SYSTEM AND METHOD FOR STIMULATED EMISSION DEPLETION PROJECTION STEREOLITHOGRAPHY

Information

  • Patent Application
  • 20180056603
  • Publication Number
    20180056603
  • Date Filed
    August 23, 2016
    8 years ago
  • Date Published
    March 01, 2018
    6 years ago
Abstract
The present disclosure relates to a system for forming a three dimensional (3D) part. The system may incorporate a beam delivery subsystem for generating optical signals, and a mask subsystem that receives the optical signals and generates optical images therefrom. A first one of the optical images activates a polymerization species of a photo-sensitive resin in accordance with illuminated areas thereof, to thus cause polymerization of select portions of the photo-sensitive resin to help form a layer of the 3D part. A second one of the optical images causes stimulated emission depletion of subportions of the polymerization species, simultaneously, over various areas of the layer, to enhance resolution of at least one subportion of the select portions of the photo-sensitive resin.
Description
FIELD

The present disclosure relates to systems and methods involving additive manufacturing, and more particularly to systems and methods involving stimulated emission depletion used in connection with projection microstereolithography to form a three dimensional part.


BACKGROUND

This section provides background information related to the present disclosure which is not necessarily prior art.


Photolithography techniques are continually driving for finer features over larger volumes. Traditionally, following the typically Abbe diffraction limit, smaller wavelengths have been used in order to decrease features size. These lower wavelengths predicate specialized materials and safety precautions for their use limiting their wider applicability. Alternatively, non-linear photochemical processes may be used in order to circumvent the Abbe diffraction limit and achieve smaller features. Exploring the Mechanisms in STED-Enhanced Direct Laser Writing, Fischer, et al., describes the background science whereby stimulated emission of a secondary beam is used to deplete the lifetime and propagation of primary beam excited polymerization initiating species in a photoresist.



Additive Nanomanufacturing—A Review, Egnstrom et al., gives a broad background of additive nano-manufacturing with examples of features and structures which have been achieved.



Design And Optimization Of A Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System, Zheng et al., describes a projection stereolithography technique for micron scale features using a spatial light modulator and photosensitive resin.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


In one aspect the present disclosure relates to a system for forming a three dimensional (3D) part. The system may comprise a beam delivery subsystem for generating optical signals, and a mask subsystem configured to receive the optical signals and to generate optical images therefrom. At least a first one of the optical images enables activation of a polymerization species of a photo-sensitive resin in accordance with illuminated areas thereof, to thus cause polymerization of select portions of the photo-sensitive resin to help form a layer of the 3D part. At least a second one of the optical images enables stimulated emission depletion of subportions of the polymerization species, simultaneously, over various areas of the layer, to enhance resolution of at least one subportion of the select subportions of the photo-sensitive resin.


In another aspect the present disclosure relates to a system for forming a three dimensional (3D) part. The system may comprise a 3D model, a beam delivery subsystem and a mask subsystem. The beam delivery subsystem may be used for generating first and second optical signals. The mask subsystem may be configured to receive the first and second optical signals and the 3D model, and to generate from the 3D model and the first optical signal a primary 2D image. The primary 2D image causes activation of a polymerization species of a photo-sensitive resin in accordance with illuminated areas of the primary 2D image, which causes polymerization of select portions of the photo-sensitive resin to initiate formation of a first layer of the 3D part. The mask subsystem is further configured to receive the secondary optical signal and to generate therefrom a secondary 2D image. The secondary 2D image initiates stimulated emission depletion of subportions of the polymerization species, simultaneously, over at least portions of the first layer, in accordance with illuminated portions of the secondary 2D image, to enhance resolution of one or more select portions of the photo-sensitive resin.


In still another aspect the present disclosure relates to a method for forming a three dimensional (3D) part. The method may comprise using a beam delivery subsystem to generate optical signals, and using a mask subsystem configured to receive the optical signals and to generate optical images therefrom. The method may further involve using at least a first one of the optical images to cause activation of a polymerization species of a photo-sensitive resin in accordance with illuminated areas thereof, to thus cause polymerization of select portions of the photo-sensitive resin to help form a layer of the 3D part. The method may further involve using at least a second one of the optical images to cause stimulated emission depletion of subportions of the polymerization species, simultaneously, over various areas of the layer, to enhance resolution of at least one subportion of the select portions of the photo-sensitive resin.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is a high level drawing of one embodiment of a system in accordance with the present disclosure which uses stimulated emission depletion, in connection with projection microstereolithography, to create a 3D part having significantly improved feature resolution, in a layer-by-layer process, from a series of successively generated 2D images;



