System and method for streaming application isolation

Information

  • Patent Grant
  • 11616821
  • Patent Number
    11,616,821
  • Date Filed
    Tuesday, September 17, 2019
    4 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
Providing streaming of one or more applications from streaming servers onto one or more clients. The computer readable medium includes computer-executable instructions for execution by a processing system. The applications are contained within one or more isolated environments, and the isolated environments are streamed from the servers onto clients. The system may include authentication of the streaming servers and authentication of clients and credentialing of the isolated environments and applications the clients are configured to run. The system may include encrypted communication between the streaming servers and the clients. The system may further include a management interface where administrators may add, remove and configure isolated environments, configure client policies and credentials, and force upgrades. The streamed isolated environments may be isolated from other applications and the host operating system on the clients and applications within the isolated environments may run without performing an application-installation on the client.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable


NOTICE OF MATERIAL SUBJECT TO COPYRIGHT PROTECTION

A portion of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The owner of the copyright rights has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office publicly available file or records, but otherwise reserves all copyright rights whatsoever. The copyright owner does not hereby waive any of its rights to have this patent document maintained in secrecy, including without limitation its rights pursuant to 37 C.F.R. § 1.14.


BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention pertains generally to enterprise computer systems, computer networks, embedded computer systems, wireless devices such as cell phones, computer systems, and more particularly to methods, systems and procedures (i.e., programming) for providing application isolation for multiple applications running on a host operating system and for streaming live applications within isolated environments from a central server into isolated environments on a client and for streaming entire isolated environments from a central server onto a client.


2. Description of Related Art

In many environments one of the most important features is to ensure that one running application doesn't affect other running applications, and that the crash of one application doesn't compromise other running applications. In many environments applications share system resources, libraries and hardware, which expose subtle interconnects between seemingly unrelated applications.


Several approaches have been developed addressing this fundamental problem. The first level of application isolation is provided by the operating system. Modern operating systems such as Linux, UNIX, Windows2000, NT, XP and Vista provide some level of application isolation through the use of processes, and the underlying hardware memory management unit. The use of processes generally ensure than one running application process cannot address memory owned by other processes. This first level of isolation does not address the use of shared resources, such as files, file systems, shared memory, and libraries, so other approaches have been developed.


The present invention is related to U.S. Pat. No. 8,539,488—entitled “SYSTEM AND METHOD FOR APPLICATION ISOLATION WITH LIVE MIGRATION”, issued on 17 Sep. 2013; U.S. Pat. No. 8,464,256—entitled “SYSTEM AND METHOD FOR HIERARCHICAL INTERCEPTION WITH ISOLATED ENVIRONMENTS”, issued 11 Jun. 2013; U.S. Pat. No. 8,341,631—entitled “SYSTEM AND METHOD FOR APPLICATION ISOLATION”, issued 25 Dec. 2012; U.S. Pat. No. 8,904,004—entitled “SYSTEM AND METHOD FOR MAINTAINING MAPPINGS BETWEEN APPLICATION RESOURCES INSIDE AND OUTSIDE ISOLATED ENVIRONMENTS”, issued 2 Dec. 2014; and U.S. Pat. No. 8,782,670—entitled “SYSTEM AND METHOD FOR APPLICATION ISOLATION WITH LIVE MIGRATION”, issued 15 Jul. 2014. Havemose discloses system and methods for creating and maintaining isolated environments wherein applications can be installed and run without interfering with any other applications on the host system. Havemose further discloses system and methods for creating isolated environments and for the use of pre-created isolated environment as “installation-free” images that can run on a client without requiring direct application installation on the client. Havemose also teaches live migration of isolated environment and the use of hierarchical interception. Havemose teaches an approach that works on commodity operating system using off-the-shelf applications. All of the patent applications were included in their entirety by reference above.


A related challenge is the deployment of applications across a large enterprise or network. By way of example, an enterprise may need to install and keep updated the word processing and spreadsheet applications on thousands of computer systems. With security and software updates being released almost daily, this is a major ongoing undertaking, and one that takes dedicated and highly trained staff. With hardware changing rapidly as well, it's not uncommon for a large enterprise to support hundreds of slightly different platforms with different underlying hardware such as video card, network card, amount of memory and peripherals. A solution would be to store all applications centrally and have the applications automatically installed, upgraded and patched when launched. While this eliminates the manual process of upgrading all applications, it does involve actual installation and upgrading which is fraught with possibilities for mistakes.


A variety of approaches has been created to address these particular challenges. Most require custom applications, custom operating systems or actual installation and updating of all of those thousands of systems.


In U.S. patent application Ser. No. 11/301,066 Smith et. al, teach “OS mini-boot for running multiple environments”. According to the disclosures each “silo” is mini-booted from the same base operating system and isolated using name spaces. This requires a customized operating system with support for mini-boot. A typical commercial environment running a commodity installation of Microsoft Windows or Linux therefore cannot utilize these teachings.


In U.S. Pat. No. 6,574,618 Eylon et al. teach “Method and System for executing networked streamed application”. The core teachings rely on a virtual file system installed on the client and mounted as a local file system combined with breaking up the application steaming into streamlets with delivery of the streamlets into the virtual file system. While this addresses one way to deliver applications, it does not address the concerns about application isolation and requires installation of a custom file system on all clients.


In U.S. Pat. No. 7,127,713 Davis et al, teach “Java application framework for use in content delivery networks (CDN)”. The core teachings describe a particular way to divide the server application into a highly distributed edge layer and a core centralized origin layer. While this addresses scalable delivery of content it does so in the context of Java and relies on the Java environment. It is not generally applicable to non-Java applications.


In U.S. Pat. No. 7,370,071 Greschler et al teach “Method for serving third party software applications from servers to client computers”. The disclosures describe a method for hosting applications on a web server and methods for downloading and upgrading the application to a client computer. The disclosures do not address application isolation and furthermore requires upgrading the client computer application installations every time there's a software update.


Therefore, in many systems, streaming of applications from a central location requires one or more of customized operating systems, custom file systems, customized applications, and proprietary streaming protocols or is limited to specific languages or run-time environments, such as Java. Furthermore, the above-cited references do not include or address application isolation. Hence, there is a need for systems and methods that combine application isolation with streaming of applications from a central server for standard applications running on commodity operating systems such as Windows and Linux.


BRIEF SUMMARY OF THE INVENTION

A method, system, apparatus and/or computer program are disclosed for streaming one or more applications from a central server onto one or more clients. The one or more applications are pre-configured inside one or more isolated environment and the isolated environments are streamed to the clients. The teachings of Havemose work on commodity operating systems, such as Windows and Linux, and work with standard “off the shelf” applications; no customizations of operating system or applications are required, and no virtual machines, virtual file system or any proprietary streaming protocols are needed. The isolated environments with said one of more applications are streamed to the clients and the clients can run said one or more applications without ever performing a local installation. In one embodiment an implementation in the Linux environment is disclosed, in another embodiment an implementation on Windows is disclosed.


