delay module may selectively delay the left channel and/or the right channel of signal 251. As such, the delay module 151 may comprise left and right delay circuits 151′. The delay circuits 151′ may comprise components structured to cause a delay of the signal. The delay may be adjustable from 1 to 999 samples or may be fixed. The delay circuits 151′ may comprise digital and/or analog systems, for example, including but not limited to digital signal processors that record the signal into a storage buffer, and then play back the stored audio based on timing parameters preferably ranging from 1 to 999 samples.
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Now that the invention has been described,
The present application is a continuation application of previously filed application having Ser. No. 15/883,961, which is set to mature into U.S. Pat. No. 10,412,533 on Sep. 10, 2019, which claims priority to continuation application having Ser. No. 15/213,741, which is matured into U.S. Pat. No. 9,883,318 on Jan. 30, 2018, which is a continuation-in-part application of previously filed application having Ser. No. 13/936,252, filed on Jul. 8, 2013, which matured into U.S. Pat. No. 9,398,394 on Jul. 19, 2016, which claims priority to a provisional patent application having Ser. No. 61/834,063 and a filing date of Jun. 12, 2013, which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2643729 | McCracken | Jun 1953 | A |
3430007 | Thielen | Feb 1969 | A |
3795876 | Takashi et al. | Mar 1974 | A |
3813687 | Geil | May 1974 | A |
4162462 | Endoh et al. | Jul 1979 | A |
4184047 | Langford | Jan 1980 | A |
4218950 | Uetrecht | Aug 1980 | A |
4226533 | Snowman | Oct 1980 | A |
4257325 | Bertagni | Mar 1981 | A |
4353035 | Schröder | Oct 1982 | A |
4356558 | Owen et al. | Oct 1982 | A |
4363007 | Haramoto et al. | Dec 1982 | A |
4392027 | Bock | Jul 1983 | A |
4399474 | Coleman, Jr. | Aug 1983 | A |
4412100 | Orban | Oct 1983 | A |
4458362 | Berkovitz et al. | Jul 1984 | A |
4489280 | Bennett, Jr. et al. | Dec 1984 | A |
4517415 | Laurence | May 1985 | A |
4538297 | Waller | Aug 1985 | A |
4549289 | Schwartz et al. | Oct 1985 | A |
4584700 | Scholz | Apr 1986 | A |
4602381 | Cugnini et al. | Jul 1986 | A |
4612665 | Inami et al. | Sep 1986 | A |
4641361 | Rosback | Feb 1987 | A |
4677645 | Kaniwa et al. | Jun 1987 | A |
4696044 | Waller, Jr. | Sep 1987 | A |
4701953 | White | Oct 1987 | A |
4704726 | Gibson | Nov 1987 | A |
4715559 | Fuller | Dec 1987 | A |
4739514 | Short et al. | Apr 1988 | A |
4815142 | Imreh | Mar 1989 | A |
4856068 | Quatieri, Jr. et al. | Aug 1989 | A |
4887299 | Cummins et al. | Dec 1989 | A |
4997058 | Bertagni | Mar 1991 | A |
5007707 | Bertagni | Apr 1991 | A |
5073936 | Gurike et al. | Dec 1991 | A |
5133015 | Scholz | Jul 1992 | A |
5195141 | Jang | Mar 1993 | A |