FIG. 1a is a high level drawing showing various components that may be included in the beam delivery subsystem shown in FIG. 1;



FIG. 2a is one example of an image created using projection microstereolithography, with the white portions of the image designating those portions of a 2D image that are illuminating the photoresin, and the black areas are those portions of the photoresin that are not being illuminated using the 2D image;



FIG. 2b is one example of an optical pattern in which an optical signal having a different frequency is selectively used to form a different 2D image, which is applied immediately after the 2D image shown in FIG. 2a, to cause stimulated emission depletion of the polymerization species and thus to stop the polymerization process, thus enhancing the resolution of details of the 2D material layer just formed;



FIG. 3a is another example of an image created using projection microstereolithography, with the white portions of the image designating those portions of a 2D image that are illuminating the photoresin, and the black areas are those portions of the photoresin that are not being illuminated using the 2D image;



FIG. 3b is another example of an optical pattern in which an optical signal having a different frequency is selectively used to form a different 2D image, which is applied immediately after the 2D image shown in FIG. 3a, to cause stimulated emission depletion of the polymerization species and thus to stop the polymerization process, thus enhancing the resolution of details of the 2D material layer just formed; and



FIG. 4 is a high level flowchart setting forth various operations performed by the system shown in FIG. 1 to produce a 3D part using both stimulated emission depletion and projection microstereolithography.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.


The present disclosure involves a system and method which utilizes stimulated emission depletion (STED) in order to depopulate the excited polymerizing species via stimulated emission, in order to control their propagation and enhance the resolution of projection microstereolithography (PuSL) 3D manufacturing. Typical PuSL utilizes projection by a spatial light modulator to create a 2D image of light from a primary beam which is optically guided onto a photosensitive resin. Where light penetrates the resin, polymerization species become activated and initiate cross-linking to form a solid. The polymerizing species lifetime allows them to diffuse beyond the projected image causing increasing part size, thus detracting from the resolution of various features of the resulting 3D part.



FIG. 1 depicts a typical PuSL system 10 in accordance with one embodiment of the present disclosure. The system 10 makes use of a 3D CAD modeling system 12 which supplies a 3D model of a part to an electronic controller 15. The controller 15 may be used to help control a mask subsystem 17, which in this example includes a digital mask (hereinafter “digital mask 16”), as well as a spatial light modulator 14. The controller 15 may be independent of the mask subsystem 17 or it may form an integrated portion of the mask subsystem.


The digital mask 16 includes a large plurality of individually electronically addressable pixels, and signals generated by the controller 15, generated from the input received from the 3D CAD modeling system 12, control which ones of its pixels are illuminated. A beam delivery subsystem 18 provides either a primary 2D optical signal or a secondary 2D optical signal, which illuminates the digital mask 16. The use of the primary and secondary 2D optical signals will be described further in connection with the discussion of FIG. 1a. The spatial light module 14 may be controlled by the controller 15 or by a separate, fully independent controller, but in either event modulates light received from the beam delivery subsystem 18 to help form the primary and secondary 2D images 19a and 19b, respectively.


With brief reference to FIG. 1a, one embodiment of the beam delivery subsystem 18 is shown in greater detail. The beam delivery subsystem 18 may include an electronic controller 18a, a first light source 18b for generating the primary 2D optical signal 18b1 used to form the primary 2D image 19a, and a second light source 18c for generating the secondary 2D optical signal 18c1 used to help form the secondary 2D image 19b. The first and second light sources 18b and 18c may be controlled independently by the controller 18a. A beam splitter 18d may be used to direct the generated optical signal (i.e., either the primary or secondary 2D optical signal 18b1 or 18c1, respectively) to the digital mask 16. The digital mask 16 and the spatial light module 14 operate together to create a 2D image using the received optical signal, which will form either the primary 2D image 19a or the secondary 2D image 19b. The beam splitter 18d also enables the optical signals representing the primary and secondary 2D images 19a, 19b from the mask subsystem 17 to pass therethrough without obstruction. The controller 18a may communicate with, or be controlled by, the controller 15, as needed to alternately energize the light sources 18b and 18c at precise times to generate the primary and secondary 2D optical signals 18b1 and 18c1.