Another aspect of the present invention is a caching subsystem, enabling optimized streaming of isolated environments. The caching subsystem ensures that, by way of example, after an isolated environment has been updated with a software patch, that only the necessary changes are streamed to clients using the particular isolated environment.


Yet other aspects of the present invention are a two-way authentication subsystem and encryption of communication data. The streaming server is authenticated by clients before they accepting any streaming data, and clients likewise are authenticated against pre-defined credentials before the streaming servers delivers any isolated environments or updates.


A user of the client computer can run the application without needing to install or configure the application; the user runs the application as pre-configured and provided on the streaming server. The present teachings require no special virtual file systems, proprietary streaming protocols, or any other proprietary protocols.


Another aspect of the present invention relates to a computer readable medium comprising instructions for streaming one or more applications from a central server onto one or more clients. The instructions are for streaming applications within isolated environments from a central server to one or more clients, for clients to run said one or more applications, for a two-way authentication subsystem and encryption of communication data, and the ability to run said one or more applications on clients without performing an installation of said one or more applications on said clients.


Definitions

The terms “Windows” and “Microsoft Windows” is utilized herein interchangeably to designate any and all versions of the Microsoft Windows operating systems. By example, and not limitation, this includes Windows XP, Windows Server 2003, Windows NT, Windows Vista, Windows Server 2008, Windows 7, Windows Mobile, and Windows Embedded.


The terms “Linux” and “UNIX” is utilized herein to designate any and all variants of Linux and UNIX. By example, and not limitation, this includes RedHat Linux, Suse Linux, Ubuntu Linux, HPUX (HP UNIX), and Solaris (Sun UNIX).


The term “node” and “host” are utilized herein interchangeably to designate one or more processors running a single instance of an operating system. A virtual machine, such as VMWare or XEN VM instance, is also considered a “node”. Using VM technology, it is possible to have multiple nodes on one physical server.


The terms “application” is utilized to designate a grouping of one or more processes, where each process can consist of one or more threads. Operating systems generally launch an application by creating the application's initial process and letting that initial process run/execute. In the following teachings we often identify the application at launch time with that initial process.


The term “application group” is utilized to designate a grouping of one or more applications.


In the following we use commonly known terms including but not limited to “client”, “server”, “API”, “java”, “process”, “process ID (PID)”, “thread”, “thread ID (TID)”, “thread local storage (MS)”, “instruction pointer”, “stack”, “kernel”, “kernel module”, “loadable kernel module”, “heap”, “stack”, “files”, “disk”, “CPU”, “CPU registers”, “storage”, “memory”, “memory segments”, “address space”, “semaphore”, “loader”, “system loader”, “system path”, “sockets”, “TCP/IP”, “http”, “ftp”, “Inter-process communication (IPC), “Asynchronous Procedure Calls (APC)” and “signal”. These terms are well known in the art and thus will not be described in detail herein.


In the following we use commonly known terms from computer security and encryption including, but not limited to “certificate”, “certificate authority”, “Secure Socket Layer”, “SSL”, MD-5″, “MD-6”, “Message Digest”, “SHA”, “Secure Hash Algorithm”, “NSA”, “NIST”, “private key”, “public key”, “key pair”, and “hash collision”. These terms are well known in the art and thus will not be described in detailed herein.


The term “transport” is utilized to designate the connection, mechanism and/or protocols used for communicating across the distributed application. Examples of transport include TCP/IP, Message Passing Interface (MPI), Myrinet, Fibre Channel, ATM, shared memory, DMA, RDMA, system buses, and custom backplanes. In the following, the term “transport driver” is utilized to designate the implementation of the transport. By way of example, the transport driver for TCP/IP would be the local TCP/IP stack running on the host.


The term “interception” is used to designate the mechanism by which an application re-directs a system call or library call to a new implementation. On Linux and other UNIX variants interception is generally achieved by a combination of LD_PRELOAD, wrapper functions, identically named functions resolved earlier in the load process, and changes to the kernel sys_call_table. On Windows, interception can be achieved by modifying a process' Import Address Table and creating Trampoline functions, as documented by “Detours: Binary Interception of Win32 Functions” by Galen Hunt and Doug Brubacher, Microsoft Research July 1999”. Throughout the rest of this document we use the term interception to designate the functionality across all operating systems.


The term “file context” or “context” is used in relation with file operations to designate all relevant file information. By way of example, and not limitation, this includes file name, directory, read/write/append/execute attributes, buffers and other relevant data as required by the operating system.


The term “transparent” is used herein to designate that no modification to the application is required. In other words, the present invention works directly on the application binary without needing any application customization, source code modifications, recompilation, re-linking, special installation, custom agents, or other extensions.


The terms “private and isolated environment” and “isolated environment IE)” are used herein interchangeably to designate the private area set aside for application isolation, as described in Havemose. The abbreviation IE is used to designate an isolated environment on the diagrams and throughout the text.


The Term “Isolated Environment Infrastructure (IEI)” is used herein to designate the entire isolated environment infrastructure as disclosed in Havemose. It's comprised of shared libraries, a series of interceptors and other configuration information is described in the cited reference. Details of IEI will not be further described herein.


Further aspects of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:



FIG. 1 is a block diagram of the core system architecture showing three clients and the IE Streaming Server.



FIG. 2 is a block diagram illustrating the Isolated Environment Streaming Server.



FIG. 3 is a block diagram illustrating Client Systems.



FIG. 4 is a block diagram illustrating establishing a secure and credentialed connection between a client and the IESS.



FIG. 5 is a block diagram illustrating establishing client credentials.



FIG. 6 is a block diagram illustrating creating the list of credentialed IEs for a client.



FIG. 7. is a block diagram illustrating the client policy manager.



FIG. 8. is a block diagram illustrating client synchronization against the IESS.



FIG. 9 is a block diagram illustrating client operation in off-line and on-line modes.



FIG. 10 is a block diagram illustrating administration.



FIG. 11 is a block diagram illustrating various deployment scenarios.





DETAILED DESCRIPTION OF THE INVENTION

Referring more specifically to the drawings, for illustrative purposes the present invention will be disclosed in relation to FIG. 1 through FIG. 11. It will be appreciated that the system and apparatus of the invention may vary as to configuration and as to details of the constituent components, and that the method may vary as to the specific steps and sequence, without departing from the basic concepts as disclosed herein.