5210704 | Husseiny | May 1993 | A |
5210806 | Kihara et al. | May 1993 | A |
5226076 | Baumhauer, Jr. et al. | Jul 1993 | A |
5355417 | Burdisso et al. | Oct 1994 | A |
5361381 | Short | Nov 1994 | A |
5384856 | Kyouno et al. | Jan 1995 | A |
5420929 | Geddes et al. | May 1995 | A |
5425107 | Bertagni et al. | Jun 1995 | A |
5463695 | Werrbach | Oct 1995 | A |
5465421 | McCormick et al. | Nov 1995 | A |
5467775 | Callahan et al. | Nov 1995 | A |
5473214 | Hildebrand | Dec 1995 | A |
5511129 | Craven et al. | Apr 1996 | A |
5515444 | Burdisso et al. | May 1996 | A |
5539835 | Bertagni et al. | Jul 1996 | A |
5541866 | Sato et al. | Jul 1996 | A |
5572443 | Emoto et al. | Nov 1996 | A |
5615275 | Bertagni | Mar 1997 | A |
5617480 | Ballard et al. | Apr 1997 | A |
5638456 | Conley et al. | Jun 1997 | A |
5640685 | Komoda | Jun 1997 | A |
5671287 | Gerzon | Sep 1997 | A |
5693917 | Bertagni et al. | Dec 1997 | A |
5699438 | Smith et al. | Dec 1997 | A |
5727074 | Hildebrand | Mar 1998 | A |
5737432 | Werrbach | Apr 1998 | A |
5812684 | Mark | Sep 1998 | A |
5828768 | Eatwell et al. | Oct 1998 | A |
5832097 | Armstrong et al. | Nov 1998 | A |
5838805 | Warnaka et al. | Nov 1998 | A |
5848164 | Levine | Dec 1998 | A |
5861686 | Lee | Jan 1999 | A |
5862461 | Yoshizawa et al. | Jan 1999 | A |
5872852 | Dougherty | Feb 1999 | A |
5901231 | Parrella et al. | May 1999 | A |
5990955 | Koz | Nov 1999 | A |
6058196 | Heron | May 2000 | A |
6078670 | Beyer | Jun 2000 | A |
6093144 | Jaeger et al. | Jul 2000 | A |
6108431 | Bachler | Aug 2000 | A |
6195438 | Yumoto et al. | Feb 2001 | B1 |
6201873 | Dal Farra | Mar 2001 | B1 |
6202601 | Ouellette et al. | Mar 2001 | B1 |
6208237 | Saiki et al. | Mar 2001 | B1 |
6244376 | Granzotto | Jun 2001 | B1 |
6263354 | Gandhi | Jul 2001 | B1 |
6285767 | Klayman | Sep 2001 | B1 |
6292511 | Goldston et al. | Sep 2001 | B1 |
6317117 | Goff | Nov 2001 | B1 |
6318797 | Böhm et al. | Nov 2001 | B1 |
6332029 | Azima et al. | Dec 2001 | B1 |
6343127 | Billoud | Jan 2002 | B1 |
6484845 | Schleicher et al. | Nov 2002 | B1 |
6518852 | Derrick | Feb 2003 | B1 |
6529611 | Kobayashi et al. | Mar 2003 | B2 |
6535846 | Shashoua | Mar 2003 | B1 |
6570993 | Fukuyama | May 2003 | B1 |
6587564 | Cusson | Jul 2003 | B1 |
6618487 | Azima et al. | Sep 2003 | B1 |
6661897 | Smith | Dec 2003 | B2 |
6661900 | Allred et al. | Dec 2003 | B1 |
6760451 | Craven et al. | Jul 2004 | B1 |
6772114 | Sluijter et al. | Aug 2004 | B1 |
6839438 | Riegelsberger et al. | Jan 2005 | B1 |
6847258 | Ishida et al. | Jan 2005 | B2 |
6871525 | Withnall et al. | Mar 2005 | B2 |
6907391 | Bellora et al. | Jun 2005 | B2 |
6999826 | Zhou et al. | Feb 2006 | B1 |
7006653 | Guenther | Feb 2006 | B2 |
7016746 | Wiser et al. | Mar 2006 | B2 |
7024001 | Nakada | Apr 2006 | B1 |
7058463 | Ruha et al. | Jun 2006 | B1 |