Referring further to FIG. 1, the 2D optical signal 18b or 18c received from the beam delivery subsystem 18 is used to create the 2D image 19a or 19b. The 2D images 19a and 19b are light images that pass through the beam splitter 18d of the beam delivery subsystem 18 and are optically directed via a mirror 20 and a projection lens 21 to an uppermost portion of a light curable, photo-sensitive resin 24 (hereinafter simply “photoresin 24”) contained in a photoresin bath 24a. The projection lens 21 helps to size (i.e., reduce in scale) the 2D images 19a, 19b as needed so that the 2D images are in accordance with the desired length and width dimensions for the 3D part.


As the light of the primary 2D image 19a impinges the upper portion of the photoresin 24 it causes the polymerization species of the photoresin to become activated, thus causing polymerization of the upper portion of the photoresin 24 to begin. The polymerization essentially is hardening of selected upper surface portions of the photoresin 24 that are being illuminated by the UV light of the primary 2D image 19a.


The initial primary 2D image 19a is directed at the photoresin 24 for a certain time interval, which typically is between a few milliseconds up to one or more minutes, and more preferably between about 1-5 seconds. This begins the polymerization of a first layer of what will become a 3D part. When this time interval is complete, then the controller 18a of the beam delivery subsystem 18 interrupts operation of the primary light source 18b and turns on the secondary light source 18c. The secondary light source 18c is then used to help create a new secondary 2D image 19b. The new secondary 2D image 19b has a different wavelength from that used with the primary 2D image 19a. The new wavelength is selected to induce stimulated emission depletion of the polymerizing species, thus rapidly terminating polymerization. More particularly, the new secondary 2D image 19b being projected at the new wavelength acts on only specific portions of the polymerization species which was previously activated during projection of the initial primary 2D image 19a. The new secondary 2D image 19b may be projected for a few milliseconds up to a minute or more, and more preferably for about 1-5 ms. At the completion of this time interval the controller 15 may control the Z-stage elevator 22 so that the Z-stage elevator is lowered a predetermined distance into the photoresin bath 24a in preparation for formation of a new material layer. The new polymerized 2D material layer can now be formed on the just-completed 2D material layer. The alternating generation and application of the primary 2D image 19a and the secondary 2D image 19b allows each layer of the image to be formed without the need to raster scan separate optical signals back and forth across the photoresin bath 24a. As a result, a fully formed 3D part can be created much more rapidly and with enhanced resolution of its structural features than what would be possible with existing 3D PUSL and STED technology. When all of the required material layers are formed, the resulting structure is a 3D part having significantly improved feature resolution.



FIGS. 2a and 3a shows two images used during formation of a single layer of a 3D part or structure. Images 2a and 3a represent the primary images 50 and 60, where each white portion 50a and 60a represents light that impinges (i.e., illuminates) the photoresin 24 in the photoresin bath 24a, and thus causes polymerization of those illuminated portions of the photoresin to form a solid. The black portions 50b and 60b represent areas which are “negative”, meaning that no light from the 2D image falls on these areas, and thus no polymerization occurs on the photoresin 24 in these areas. Images 50′ and 60′ in FIGS. 2b and 3b, respectively, represent the secondary (i.e., “counter” or “inverse”) 2D images relative to the primary images 50 and 60, respectively, shown in FIGS. 2a and 3a. In FIGS. 2b and 3b the white areas 50a′ and 60a′ are parts of the 2D image created by the secondary (i.e., anti-polymerization) beam generated by the second light source 18c of the beam delivery subsystem 18, when used in connection with the spatial light modulator 14 and the digital mask 16. These areas 50a′ and 60a′ of the secondary beams 50a and 60a will cause stimulated emission depletion of the polymerization species of the photoresin 24 that are illuminated by the beams 50a and 60a. Areas 50b′ and 60b′ are the negative areas of the secondary 2D images 50′ and 60′, and do not have any effect on the photoresin 24. The secondary 2D image 19b maintains sharp features of the primary 2D image 19a by limiting diffusion of the polymerization species around the perimeter edges and areas being formed with the primary 2D image 19a.


Referring to FIG. 4, a high level flowchart 100 is shown which sets forth various operations performed by the system 10 in creating a high resolution 3D part or structure. At operation 102 the 3D modeling system 12, the digital mask 16, the spatial light modulator 14 and the beam delivery subsystem 18 generate the initial (or a new) primary 2D image 19a. At operation 104 the primary 2D image 19a is projected onto the surface of the photoresin 24 in the photoresin bath 24a.