0. Introduction

The context in which this invention is disclosed is one or more applications installed inside isolated environments and hosted on an “Isolated Environment Streaming Server (IESS)” with the isolated environments being streamed to one or more clients. The Havemose reference cited above, included in its entirety by reference, teaches the creation and maintenance of the isolated environments. Without affecting the general case of multiple applications, the following scenarios often depict and describe one or two applications as applicable. Multiple applications are handled in a similar manner. Similarly the following scenarios often depict one or two clients; multiple clients are handled in a similar manner. Similarly, the following scenarios often depict one isolated environment per client; multiple isolated environments are handled in a similar manner. Similarly, the following scenarios often depict one IESS; multiple IESSes are handled in a similar manner.


1. Overview


FIG. 1 illustrates by way of example embodiment 1 the overall structure of the present invention. The following brief overview illustrates the high-level relationship between the various components; further details on the inner workings and interdependencies are provided in the following sections. FIG. 1. Illustrates by way of example embodiment three client systems 10, 20, 30 and the Isolated Environment Streaming Server (IESS) 40. The client systems contain isolated environments (IE) and the “Client Credentials (CC)” governing the IESS access privileges for the particular client on the IESS. Also present on each client is the core Isolated Environment Infrastructure (IEI) and operating system and libraries. Specifically, Client-110 contains isolated environment IE-112 with update-cache 13 and client credentials (CC) 18, Isolated Environment Infrastructure (IEI) 14 and operating system and libraries 16. Client-220 contains IE-222 with update-cache 23 and CC 28, IEI 24 and operating system and libraries 26, while Client-330 contains IE-332 with update-cache 33 and CC 38, IEI 34 and operating system and libraries 36.


Each client connects to the IESS 40 via the Client Policy Manager (CPM) 42. The CPM validates the credentials and maintains an Account for each credentialed client. Associated with each Client Account is an update-cache used to optimize access to isolated environments enabled for the particular client. Each client has one update-cache per credentialed IE. If a client account has access to two IEs, there are thus two update-caches for that particular client.



FIG. 1 illustrates by way of example the Client Policy Manager (CPM) 42 with three client accounts: Account Client-144 with associated update-caches 46, Account Client-248 with associated update-cache 50, and Account Client-352 with associated update-cache 54. By way of example, Client 1 is credentialed to use isolated environment IE-156 and IE-258 and therefore has two update-caches 46, while Client 2 is credentialed to use isolated environment 2 IE-258, and Client 3 is credentialed to use isolated environment ‘n’ 62.


It is readily apparent to someone skilled in the art that the architecture extends to any number of clients, any number of isolated environments on any one client, and to any number of pre-configured isolated environments on the IESS.


2. IE Streaming Server (IESS)


FIG. 2 illustrate by way of example embodiment 80, the key functional elements of the Isolated Environment Streaming Server IESS 82. The following brief overview only illustrate the key components, further details are given below. Loaded in memory 84 are the Client Policy Manager (CPM) 86 and the accounts and update-caches for active clients 90. The isolated environments 92 available for streaming to client are loaded from either local disk 100 or networked storage 102, and delivered to clients over the network 104 as determined by the update-caches 90


System resources, such as CPUs 98, I/O devices 96, Network interfaces 94 and storage 100, 102 are accessed using the operating system 88. Devices accessing remote resources use some form of transport network 104. By way of example, system networking 104 may use TCP/IP over Ethernet transport, Storage 100, 102 may use Fibre Channel or Ethernet transport, and I/O may use USB.


3. Client Architecture


FIG. 3 illustrate by way of example embodiment 120, the key functional elements of a client system 122 within the context of the present invention. The following brief overview only illustrates the key components; further details are given below. Loaded in memory 124 are the applications within the isolated environments, IE-A 130 with update-cache 131, IE-B 132 with update-cache 133, and the Client Credentials 134. The core Isolated Environment Infrastructure (IEI) as defined above and in Havemose, is also loaded in memory.


System resources, such as CPUs 142, I/O devices 140, Network interfaces 138 and storage 136 are accessed using the operating system 128. Devices accessing remote resources use some form of transport network 144. By way of example, system networking 144 may use TCP/IP over Ethernet transport, Storage 136 may use Fibre Channel or Ethernet transport, and I/O 140 may use USB.


4. IE Stream Server Credentials and Secure Communication

To ensure secure and private communication the IESS most be properly credentialed. By way of example, if personnel in HR want to interact with the payroll system on the IESS and upload payroll information, the client system used by the HR employee validates the credentials of the IESS before uploading sensitive payroll information. If the IESS credential validation fails, the client system disconnects and stops interacting with the IESS.


A related issue is security; ensuring that no malware of spyware gets downloaded into the clients isolated environments. By requiring a credentialed IESS, there a no risks of connecting to a malware site by mistake as such connections would be refused by the isolated environment infrastructure without establishing any connection beyond the initial attempt to validate credentials.


Full IESS credentials are provided by a standard SSL certificate issued by either a certificate authority or generated in-house. If the IESS is accessed over the internet, a preferred implementation uses a certificate issued by a Certificate Authority. If the IESS only is accessed via a private LAN, WAN or VPN, an in-house generated certificate would suffice, but a certificates issued by a Certificate Authority equally works.


The present invention establishes the initial secure communication using Secure Sockets Layer (SSL), a standardized technology widely available in modern operating systems such as Windows and Linux. Open source implementations of SSL include OpenSSL (www.openssl.org).



FIG. 4 illustrates by way of example embodiment 160 the initial steps needed to set up secure communication between a client and an IESS.


First a certificate for the IESS is generated. Generation of the IESS certificate only is needed when creating a new certificate, or when a certificate has expired. Generally, a certificate is valid for one or more years if generated by a certificate authority. First a private and public key pair is generated 164. This is accomplished using commonly available tools, such as ‘makekey’ provided by OpenSSL. In a preferred implementation, the certificate request is prepared (‘certreq’ in OpenSSL) with the public key and transmitted to the Certificate Authority 162 together with information confirming the senders identity. The Certificate Authority generates a certificate 168 and delivers it back to the originator 166 and the certificate is installed on the IESS. In an alternate implementation, the certificate is self-generated using one of the available tools, such as ‘testreq’ from OpenSSL. The certificate 168 is used to establish the credentials of the IESS by clients.



FIG. 4 further illustrates by way of example embodiment the establishment of secure and encrypted communication between a client 170 and the IESS.


The client initiates communication 174 with the IESS using SSL. In response to the initial contact, the IESS 172 accepts the request for the certificate 176 and delivers the certificate to the client. The client validates the certificate 180. Validation can take one of two forms: in a preferred implementation the certificate is compared against a local copy provided by the administrator as part of present invention, in an alternate implementation the certificate is validated against known and pre-approved certificate authorities. Modern operating systems, such as Linux and Windows, provide a mechanism to store pre-approved certificates. If the validation fails 182 the client disconnects 184 as the IESS is rogue, mis-configured, or has an invalid certificate. If the certificate validates 183, the client proceeds 186 and using SSL establishes secure and encrypted communication 188 with the IESS.