7123728 | King et al. | Oct 2006 | B2 |
7236602 | Gustavsson | Jun 2007 | B2 |
7254243 | Bongiovi | Aug 2007 | B2 |
7266205 | Miller | Sep 2007 | B2 |
7269234 | Klingenbrunn et al. | Sep 2007 | B2 |
7274795 | Bongiovi | Sep 2007 | B2 |
7430300 | Vosburgh et al. | Sep 2008 | B2 |
7519189 | Bongiovi | Apr 2009 | B2 |
7577263 | Tourwe | Aug 2009 | B2 |
7613314 | Camp, Jr. | Nov 2009 | B2 |
7676048 | Tsutsui | Mar 2010 | B2 |
7711129 | Lindahl | May 2010 | B2 |
7711442 | Ryle et al. | May 2010 | B2 |
7747447 | Christensen et al. | Jun 2010 | B2 |
7764802 | Oliver | Jul 2010 | B2 |
7778718 | Janke et al. | Aug 2010 | B2 |
7916876 | Helsloot | Mar 2011 | B1 |
8068621 | Okabayashi et al. | Nov 2011 | B2 |
8144902 | Johnston | Mar 2012 | B2 |
8160274 | Bongiovi | Apr 2012 | B2 |
8175287 | Ueno et al. | May 2012 | B2 |
8218789 | Bharitkar et al. | Jul 2012 | B2 |
8229136 | Bongiovi | Jul 2012 | B2 |
8284955 | Bongiovi et al. | Oct 2012 | B2 |
8385864 | Dickson et al. | Feb 2013 | B2 |
8462963 | Bongiovi | Jun 2013 | B2 |
8472642 | Bongiovi | Jun 2013 | B2 |
8503701 | Miles et al. | Aug 2013 | B2 |
8565449 | Bongiovi | Oct 2013 | B2 |
8577676 | Muesch | Nov 2013 | B2 |
8619998 | Walsh et al. | Dec 2013 | B2 |
8705765 | Bongiovi | Apr 2014 | B2 |
8750538 | Avendano et al. | Jun 2014 | B2 |
8811630 | Burlingame | Aug 2014 | B2 |
8879743 | Mitra | Nov 2014 | B1 |
9195433 | Bongiovi et al. | Nov 2015 | B2 |
9264004 | Bongiovi et al. | Feb 2016 | B2 |
9276542 | Bongiovi et al. | Mar 2016 | B2 |
9281794 | Bongiovi et al. | Mar 2016 | B1 |
9344828 | Bongiovi et al. | May 2016 | B2 |
9348904 | Bongiovi et al. | May 2016 | B2 |
9350309 | Bongiovi et al. | May 2016 | B2 |
9397629 | Bongiovi et al. | Jul 2016 | B2 |
9398394 | Bongiovi et al. | Jul 2016 | B2 |
9413321 | Bongiovi et al. | Aug 2016 | B2 |
9564146 | Bongiovi et al. | Feb 2017 | B2 |
9615189 | Copt et al. | Apr 2017 | B2 |
9621994 | Bongiovi et al. | Apr 2017 | B1 |
9638672 | Butera, III et al. | May 2017 | B2 |
9741355 | Bongiovi et al. | Aug 2017 | B2 |
9793872 | Bongiovi et al. | Oct 2017 | B2 |
9883318 | Bongiovi et al. | Jan 2018 | B2 |
9906858 | Bongiovi et al. | Feb 2018 | B2 |
9906867 | Bongiovi et al. | Feb 2018 | B2 |
9998832 | Bongiovi et al. | Jun 2018 | B2 |
10069471 | Bongiovi et al. | Sep 2018 | B2 |
10158337 | Bongiovi et al. | Dec 2018 | B2 |
10666216 | Bongiovi et al. | May 2020 | B2 |
10701505 | Copt et al. | Jun 2020 | B2 |
20010008535 | Lanigan | Jul 2001 | A1 |
20010043704 | Schwartz | Nov 2001 | A1 |
20010046304 | Rast | Nov 2001 | A1 |
20020057808 | Goldstein | May 2002 | A1 |
20020071481 | Goodings | Jun 2002 | A1 |
20020094096 | Paritsky et al. | Jul 2002 | A1 |
20030016838 | Paritsky et al. | Jan 2003 | A1 |
20030023429 | Claesson et al. | Jan 2003 | A1 |
20030035555 | King et al. | Feb 2003 | A1 |
20030043940 | Janky et al. | Mar 2003 | A1 |