As set forth in operation 106, after a given time interval, as noted above, the 3D modeling system 12, the digital mask 16, the spatial light modulator 14 and the beam delivery subsystem 18 are used to generate the secondary 2D image 19b using the secondary light source 18c, which produces an optical signal having a different wavelength from that used to create the primary 2D image. This secondary 2D image 19b causes stimulated emission depletion of the polymerization species at select portions of the photoresin layer previously activated by the primary 2D image 19a and limits the polymerization around various features that were formed (increasing the feature resolution) from the 2D layer created from the primary 2D image 19a.


At operation 108 the elevator 22 is then used to lower the just-formed 2D layer below the upper surface of the photoresin bath 24a. This exposes a new layer of uncured photoresin above the previously formed 2D. At operation 110 the system 10 makes a check to determine if all the layers of the 3D part have been formed. If this check produces a “Yes” answer, then the formation of the 3D part is complete. If the check produces a “No” answer, then operations 102-110 are repeated to form a new material layer.


The system 10 and method of the present disclosure enables 3D parts and structures to be formed with significantly improved resolution of small structural features, and more rapidly than with previous STED/PUSL processes. This is in part because the stimulated emission depletion (STED) phase of operation employed with the system 10 and method involves a complete secondary, 2D image 19b to be generated, which causes stimulated emission depletion of various subportions of the just-formed layer simultaneously, rather than through a conventional raster scanning of the beam which is causing the stimulated emission depletion of the polymerization species. This enables each layer to be fully formed much more rapidly than with conventional STED/PUSL processes.


The STED approach can benefit holographic lithography systems as well. In holographic lithography, an SLM operating in a phase-only configuration is used to apply a dynamic phase pattern to a coherent light field, such as that from a laser. The phase-controlled light is then projected using an optical system, and the resulting intensity pattern is derived from the Fourier transform of the phase-patterned complex light field on the SLM. Holographic techniques are particularly suitable for reconstructing 3D information. Holography enables volume-at-once fabrication, without requiring layer-by-layer methods. However, a major remaining challenge in holographic light field patterning is attaining high pattern resolution along all directions, which is where the STED approach may be particularly beneficial. For instance, using laser sources of two different wavelengths, one SLM may be used to holographically project the primary pattern to be polymerized, while a second SLM projects the secondary depletion/inhibition pattern, ideally from an orthogonal direction. The patterns and optical geometry can be designed for significant resolution enhancement within the 3D volume.


Another iteration of the invention may include a fluidic device, whereby photoresin is actively pumped in or out. Parts may be generated in the resin within the fluidic system, while the photoresin is being actively pumped or stationary. The generated parts are subsequently removed by the fluidic system allowing rapid generation of parts using STED projection or interference lithography.


Another iteration of the invention may have a fluidic system to actively remove photoresin of one or various compositions to allow multi-material fabrication of parts.


Another iteration of the invention may have a mechanical system whereby highly viscous resins are applied. These iterations may include but aren't limited to a wiper blade type mechanism or fluidic system in order to distribute the viscous resin before patterning.


Another iteration of the invention may include infrared or thermal light sources in order to initiate polymerization and/or heat the resin. Heating the resin can help drive polymerization to completion of various resins including but not limited to epoxies and cyanate esters.


Another iteration of the invention may include one or multiple galvo mirrors for scanning of the patterned primary and secondary SLM beams over an area.