The client is now ready to have its client credentials validated 190 by the Client Policy Manager (CPM) within the IESS.


5. Validating Client Credentials with the Client Policy Manager

With possibly multiple isolated environments hosted on an IESS, proper authentication of clients is important. By way of example, if a particular isolated environment contains a payroll software application, only clients with the proper credentials (generally personnel in human resources) should have access to the payroll application. The Client Policy Manager (CPM) running on the IESS governs which clients have access to which isolated environment. The specific client privileges are set by the system administrator and are implemented by the CPM.


The connection between client and IESS, as describe above, is established using SSL, and is therefore secure and encrypted. The client only needs the client account as its credentials. All IEs available to a particular client are managed by the CPM and the key-pair needed for encryption is managed by SSL.


When a client wishes to use a particular application within an isolated environment; the client makes a request to the Client Policy Manager (CPM) for access to the requested IE. The CPM validates the client credentials at two levels: first the client is validated as having access to the IESS services, followed by validation of the client's credentials for the requested IE.



FIG. 5 illustrates by way of example embodiment 200 a client 202 making a request to run a particular IE. The CPM first validates 204 that the user has access to the IESS, by consulting its built-in database of approved clients 206. The result of the client validation by CPM is returned 207 to the client. If the client has invalid credentials 208, the session is terminated 224 and no further action is taken. If the client has valid credentials 210, the credentials to access the particular IE are validated 212. If the client is not credentialed to access the IE any future access attempts to the IE are eliminated 214. If the IE is installed on the client system, it is removed 218 and the session is terminated 224. If the IE is not installed on the client, the session terminates as there is no data or IE to remove. The IE is removed for reasons of security and access control: if a credentialed user has the rights to use a particular IE revoked, the possibility to run the IE must be removed. In continuation of the example, if the employee in the payroll department transfers to benefits, the employee is still credentialed, but should no longer have access to the payroll application.


If the client is credentialed to run the particular IE 216, the IE needs to be either installed or potentially updated. If the IE is not installed on the client 220, it is copied to the client environment, and the IESS update-caches are updated to reflect the current state of the client copy. If the IE already is installed on the client 222, the update-caches on IESS are queried and updates propagated as necessary. The caching and installation are described in more detail below.


When a client starts the present invention he is presented with a list of available IEs based on his credentials. FIG. 6 illustrates by way of example embodiment 240, a client obtaining the list of credentialed applications and launching a chosen application. First the client is credentialed 242 as described above. The client requests a list of credentialed IEs 244 and the CPM 246 responds with a list of IEs available and credentialed for the particular client. The list is presented to the client 250. In a preferred embodiment the client is presented with a graphical user interface 252 allowing the client to choose from a list of credentialed applications 254 and starting the application directly by clicking either on the application name 254 or OK 260. The launch can be cancelled by selecting “Cancel” 258. The client can also force a refresh 256 of available IEs, thereby updating the IE list 254. In a preferred embodiment the most recently chosen application is automatically highlighted. By way of example, FIG. 6 illustrates the scenario 254 with two credentialed applications (“Payroll” and “Benefits”) and one application no longer credentialed (“Investor Relations”). By selecting “Off-line” 257 the user indicates no synchronization against the IESS and that the local already-installed IE should be run.


6. Client Policy Manager Architecture

The Client Policy Manager (CPM) within the IESS is the main contact point between clients and the IESS. The functionality of the CPM fall in several broad categories: 1) delivery of certificates to clients and establishment of SSL, 2) general client account access, 3) administration, and 4) management and implementation of the caching subsystem. FIG. 7 illustrates by way of example embodiment 240, the architectural blocks of the CPM 242.


6.1 Certificates and SSL:


As disclosed previously, the IESS is credentialed by clients using a SSL certificate. The certificate serves dual roles, as a mechanism for the clients to validate the identity of the IESS and by providing keys for secure encrypted communication over SSL. Referring to FIG. 7 for illustrative purposes, the IESS certificate interface 244 is responsible for responding to certificate requests and to deliver them. The SSL interface 246 is responsible for the IESS end of SSL. In modern operating systems SSL is in general pre-defined to use certain ports such as 443 and 442 for SSL certificates and https respectively. In a preferred implementation, the present invention uses different ports that the default ports to avoid conflicts with web browsing and to minimize attacks. In an alternate implementation, the standard ports are used.


6.2 General Account Access:


As previously disclosed, the CPM 242 provides a number of client services. Referring to FIG. 7 for illustrative purposes: The validation of clients 250 as disclosed in section 5, the enumeration of available IEs given the clients credentials 252 (section 5), and the general client account and credentials subsystem 254 containing an account database 255 with account info for each valid client account


Associated with each client account 256 is a record in the account database 257 containing specific information about the account, and subsystems 258 for cache management 260 and billing/logging 262. Each client account record 257 in the database 255 contains at least the following fields:

    • Client login
    • Account Holder Name
    • Status of account
    • List of credentialed IEs


The “client login” is the “user-id” used to validate the client account, while the “account holder name”, is the actual name of the person to which the account is assigned. The “status of account” indicates if the account is valid and credentialed. Finally, the database maintains a list of isolated environments to which the user is credentialed. This list is presented to the user when requesting Client IE enumeration 252 as disclosed in section 5.


Associated with the client account are also the caching subsystem 260 and the billing and logging subsystem 262.


6.3 Update-Cache subsystem for Isolated Environments.


When a client requests access to a credentialed isolated environment, the IE is streamed in its entirety if not already present on the client system, or the client IE is selectively updated with changes as appropriate. In the following, the details on these steps are disclosed.


By way of example, a typical Microsoft Office 2003 installation consists of approximately 1800 files with a combined size of about 315 MB. Some of the largest files are Word at 12 MB, Excel at 10 MB and PowerPoint at 6 MB. On a typical 1 Gbit/sec corporate network a typical good transmission rate is about 100 MB/sec, but can be significantly less. A typical ADSL connection runs at 1.5 Mbit/sec or 150 kB/sec and can be less.


The one-time installation of the entire environment with Office 2003 therefore typically takes about 3.1 sec or longer over corporate network. Over ADSL the Office IE takes 35 min or longer. While the 3.5 seconds on the office network is acceptable, the 35 minutes for ADSL access is not practical. The present invention includes an update-caching subsystem ensuring that only changed files are streamed to the client, and furthermore, that the streaming is compressed when appropriate.