20030112088 | Bizjak | Jun 2003 | A1 |
20030138117 | Goff | Jul 2003 | A1 |
20030142841 | Wiegand | Jul 2003 | A1 |
20030164546 | Giger | Sep 2003 | A1 |
20030179891 | Rabinowitz et al. | Sep 2003 | A1 |
20030216907 | Thomas | Nov 2003 | A1 |
20040003805 | Ono et al. | Jan 2004 | A1 |
20040005063 | Klayman | Jan 2004 | A1 |
20040008851 | Hagiwara | Jan 2004 | A1 |
20040022400 | Magrath | Feb 2004 | A1 |
20040042625 | Brown | Mar 2004 | A1 |
20040044804 | MacFarlane | Mar 2004 | A1 |
20040086144 | Kallen | May 2004 | A1 |
20040103588 | Allaei | Jun 2004 | A1 |
20040138769 | Akiho | Jul 2004 | A1 |
20040146170 | Zint | Jul 2004 | A1 |
20040189264 | Matsuura et al. | Sep 2004 | A1 |
20040208646 | Choudhary et al. | Oct 2004 | A1 |
20050013453 | Cheung | Jan 2005 | A1 |
20050090295 | Ali et al. | Apr 2005 | A1 |
20050117771 | Vosburgh et al. | Jun 2005 | A1 |
20050129248 | Kraemer et al. | Jun 2005 | A1 |
20050175185 | Korner | Aug 2005 | A1 |
20050201572 | Lindahl et al. | Sep 2005 | A1 |
20050249272 | Kirkeby et al. | Nov 2005 | A1 |
20050254564 | Tsutsui | Nov 2005 | A1 |
20060034467 | Sleboda et al. | Feb 2006 | A1 |
20060045294 | Smyth | Mar 2006 | A1 |
20060064301 | Aguilar et al. | Mar 2006 | A1 |
20060098827 | Paddock et al. | May 2006 | A1 |
20060115107 | Vincent et al. | Jun 2006 | A1 |
20060126851 | Yuen et al. | Jun 2006 | A1 |
20060126865 | Blamey et al. | Jun 2006 | A1 |
20060138285 | Oleski et al. | Jun 2006 | A1 |
20060140319 | Eldredge et al. | Jun 2006 | A1 |
20060153281 | Karlsson | Jul 2006 | A1 |
20060189841 | Pluvinage | Aug 2006 | A1 |
20060291670 | King et al. | Dec 2006 | A1 |
20070010132 | Nelson | Jan 2007 | A1 |
20070030994 | Ando et al. | Feb 2007 | A1 |
20070056376 | King | Mar 2007 | A1 |
20070106179 | Bagha et al. | May 2007 | A1 |
20070119421 | Lewis et al. | May 2007 | A1 |
20070150267 | Honma et al. | Jun 2007 | A1 |
20070173990 | Smith et al. | Jul 2007 | A1 |
20070177459 | Behn | Aug 2007 | A1 |
20070206643 | Egan | Sep 2007 | A1 |
20070223713 | Gunness | Sep 2007 | A1 |
20070223717 | Boersma | Sep 2007 | A1 |
20070253577 | Yen et al. | Nov 2007 | A1 |
20080031462 | Walsh et al. | Feb 2008 | A1 |
20080040116 | Cronin | Feb 2008 | A1 |
20080049948 | Christoph | Feb 2008 | A1 |
20080069385 | Revit | Mar 2008 | A1 |
20080123870 | Stark | May 2008 | A1 |
20080123873 | Bjorn-Josefsen et al. | May 2008 | A1 |
20080165989 | Seil et al. | Jul 2008 | A1 |
20080181424 | Schulein et al. | Jul 2008 | A1 |
20080212798 | Zartarian | Sep 2008 | A1 |
20080255855 | Lee et al. | Oct 2008 | A1 |
20090022328 | Neugebauer et al. | Jan 2009 | A1 |
20090054109 | Hunt | Feb 2009 | A1 |
20090080675 | Smirnov et al. | Mar 2009 | A1 |
20090086996 | Bongiovi et al. | Apr 2009 | A1 |
20090116652 | Kirkeby et al. | May 2009 | A1 |
20090282810 | Leone et al. | Nov 2009 | A1 |