Another iteration may include a membrane at the point of polymerization creating an air/resin interface and oxygen depletion zone.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A system for forming a three dimensional (3D) part, the system comprising: a beam delivery subsystem for generating optical signals;a mask subsystem configured to receive the optical signals and to generate optical images therefrom;at least a first one of the optical images enabling activation of a polymerization species of a photo-sensitive resin in accordance with illuminated areas thereof, to thus cause polymerization of select portions of the photo-sensitive resin to help form a layer of the 3D part; andat least a second one of the optical images enabling stimulated emission depletion of subportions of the polymerization species, simultaneously, over various areas of the layer, to enhance resolution of at least one subportion of the select portions of the photo-sensitive resin.
  • 2. The system of claim 1, wherein the first one of the optical signals forms a primary two dimensional (2D) optical signal generated at least in part by using a first light source of the beam delivery subsystem.
  • 3. The system of claim 1, wherein the second one of the optical signals forms a secondary 2D optical signal generated at least in part by using a second light source of the beam delivery subsystem.
  • 4. The system of claim 1, wherein the at least first one of the optical images forms a primary 2D image, and the at least second one of the optical images forms a 2D secondary image, and where the primary and secondary 2D images are created in alternating fashion to form each layer of the 3D part.
  • 5. The system of claim 1, wherein the mask subsystem includes a controller.
  • 6. The system of claim 5, wherein the mask subsystem includes a digital mask responsive to the controller.
  • 7. The system of claim 5, wherein the mask subsystem further includes a spatial light modulator for modulating the optical signals received from the beam delivery subsystem.
  • 8. The system of claim 1, further comprising a 3D computer aided design (CAD) modeling system for supplying a 3D model of a part to the mask subsystem.
  • 9. The system of claim 1, wherein the beam delivery subsystem includes first and second independently controllable light sources.
  • 10. The system of claim 9, wherein the beam delivery subsystem includes a controller for controlling operation of the first and second light sources, and wherein the first light source is used to help generate the at least first one of the optical images, and the second light source is used to help generate the at least second one of the optical images.
  • 11. The system of claim 10, wherein the beam delivery subsystem further includes a beam splitter configured to direct optical signals from either the first or second light sources to the mask subsystem, and to allow passage therethrough of the at least first one of the optical images and the at least second one of the optical images, to the photo-sensitive resin.
  • 12. The system of claim 1, wherein the photo-sensitive resin comprises a photo-sensitive resin bath.
  • 13. The system of claim 12, further comprising an elevator for elevationally adjusting a position of a fully formed 2D layer made from cured and uncured portions of the photo-sensitive resin deeper in the photo-sensitive resin bath so that a new quantity of uncured photo-sensitive resin is present on the fully formed 2D layer, so that a subsequent fully formed 2D layer may be created.
  • 14. The system of claim 1, further comprising a projection lens for scaling the at least first one of the optical images and the at least second one of the optical images in accordance with selected dimensions for the 3D part.
  • 15. A system for forming a three dimensional (3D) part, the system comprising: a 3D model;a beam delivery subsystem for generating first and second optical signals;a mask subsystem configured to receive the first and second optical signals and the 3D model, and to generate from the 3D model and the first optical signal a primary 2D image, the primary 2D image causing activation of a polymerization species of a photo-sensitive resin in accordance with illuminated areas of the primary 2D image, to thus cause polymerization of select portions of the photo-sensitive resin to initiate formation of a first layer of the 3D part; andthe mask subsystem further configured to receive the secondary optical signal and to generate therefrom a secondary 2D image which initiates stimulated emission depletion of subportions of the polymerization species, simultaneously over at least portions of the first layer, in accordance with illuminated portions of the secondary 2D image, to enhance resolution of one or more select portions of the photo-sensitive resin.
  • 16. The system of claim 15, wherein the beam delivery subsystem includes: a controller;a digital mask responsive to the controller;a spatial light modulator responsive to the controller; andthe digital mask and the spatial light modulator cooperating to create the primary and secondary 2D images from the first and second optical signals, respectively.
  • 17. The system of claim 15, wherein the mask subsystem alternately creates the primary and secondary 2D images.
  • 18. The system of claim 15, wherein the beam delivery subsystem includes: a controller;a first light source responsive to the controller for generating the first optical signals;a second light source responsive to the controller for generating the second optical signals; anda beam splitter for assisting in directing the first and second optical signals to the mask subsystem.
  • 19. A method for forming a three dimensional (3D) part, the method comprising: using a beam delivery subsystem to generate optical signals;using a mask subsystem configured to receive the optical signals and to generate optical images therefrom;using at least a first one of the optical images to cause activation of a polymerization species of a photo-sensitive resin in accordance with illuminated areas thereof, to thus cause polymerization of select portions of the photo-sensitive resin to help form a layer of the 3D part; andusing at least a second one of the optical images to cause stimulated emission depletion of subportions of the polymerization species, simultaneously, over various areas of the layer, to enhance resolution of at least one subportion of the select portions of the photo-sensitive resin.
  • 20. The method of claim 19, further comprising alternately generating and direct the first one of the optical images and the second one of the optical images onto the photo-sensitive resin to form the 3D part in a layer-by-layer approach.
STATEMENT OF GOVERNMENT RIGHTS

The United States Government has rights in this invention pursuant to Contract No. DE-AC52-07NA27344 between the U.S. Department of Energy and Lawrence Livermore National Security, LLC, for the operation of Lawrence Livermore National Laboratory.