FIG. 7 illustrates by way of example embodiment the update-cache management and its relation to the isolated environments. For each client account 256 in the client database 255, the present invention manages 260 the IE update-caches. Each IE credentialed for a particular user, has an update-cache associated with it for that user. Referring to FIG. 7, for client ‘m’ IE-1266 is streamed subject to its update-cache 264, while IE-2270 is streamed subject to its update-cache 268. If a particular IE is used by multiple clients, each client account 256 maintains its own update-cache for the particular IE.


To reduce the need to stream files already present on the client computer an update-cache is employed for each IE. The update-cache contains pre-computed information assisting in quickly indentifying which files have changed since last time the IE was accessed; thereby reducing unnecessary streaming of IE files.


The update-cache for a particular IE is comprised of a list of records, called “CacheLine”, where each record corresponds to one file within the isolated environment. The data structure for “CacheLine” in pseudo code:


Class CacheLine {

    • String m_FileName;
    • String m_Directory;
    • Time m_LastChangeTime;
    • long m_FileSize;
    • int[MD_SIZE] m_MessageDigest;
    • boolean m_CompressionOn;
    • int m_MessageDigestAlgorithm;
    • int m_CompressionAlgorithm;


};


The field “m_FileName” is the name of the file, and m_Directory the directory location of the file. The combination of “m_FileName” and “m_Directory” uniquely identifies the file. The field “m_LastChangeTime” is the time at which the particular file was most recently changed, updated or created, and “m_FileSize” is the size of the file.


To make the update-cache efficient, the present invention pre-computes a “m_MessageDigest” representing the file. The message digest is a 128 bit or longer integer calculated in a manner to ensure that two different files have different message digests. Message Digests are well known within the art. Commonly deployed digests are MD5 (“Message-Digest algorithm 5” of size 128 bit), MD6 (Message-Digest algorithm 6 with sizes up to 512 bits), and SHA-n (Secure Hash Algorithm ‘n’ with sizes up to 1024 bits). The message digest is used as part of the validation to see if a particular file should be streamed to the client. A practical issue is hash collision, where two different files produce the same hash value. SHA-2 has no known hash collisions and is the default in a preferred embodiment. To further reduce the risk of a hash-collision possibly affecting the update-caches, the size of the file (m_FileSize) and the time stamp of the most recent file change (m_LastChangeTime) are also used in the comparing against the update-cache.


All supported Message Digests Algorithms are predefined as integers and the one used encoded in the field ‘m_MessageDigestAlgorithm”.


Another field “m_CompressionOn” determines if compression is used for the particular file corresponding to the CacheLine. Depending on file size, network bandwidth and available CPU cycles, files may selectively be compressed prior to being streamed to the client. All supported compression algorithms are pre-defined as integers and the one used encoded in the field “m_CompressionAlgorithm”. Compression algorithms are provided as part of modern operating systems such as Windows and Linux. In a preferred embodiment, the operating systems default compression algorithm is used. In an alternate embodiment a customized compression algorithm is used. A wide selection of open source and commercial no-loss compression algorithms exists, including but not limited to LZ, LZR, LZX, PKZIP, GZIP and ZIP. In a preferred embodiment, files are automatically compressed if the network operates at less than 1.5 mbit/sec and the file size is greater than 1 MB. In an alternate embodiment every file is compressed. In another alternate embodiment no files are compressed.


Creating and Updating the Update-Cache:


The Havemose reference cited above and included in its entirety, teach creation and updating of isolated environments. The IE's associated update-cache is generated after install/update as follows (in pseudo code)


For Each File in the Isolated Environment




















{





 Identify CacheLine corresponding to file





or create a new CacheLine





 Update CacheLine with





 {





  - FileName, m_Directory,





   m_LastChangeTime, m_FileSize





  - Compute message digest:





   set m_MessageDigest





   set m_MessageDigestAlgorithm





  - Compute if the file should be compressed:





   set m_CompressionOn





    set m_CompressionAlgorithm





 }





 Remove any CacheLine entries no longer used





}










When creating a new Isolated Environment and installing applications within the IE, all CacheLines in the update-cache are new. The above listed set of instructions thus creates the update-cache with all new elements.


By way of example, after applying a software patch, the update-cache needs to be updated. A software patch generally modifies, adds and removes files, and the update-cache is updated to reflect the changes. Referring to the pseudo code above: CacheLines corresponding to new files are added, CacheLines corresponding to modified files are re-computed and updated, and CacheLines corresponding to now-deleted files are removed. Files unaffected by the software patch are left unchanged in the update-cache. Similarly the update-caches are updated after a patch to the operating system.


Client Synchronization with the Update-Cache.—Optimized Streaming


Optimized streaming, where the fewest possible files are streamed from the IESS to a client requesting the use or update of a particular isolated environment, is achieved by using of the update-caches on both the client and the IESS



FIG. 8 illustrates by way of example embodiment 280 the optimized streaming process. A client 282 with one IE 284 and its associated update cache 286 (named u-cache on the diagram) is connecting to the IESS with a CPM 288. The client account 290 within the account database contains, as previously disclosed, the account record 290 and the cache management 294 for the update-cache 296 associated with the client account 290 and the particular IE 298


To determine which files within the IE 298 on the IESS have been modified since the client last connected, the Cache Mgr 294 compares the client's u-cache 286 with the corresponding update-cache 296 on the IESS. The entire process is as follows:


Initially, the client and the IE are credentialed against the CPM as previously disclosed 300. The client 302 requests an update of the IE and transmits the client's u-cache to the CPMs cache mgr 304. The CacheMgr's traverses the update-cache one CacheLine at a time 306 and comparing against the u-cache received from the client 302. First test 308 is to see if the current CacheLine is present in the client's u-cache. If the CacheLine is not in the u-cache, it signifies a new file in the IE, and the file corresponding to the CacheLine is prepared to be transmitted to the client 312. If the CacheLine exists in the u-cache, a second test is performed. The second test 310 is to see if the CacheLine entry has been updated when compared to the corresponding u-cache CacheLine. If the IESS CacheLine indicates a change has been made, the file corresponding to the CacheLine is prepared to be transmitted 312 to the client. If the CacheLines are identical in the update cache and u-cache, no further steps on this CacheLine are necessary.


The second test 310 to see if two CacheLine Entries are identical is performed as follows: The client u-cache and the update-cache CacheLines are considered identical if all of the following are identical: m_FileName, m_Directory, m_LastChangeTime, m_FileSize, and m_MessageDigest. If one or more of said fields are different, the entry is deemed not too match.


The final step after identifying a file for transmittal to the client 312 is to test if the file should be compressed 314 per the field in the CacheLine. If the file is to be compressed 316, it's compressed 316 and transmitted 318. If compression is not activated, the file is transmitted 318.