20090290725 | Huang | Nov 2009 | A1 |
20090296959 | Bongiovi | Dec 2009 | A1 |
20100008530 | Hlas et al. | Jan 2010 | A1 |
20100045374 | Wu et al. | Feb 2010 | A1 |
20100246832 | Villemoes et al. | Sep 2010 | A1 |
20100252677 | Petitjean | Oct 2010 | A1 |
20100256843 | Bergstein et al. | Oct 2010 | A1 |
20100278364 | Berg | Nov 2010 | A1 |
20100303278 | Sahyoun | Dec 2010 | A1 |
20110002467 | Nielsen | Jan 2011 | A1 |
20110007907 | Park et al. | Jan 2011 | A1 |
20110013736 | Tsukamoto et al. | Jan 2011 | A1 |
20110065408 | Kenington et al. | Mar 2011 | A1 |
20110087346 | Larsen et al. | Apr 2011 | A1 |
20110096936 | Gass | Apr 2011 | A1 |
20110125063 | Shalon et al. | May 2011 | A1 |
20110194712 | Potard | Aug 2011 | A1 |
20110230137 | Hicks et al. | Sep 2011 | A1 |
20110257833 | Trush et al. | Oct 2011 | A1 |
20110280411 | Cheah et al. | Nov 2011 | A1 |
20120008798 | Ong | Jan 2012 | A1 |
20120014553 | Bonanno | Jan 2012 | A1 |
20120063611 | Kimura | Mar 2012 | A1 |
20120089045 | Seidl et al. | Apr 2012 | A1 |
20120099741 | Gotoh et al. | Apr 2012 | A1 |
20120170759 | Yuen et al. | Jul 2012 | A1 |
20120170795 | Sancisi et al. | Jul 2012 | A1 |
20120189131 | Ueno et al. | Jul 2012 | A1 |
20120213034 | Imran | Aug 2012 | A1 |
20120213375 | Mahabub et al. | Aug 2012 | A1 |
20120300949 | Rauhala | Nov 2012 | A1 |
20120302920 | Bridger et al. | Nov 2012 | A1 |
20130083958 | Katz et al. | Apr 2013 | A1 |
20130129106 | Sapiejewski | May 2013 | A1 |
20130162908 | Son et al. | Jun 2013 | A1 |
20130163767 | Gauger, Jr. et al. | Jun 2013 | A1 |
20130163783 | Burlingame | Jun 2013 | A1 |
20130169779 | Pedersen | Jul 2013 | A1 |
20130220274 | Deshpande et al. | Aug 2013 | A1 |
20130227631 | Sharma et al. | Aug 2013 | A1 |
20130242191 | Leyendecker | Sep 2013 | A1 |
20130251175 | Bongiovi et al. | Sep 2013 | A1 |
20130288596 | Suzuki et al. | Oct 2013 | A1 |
20130338504 | Demos et al. | Dec 2013 | A1 |
20130343564 | Darlington | Dec 2013 | A1 |
20140067236 | Henry et al. | Mar 2014 | A1 |
20140119583 | Valentine et al. | May 2014 | A1 |
20140126734 | Gauger, Jr. et al. | May 2014 | A1 |
20140261301 | Leone | Sep 2014 | A1 |
20140379355 | Hosokawsa | Dec 2014 | A1 |
20150039250 | Rank | Feb 2015 | A1 |
20150194158 | Oh et al. | Jul 2015 | A1 |
20150208163 | Hallberg et al. | Jul 2015 | A1 |
20150215720 | Carroll | Jul 2015 | A1 |
20160209831 | Pal | Jul 2016 | A1 |
20170072305 | Watanabe | Mar 2017 | A1 |
20170188989 | Copt et al. | Jul 2017 | A1 |
20170193980 | Bongiovi et al. | Jul 2017 | A1 |
20170195802 | Eichfeld et al. | Jul 2017 | A1 |
20170272887 | Copt et al. | Sep 2017 | A1 |
20170345408 | Hong et al. | Nov 2017 | A1 |
20180077482 | Yuan | Mar 2018 | A1 |
20180091109 | Bongiovi et al. | Mar 2018 | A1 |
20180102133 | Bongiovi et al. | Apr 2018 | A1 |
20180139565 | Norris et al. | May 2018 | A1 |