Upon completing the comparison of the client's u-cache with the update-cache 304, the update-cache is sent to the client 320


On the client, all new files are received 322 and copied into the environment 324. Finally, the u-cache is replaced with the update-cache corresponding to the just-completed update 326. The final step is to synchronize the client's new u-cache against the client's IE and remove files no longer included in the u-cache 326. If the client immediately reconnected 300,302 the update process 304 would detect no new files and the update process would be instantaneous.


In continuation of the example above, a typical Microsoft Office security patch modifies few of the 1800 files in full installation of Office. By way of example, if 50 files are modified only those 50 files need to be streamed to the client, corresponding to less than 3% of the total installation. This reduces the ADLS update from 35 minutes to 1 minute, which is a practical delay to install a patch over a slower network.


7. Online and Off-Line Client Operation

The present invention supports two modes of operation: an “off-line” mode of operation where the client runs an already-installed isolated environment without connecting to the IESS, and an “on-line” mode where the client is fully validated and updates automatically are streamed.


By way of example, a user connects with the present invention while at the office, retrieves and updates all credentialed IEs and works with the applications within the IE as if they were locally installed. Later the user is travelling and loads the present invention again. This time the user selects the “off line” mode of operation. In stead of getting credentialed by the IESS, the user simply runs the applications within the already installed IEs. No updates are forced and no changes are streamed. The “off-line” mode allows the user to work without needing network access.



FIG. 6 illustrates by way of example embodiment the user-settings for off-line and on-line operation. If the user checks the “off-line” checkbox 257, the system defaults to off-line mode, while de-selecting the “off-line” checkbox leaves the present invention in on-line mode. Using the underlying operating system, it is easy to detect if there is a network connection available. By way of example this can be achieved by attempting to open an http: connection to a well known web site such as www.yahoo.com or www.whitehouse.gov and process any error messages. If no network connection is found, the IEI is set to “off-line” and the “off-line” checkbox is automatically set. Furthermore, if a network connection is found, but the IESS is unreachable, the off-line mode and the “off-line” checkbox are likewise automatically set.



FIG. 9 illustrates by way of example embodiment 340 the launch procedures for both off-line and on-line modes. The user starts the isolated environment 342 on the client computer. The IEI auto-detects network availability 344 followed by testing the outcome of the auto-detection 346. If no network is available, the IEI enters off-line mode 348 and presents the user with already credentialed IEs available to run 350. The user chooses an IE 351 (also FIG. 6252) and runs the chosen IE. When finished, the IE terminates 352.


If the network is available on-line mode is enabled 354 and the user can choose to operate in on-line or off-line mode 356. If the user chooses off-line, the user is presented with the list of already credentialed IEs 350 available to run 351. The user chooses an IE 351 and the IE is run. If the user chooses to proceed in on-line mode, the steps outlined in section 5 and FIG. 5 are followed 358, 360. Upon finishing, the IEI exits the IE 352


8. Administration

The present invention provides administration for both clients and the IESS. Administration on the client is a matter of installing the IEI and the user account name; all other administrative options are contained and controlled on the IESS.



FIG. 10 illustrates by way of example embodiment 380 a flow chart of the various administrative options. Administration 382 falls in two broad categories: administration of settings related to a particular user and administrative settings related to all isolated environments. First step is to choose 384 between administration of client settings and the general IESS settings. For client administration 386. If the IEI is not installed on the client device 388, it is installed and the user account info is provided 390. If the client IEI is installed, any updates to the IEI infrastructure is performed 392. This is followed for both cases by general client account administration 394. All information provided in this step is stored in the record for the particular account. For a particular client the administrative options include but are not limited to:

    • 1. add a new client
    • 2. remove an existing client
    • 2. add credentialed IEs for use by the client
    • 3. remove credentialed IEs for use by the client
    • 4. force a rebuild of update-cache for one or more of the clients IEs
    • 5. set client login and account holder name
    • 6. set status of account (active, not active)


The account information govern the client credentialing processed disclosed above


For general IESS administration 396 the administrative options 398 include but are not limited to:

    • 1. creation and installation of an isolated environment
    • 2. removal of an isolated environment
    • 3. updated/patch software within an isolated environment
    • 4. rebuild one or more of the update-caches
    • 5. set the default compression algorithm
    • 6. set the default message digest algorithm


In a preferred embodiment the administration is performed using a graphical user interface. In an alternate embodiment, as software application programming interface (API) is used.


9. Deployment Scenarios


FIG. 11 illustrates by way of example embodiment 400 a variety of ways the invention can be configured to operate. In one embodiment, the invention is configured with the IESS on a central server 402. Two application servers 404, 406 stream their application from the IESS 402 over the LAN 408. In another embodiment the invention is configured to run on a PC 412 over the LAN 408 streaming IEs from the IESS 402. In a third embodiment, the invention is configured to run on a PC 414 connected via the internet 416 streaming IEs from IESS 402. In a fourth embodiment the invention is configured to stream applications from the IESS 402 onto a cell phone 410 over wireless 418 internet 416. In a firth embodiment a PC 412 on the LAN is running an enterprise application on an application server 404, which is providing the application in an isolated environment streamed from the IESS 402. The invention runs on one or more of the devices, can be distributed across two or more of these elements, and allows for running the invention on any number of the devices (402,404,406,410,412,414) at the same time and without interfering with each other.


The just illustrated example embodiments should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the exemplary embodiments of this invention


10. Conclusion

In the embodiments described herein, an example programming environment was disclosed for which an embodiment of programming according to the invention was taught. It should be appreciated that the present invention can be implemented by one of ordinary skill in the art using different program organizations and structures, different data structures, and of course any desired naming conventions without departing from the teachings herein. In addition, the invention can be ported, or otherwise configured for, use across a wide-range of operating system environments.


Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the exemplary embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”

Claims
  • 1. A system, comprising: a host server comprising one or more memory and storage locations configured to store one or more server isolated environments and one or more host server update-caches, wherein the one or more server isolated environments each comprise at least one or more applications and files for the at least one or more applications;one or more clients, each comprising: one or more memory and storage locations configured to store one or more client isolated environments,a client update-cache for each of the one or more client isolated environments, wherein the one or more client isolated environments comprise at least one or more applications and files for the one or more applications, andwherein each of the one or more host server update-caches are configured to: compare a corresponding one or more host server update-cache to a client update-cache, of the one or more client update caches, to identify a file in a client isolated environment that has changed since last being streamed to a client of the one or more clients.
  • 2. The system according to claim 1, wherein a client policy manager stores client account records comprising one or more of: a client login, an account holder name, a status of account, and a list of credentialed isolated environments.
  • 3. The system according to claim 1, wherein the one or more clients are authenticated against a client policy manager and access to applications and isolated environments are granted based on the client-authentication, wherein authentication of the client credentials is performed by using at least one of a certificate, a user-id, and a client policy manager.
  • 4. The system according to claim 1, wherein the host server is authenticated using a certificate and the one or more clients validate the host certificate before accepting streaming applications from the host server, wherein secure socket layer (SSL) encrypted communication is established using the certificate between the one or more clients and the isolated environment of the host server.
  • 5. The system according to claim 1, wherein the client credentials for the one or more clients are validated for access to the isolated environments.
  • 6. The system according to claim 5, wherein non-credentialed isolated environments are removed from the one or more clients.
  • 7. The system according to claim 5, wherein a credentialed isolated environment is updated if the credentialed isolated environment is already installed on the one or more clients.
  • 8. The system according to claim 5, wherein a credentialed isolated environment is installed on the one or more clients if the credentialed isolated environment is not already installed.
  • 9. The system according to claim 1, further comprising: a graphical user interface configured to provide the one or more clients with an option to select which isolated environment to access.
  • 10. The system according to claim 9, wherein a most recently run isolated environment is automatically selected for access.
  • 11. The system according to claim 1, wherein the one or more clients access at least one client isolated environment without validating credentials against the isolated environment of the host server.
  • 12. The system according to claim 1, wherein the one or more clients are validated against the isolated environment of the host server prior to accessing any isolated environments.
  • 13. The system according to claim 12, wherein the one or more clients access already installed isolated environments without accepting updates from the isolated environment of the host server.
  • 14. The system according to claim 1, wherein a client policy manager contains a record with credentialed isolated environments, account information, and a cache sub-system for each of the one or more clients.
  • 15. The system according to claim 1 further comprising: a management interface wherein an administrator configures client configuration settings and isolated environment host server configuration settings.
  • 16. The system according to claim 15, wherein at least one or more applications are streamed to the one or more clients and the one or more clients can access the one or more applications without performing a local installation.
  • 17. The system according to claim 15, wherein the client configuration settings comprise one or more of: adding and removing credentialed isolated environments, adding and removing clients, forcing a rebuild of client update-caches, setting user-names, and setting account status.
  • 18. The system according to claim 15, wherein the isolated environment host server configuration settings comprise one or more of: installing and removing isolated environments, updating isolated environments, rebuilding one or more update caches, setting a compression algorithm, and setting a message digest algorithm.
  • 19. The system according to claim 15, wherein the management interface is provided using a graphical user interface.
  • 20. The system according to claim 15, wherein the management interface is provided using an application programming interface (API).
US Referenced Citations (205)
Number Name Date Kind
5047928 Wiedemer Sep 1991 A
5155680 Wiedemer Oct 1992 A
5325290 Cauffman et al. Jun 1994 A
5386369 Christiano Jan 1995 A
5553239 Heath et al. Sep 1996 A
5708709 Rose Jan 1998 A
5951650 Bell et al. Sep 1999 A
5996016 Thalheimer et al. Nov 1999 A
6026499 Shirakihara et al. Feb 2000 A
6085086 Porta et al. Jul 2000 A
6144999 Khalidi et al. Nov 2000 A
6189111 Alexander et al. Feb 2001 B1
6269442 Oberhauser et al. Jul 2001 B1
6314567 Oberhauser et al. Nov 2001 B1
6321275 McQuistan et al. Nov 2001 B1
6496847 Bugnion et al. Dec 2002 B1
6560626 Hogle et al. May 2003 B1
6574618 Eylon Jun 2003 B2
6601081 Provino et al. Jul 2003 B1
6615217 Rosensteel, Jr. et al. Sep 2003 B2
6718538 Mathiske Apr 2004 B1
6766314 Bumnett Jul 2004 B2
6766471 Meth Jul 2004 B2
6795966 Lim et al. Sep 2004 B1
6918113 Patel et al. Jul 2005 B2
6944785 Gadir et al. Sep 2005 B2
6954784 Aiken et al. Oct 2005 B2
6964034 Snow Nov 2005 B1
7028305 Schaefer Apr 2006 B2
7043524 Shah et al. May 2006 B2
7058696 Phillips et al. Jun 2006 B1
7076555 Orman et al. Jul 2006 B1
7082551 Lawrance et al. Jul 2006 B2
7089294 Baskey et al. Aug 2006 B1
7093086 Rietschote Aug 2006 B1
7152119 Na et al. Dec 2006 B2