20180213343 | Copt et al. | Jul 2018 | A1 |
20180226064 | Seagriff et al. | Aug 2018 | A1 |
20190020950 | Bongiovi et al. | Jan 2019 | A1 |
20190075388 | Schrader et al. | Mar 2019 | A1 |
20190318719 | Bongiovi et al. | Oct 2019 | A1 |
20200007983 | Bongiovi et al. | Jan 2020 | A1 |
20200053503 | Butera, III et al. | Feb 2020 | A1 |
20200404441 | Copt et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
9611417 | Feb 1999 | BR |
96113723 | Jul 1999 | BR |
2533221 | Jun 1995 | CA |
2161412 | Apr 2000 | CA |
2854086 | Dec 2018 | CA |
1139842 | Jan 1997 | CN |
1173268 | Feb 1998 | CN |
1221528 | Jun 1999 | CN |
1357136 | Jul 2002 | CN |
1391780 | Jan 2003 | CN |
1682567 | Oct 2005 | CN |
1879449 | Dec 2006 | CN |
1910816 | Feb 2007 | CN |
101163354 | Apr 2008 | CN |
101277331 | Oct 2008 | CN |
101518083 | Aug 2009 | CN |
101536541 | Sep 2009 | CN |
101720557 | Jun 2010 | CN |
101946526 | Jan 2011 | CN |
101964189 | Feb 2011 | CN |
102171755 | Aug 2011 | CN |
102265641 | Nov 2011 | CN |
102361506 | Feb 2012 | CN |
102652337 | Aug 2012 | CN |
102754151 | Oct 2012 | CN |
102822891 | Dec 2012 | CN |
102855882 | Jan 2013 | CN |
103004237 | Mar 2013 | CN |
203057339 | Jul 2013 | CN |
103247297 | Aug 2013 | CN |
103250209 | Aug 2013 | CN |
103262577 | Aug 2013 | CN |
103348697 | Oct 2013 | CN |
103455824 | Dec 2013 | CN |
1672325 | Sep 2015 | CN |
112236812 | Jan 2021 | CN |
19826171 | Oct 1999 | DE |
10116166 | Oct 2002 | DE |
0206746 | Aug 1992 | EP |
0541646 | Jan 1995 | EP |
0580579 | Jun 1998 | EP |
0698298 | Feb 2000 | EP |
0932523 | Jun 2000 | EP |
0666012 | Nov 2002 | EP |
2509069 | Oct 2012 | EP |
2814267 | Oct 2016 | EP |
2218599 | Oct 1998 | ES |
2249788 | Oct 1998 | ES |
2219949 | Aug 1999 | ES |
2003707 | Mar 1979 | GB |
2089986 | Jun 1982 | GB |
2320393 | Dec 1996 | GB |
1253783 | Jan 2021 | HK |
245250 | Dec 2020 | IL |
3150910 | Jun 1991 | JP |
7106876 | Apr 1995 | JP |
2001509985 | Jul 2001 | JP |
2005500768 | Jan 2005 | JP |
2005354297 | Dec 2005 | JP |
2011059714 | Mar 2011 | JP |
1020040022442 | Mar 2004 | KR |
1319288 | Jun 1987 | SU |
401713 | Aug 2000 | TW |
WO 9219080 | Oct 1992 | WO |
WO 1993011637 | Jun 1993 | WO |
WO 9321743 | Oct 1993 | WO |
WO 9427331 | Nov 1994 | WO |
WO 9514296 | May 1995 | WO |
WO 9531805 | Nov 1995 | WO |
WO9535628 | Dec 1995 | WO |
WO 9535628 | Dec 1995 | WO |
WO 9601547 | Jan 1996 | WO |
WO 9611465 | Apr 1996 | WO |
WO 9708847 | Mar 1997 | WO |
WO 9709698 | Mar 1997 | WO |
WO 9709840 | Mar 1997 | WO |
WO 9709841 | Mar 1997 | WO |
WO 9709842 | Mar 1997 | WO |
WO 9709843 | Mar 1997 | WO |
WO 9709844 | Mar 1997 | WO |
WO 9709845 | Mar 1997 | WO |
WO 9709846 | Mar 1997 | WO |
WO 9709848 | Mar 1997 | WO |
WO 9709849 | Mar 1997 | WO |
WO 9709852 | Mar 1997 | WO |
WO 9709853 | Mar 1997 | WO |
WO 9709854 | Mar 1997 | WO |
WO 9709855 | Mar 1997 | WO |
WO 9709856 | Mar 1997 | WO |