7197700 Honda et al. Mar 2007 B2
7207039 Komarla et al. Apr 2007 B2
7213246 Rietschote et al. May 2007 B1
7257811 Hunt et al. Aug 2007 B2
7269645 Goh et al. Sep 2007 B2
7293200 Neary et al. Nov 2007 B2
7363365 Ocko et al. Apr 2008 B2
7386855 Song et al. Jun 2008 B2
7467370 Proudler et al. Dec 2008 B2
7506194 Appanna et al. Mar 2009 B2
7509406 Abdo et al. Mar 2009 B2
7512815 Munetoh Mar 2009 B1
7523344 Qiao et al. Apr 2009 B2
7526452 Agarwal et al. Apr 2009 B2
7543182 Branda et al. Jun 2009 B2
7549042 Glaum et al. Jun 2009 B2
7552239 Jean et al. Jun 2009 B2
7562220 Frank et al. Jul 2009 B2
7613921 Scaralata Nov 2009 B2
7627902 Rive et al. Dec 2009 B1
7664711 Agarwal et al. Feb 2010 B2
7672882 Agarwal et al. Mar 2010 B2
7673308 McMillan et al. Mar 2010 B2
7680758 Laborczfalvi et al. Mar 2010 B2
7681075 Havemose et al. Mar 2010 B2
7693835 Ohta et al. Apr 2010 B2
7694123 Prasse et al. Apr 2010 B2
7711847 Dhupelia et al. May 2010 B2
7716240 Lim May 2010 B2
7751311 Ramaiah et al. Jul 2010 B2
7761573 Fravostino et al. Jul 2010 B2
7770169 Fresko et al. Aug 2010 B2
7774636 Rao et al. Aug 2010 B2
7801135 Appanna et al. Sep 2010 B2
7877781 Lim Jan 2011 B2
7945688 Lango et al. May 2011 B1
8019860 Ivanov et al. Sep 2011 B2
8024815 Lorch et al. Sep 2011 B2
8095662 Lappas et al. Jan 2012 B1
8104085 Fresko Jan 2012 B2
8108429 Sim-Tang et al. Jan 2012 B2
8108722 Havemose et al. Jan 2012 B1
8122280 Ngan et al. Feb 2012 B2
8171483 Nord et al. May 2012 B2
8176364 Havemose May 2012 B1
8191001 Wie et al. May 2012 B2
8195722 Havemose et al. Jun 2012 B1
8281317 Backensto et al. Oct 2012 B1
8307177 Prahlad et al. Nov 2012 B2
8831995 Holler Sep 2014 B2
10212147 Buendgen Feb 2019 B2
20020056004 Smith et al. May 2002 A1
20020065945 Calder et al. May 2002 A1
20020087883 Wohlgemuth Jul 2002 A1
20020091763 Shah Jul 2002 A1
20020109718 Mansour et al. Aug 2002 A1
20020111995 Mansour et al. Aug 2002 A1
20020129096 Mansour et al. Sep 2002 A1
20020152382 Xiao Oct 2002 A1
20020157089 Patel Oct 2002 A1
20020161826 Arteaga et al. Oct 2002 A1
20020161908 Benitez Oct 2002 A1
20020174265 Schmidt Nov 2002 A1
20030004882 Holler Jan 2003 A1
20030009538 Shah Jan 2003 A1
20030056200 Li et al. Mar 2003 A1
20030063752 Medvinsky Apr 2003 A1
20030074580 Knouse et al. Apr 2003 A1
20030120593 Bansal et al. Jun 2003 A1
20030204566 Dhupelia et al. Oct 2003 A1
20030236906 Klemets et al. Dec 2003 A1
20040003101 Roth et al. Jan 2004 A1
20040055004 Sun et al. Mar 2004 A1
20040083369 Erlingsson et al. Apr 2004 A1
20040117224 Agarwal et al. Jun 2004 A1
20040117311 Agarwal et al. Jun 2004 A1
20040153700 Nixon et al. Aug 2004 A1
20040167984 Herrmann Aug 2004 A1
20040267645 Pollari Dec 2004 A1
20050071824 K. N. et al. Mar 2005 A1
20050172082 Liu Aug 2005 A1
20050193139 Vinson et al. Sep 2005 A1
20050216415 Stefik et al. Sep 2005 A1
20060015764 Ocko et al. Jan 2006 A1
20060031547 Tsui Feb 2006 A1
20060053228 Rachman Mar 2006 A1
20060069692 Pemia Mar 2006 A1
20060075381 Laborczfalvi et al. Apr 2006 A1
20060085546 Abdo et al. Apr 2006 A1
20060090097 Ngan et al. Apr 2006 A1
20060112384 Frank et al. May 2006 A1
20060156403 Haeffele Jul 2006 A1
20060177010 Skakkebaek et al. Aug 2006 A1
20060177023 Vaghar et al. Aug 2006 A1
20060190987 Ohta et al. Aug 2006 A1
20060206873 Argade Sep 2006 A1
20060277305 Bernardin et al. Dec 2006 A1
20060294235 Joseph Dec 2006 A1
20070007336 Kindberg Jan 2007 A1
20070028110 Brennan Feb 2007 A1
20070028302 Brennan Feb 2007 A1
20070028303 Brennan Feb 2007 A1
20070028304 Brennan Feb 2007 A1
20070083501 Pedersen Apr 2007 A1
20070083522 Nord Apr 2007 A1
20070083610 Treder Apr 2007 A1
20070083655 Pedersen Apr 2007 A1
20070101124 Pitts May 2007 A1
20070150584 Srinivasan Jun 2007 A1
20070171921 Wookey et al. Jul 2007 A1
20070192518 Rupanagunta et al. Aug 2007 A1
20070244987 Pedersen Oct 2007 A1
20070245334 Nieh et al. Oct 2007 A1
20070248085 Volpano Oct 2007 A1
20070260733 Havemose et al. Nov 2007 A1
20070277056 Varadarajan et al. Nov 2007 A1
20070294578 Qiao et al. Dec 2007 A1
20080028086 Chetuparambil et al. Jan 2008 A1
20080098006 Pedersen Apr 2008 A1
20080127355 Lorch et al. May 2008 A1
20080133764 Agarwal et al. Jun 2008 A1
20080184218 Largman et al. Jul 2008 A1
20080195824 Sadovsky Aug 2008 A1
20080235119 Agarwal et al. Sep 2008 A1
20080295114 Argade et al. Nov 2008 A1
20090028576 Elahmadi et al. Jan 2009 A1
20090089406 Roush Apr 2009 A1
20090100420 Sapuntzakis et al. Apr 2009 A1
20090106256 Safari et al. Apr 2009 A1
20090106424 Safari et al. Apr 2009 A1
20090106780 Nord et al. Apr 2009 A1
20090133013 Criddle et al. May 2009 A1
20090150885 Safari et al. Jun 2009 A1
20090164994 Vasilevsky et al. Jun 2009 A1
20090199175 Keller et al. Aug 2009 A1
20090199177 Edwards et al. Aug 2009 A1
20090228576 Rosenan Sep 2009 A1
20090235191 Garbow et al. Sep 2009 A1
20090241108 Edwards et al. Sep 2009 A1
20090254900 Nakamura Oct 2009 A1
20090292654 Katiyar et al. Nov 2009 A1
20090300032 Chirlian et al. Dec 2009 A1
20090300605 Edwards et al. Dec 2009 A1
20090310663 Menon Dec 2009 A1
20090313363 Parsons Dec 2009 A1
20100023996 Sabin et al. Jan 2010 A1
20100031325 Maigne et al. Feb 2010 A1
20100037232 Lee et al. Feb 2010 A1
20100057833 DeHaan Mar 2010 A1
20100057890 DeHaan Mar 2010 A1
20100071035 Budko et al. Mar 2010 A1
20100088699 Sasaki Apr 2010 A1
20100107158 Chen et al. Apr 2010 A1
20100118324 Tagawa May 2010 A1
20100157822 Ivanov et al. Jun 2010 A1
20100235433 Ansari et al. Sep 2010 A1
20110060881 Gallagher Mar 2011 A1
20110107406 Frost et al. May 2011 A1
20110119748 Edwards May 2011 A1
20110126192 Frost et al. May 2011 A1
20110191414 Ma et al. Aug 2011 A1
20110208908 Chou et al. Aug 2011 A1
20120054486 Lakkavalli et al. Mar 2012 A1
20120084394 Yeates et al. Apr 2012 A1
20120088470 Raleigh Apr 2012 A1
20120239823 Hebert Sep 2012 A1
20150193248 Noel Jul 2015 A1
20150212844 Tsirkin Jul 2015 A1
20150235015 Holler et al. Aug 2015 A1
Non-Patent Literature Citations (1)
Entry
Zhao et al “Experimental Study of Virtual Machine Migration in Support of Reservation of Cluster Resources”, 2007.
Continuations (6)
Number Date Country
Parent 15799859 Oct 2017 US
Child 16574009 US
Parent 15013790 Feb 2016 US
Child 15799859 US
Parent 13849940 Mar 2013 US
Child 15013790 US
Parent 12839576 Jul 2010 US
Child 13849940 US
Parent 12813593 Jun 2010 US
Child 12839576 US
Parent 12421691 Apr 2009 US
Child 12813593 US