WO 9709857 | Mar 1997 | WO |
WO 9709858 | Mar 1997 | WO |
WO 9709859 | Mar 1997 | WO |
WO 9709861 | Mar 1997 | WO |
WO 9709862 | Mar 1997 | WO |
WO 9717818 | May 1997 | WO |
WO 9717820 | May 1997 | WO |
WO 9813942 | Apr 1998 | WO |
WO 9816409 | Apr 1998 | WO |
WO 9828942 | Jul 1998 | WO |
WO 9831188 | Jul 1998 | WO |
WO 9834320 | Aug 1998 | WO |
WO 9839947 | Sep 1998 | WO |
WO 9842536 | Oct 1998 | WO |
WO 9843464 | Oct 1998 | WO |
WO 9852381 | Nov 1998 | WO |
WO 9852383 | Nov 1998 | WO |
WO 9853638 | Nov 1998 | WO |
WO 9902012 | Jan 1999 | WO |
WO 9908479 | Feb 1999 | WO |
WO 9911490 | Mar 1999 | WO |
WO 9912387 | Mar 1999 | WO |
WO 9913684 | Mar 1999 | WO |
WO 9921397 | Apr 1999 | WO |
WO 9935636 | Jul 1999 | WO |
WO 9935883 | Jul 1999 | WO |
WO 9937121 | Jul 1999 | WO |
WO 9938155 | Jul 1999 | WO |
WO 9941939 | Aug 1999 | WO |
WO 9952322 | Oct 1999 | WO |
WO 9952324 | Oct 1999 | WO |
WO 9956497 | Nov 1999 | WO |
WO 9962294 | Dec 1999 | WO |
WO 9965274 | Dec 1999 | WO |
WO 0001264 | Jan 2000 | WO |
WO 0002417 | Jan 2000 | WO |
WO 0007408 | Feb 2000 | WO |
WO 0007409 | Feb 2000 | WO |
WO 0013464 | Mar 2000 | WO |
WO 0015003 | Mar 2000 | WO |
WO 0033612 | Jun 2000 | WO |
WO 0033613 | Jun 2000 | WO |
WO 03104924 | Dec 2003 | WO |
WO 2006020427 | Feb 2006 | WO |
WO 2007092420 | Aug 2007 | WO |
WO 2008067454 | Jun 2008 | WO |
WO 2009070797 | Jun 2009 | WO |
WO 2009102750 | Aug 2009 | WO |
WO 2009114746 | Sep 2009 | WO |
WO 2009155057 | Dec 2009 | WO |
WO2009155057 | Dec 2009 | WO |
WO 2010027705 | Mar 2010 | WO |
WO2010051354 | May 2010 | WO |
WO 2010051354 | May 2010 | WO |
WO2010138311 | Dec 2010 | WO |
WO 2011081965 | Jul 2011 | WO |
WO 2012134399 | Oct 2012 | WO |
WO2012154823 | Nov 2012 | WO |
WO 2013055394 | Apr 2013 | WO |
WO 2013076223 | May 2013 | WO |
WO2013077918 | May 2013 | WO |
WO 2014201103 | Dec 2014 | WO |
WO 2015061393 | Apr 2015 | WO |
WO 2015077681 | May 2015 | WO |
WO 2016019263 | Feb 2016 | WO |
WO 2016022422 | Feb 2016 | WO |
WO 2016144861 | Sep 2016 | WO |
WO 2019051075 | Mar 2019 | WO |
WO2019200119 | Oct 2019 | WO |
WO 2020028833 | Feb 2020 | WO |
WO2020132060 | Jun 2020 | WO |
Entry |
---|
NovaSound Int., http://www.novasoundint.com/new_page_t.htm, 2004. |
Stephan Peus et al. “Natürliche Hören mite künstlichem Kopf”, Funkschau—Zeitschrift für elektronische Kommunikation, Dec. 31, 1983, pp. 1-4, XP055451269. Web: https://www.neumann.com/?lang-en&id=hist_microphones&cid=ku80_publications. |
Number | Date | Country | |
---|---|---|---|
20200092671 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
61834063 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15883961 | Jan 2018 | US |
Child | 16565863 | US | |
Parent | 15213741 | Jul 2016 | US |
Child | 15883961 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13936252 | Jul 2013 | US |
Child | 15213741 | US |