Media sheets are supplied to a typical printer by a supply tray (also known as an input tray), which holds a supply of the print media, such as paper, in a location that permits. paper to be brought into engagement with a feed mechanism of a printer. The feed mechanism contacts the top sheet of the media supply and advances that sheet into the printer. These feed mechanisms are often referred to as “pick and feed” rollers. From the pick and feed roller, the media sheet is moved into a print zone where an image or text is printed on the sheet.
Supply trays are normally adaptable to handle various sizes of paper. To this end, adjustable guides are built into the supply trays to ensure that whatever size paper is provided, it is advanced uniformly (i.e., without undesirable skewing) into the printer. With this type of input tray, the user is often required to remove the existing supply of paper from the tray before adding a different sized media. This slows the printing operation and requires physical interaction with the printer, which can be undesirable particularly for networked printers having users at remote locations.
Hence, a need remains in the art for a system or method for supplying small sized media to a printer that does not require physical interaction between the user and the printer.
a is a perspective view of a portion of a printer adapted to use a media supply system implemented in accordance with an illustrative embodiment of the present invention.
b is a perspective view of the printer of
a is a perspective view of a media supply system designed in accordance with an illustrative embodiment of the present invention.
b is a perspective view of an input drive mechanism designed in accordance with an illustrative embodiment of the present invention.
a is an isometric view of an illustrative power transmission arrangement for providing power to the media supply system of
b is a side view of the illustrative power transmission arrangement for the printer of
Illustrative embodiments and exemplary applications will now be described with reference to the accompanying drawings to disclose the advantageous teachings of the present invention.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope thereof and additional fields in which the present invention would be of significant utility.
It is noted that for the purposes of this description the term “media” or “print media” is intended to include cut-sheet paper of any weight, photo-grade paper (or “photo media”), transparencies, envelopes, banners, rolled media, pre-printed documents to be scanned, and equivalents as would be recognized by those skilled in the art. Also, although the illustrative embodiments of the invention are adapted for a printer, the invention can be adapted for many other media processing devices such as copiers, facsimile machines, scanners, and the like without departing from the scope of the present teachings.
a is a perspective view of a portion of a printer 10 that is adapted to use a media supply system designed in accordance with an illustrative embodiment of the present invention. Many of the printer components that are irrelevant to this description are omitted from the figure for clarity of illustration.
The printer 10 includes a chassis or base 12 and a platen 14, which is the stationary internal structure of the printer 10 that holds the many parts of the printer 10, including a feed mechanism (the feed shaft 13 of the feed mechanism is shown in
b is a perspective view of the printer 10, showing the tray 20 in the pick position. In this embodiment, when the tray 20 is in the pick position, it is completely concealed under the platen structure 14. The printer 10 may also include a second tray 22 for holding a second supply of media 23 and located where the feed mechanism can pick media from the second tray 22 when the first tray 20 is in the load position. In an illustrative embodiment, the first tray 20 is adapted to hold smaller media, such as 4×6″ photo cards, while the second tray 22 is adapted to hold larger media, such as 8½×11″ document sized paper. More detailed views of the media supply system 18 are shown in
a is a perspective view of a media supply system 18 designed in accordance with an illustrative embodiment of the present invention. Two guides 24 (left) and 26 (right) support the first tray 20. Grooves embedded in the guides 24 and 26 allow the tray 20 to slide in a direction parallel to the guides between the load and pick positions. In
The media supply system 18 also includes a novel input drive mechanism 34 for automatically moving the tray 20 from the load position to the pick position. The feed mechanism of the printer 10 typically includes a pick arm shaft 32 driven by a pick motor (not shown) that supplies rotational motion to the components of the feed mechanism. In one embodiment, the input drive mechanism 34 is coupled to the pick arm shaft 32. The pick arm shaft 32 is normally only rotated in one direction (for example, counter-clockwise). This embodiment uses the second direction of the pick arm shaft 32 (clockwise, in the example) to drive the input drive mechanism 34. When the pick arm shaft 32 is rotated in the first direction (“pick” direction), the feed mechanism picks media from the tray 20 (or the second tray 22). When the pick arm shaft 32 is rotated in the second direction (“reverse pick” direction), the tray 20 is driven from the load position to the pick position.
When the printer 10 is instructed to print from the first supply tray 20, the pick arm shaft 32 is rotated in a reverse pick cycle until the pick motor stalls. A motor stall occurs when the tray 20 has been pulled in as far as possible, into the pick position. Then the pick arm shaft 32 cannot be rotated any further, causing a current spike in the pick motor (because the motor is forcing itself). This causes a motor stall, and the printer cuts off power to the motor. The direction of the pick shaft 32 is then reversed, and media is picked by the feed mechanism and fed to the print mechanism. The “click-to-dot” time (mechanism movement time between instructing the printer to print and when printing actually begins) is minutely affected by including the automated supply tray system 18. The complete retraction of the tray 20 (moving from the load to pick positions) and the reversal of the pick motor are almost unnoticeable. Maintaining low “click-to-dot” time may be desirable in some applications so that the inclusion of the automated supply tray system 18 does not deter printing speed conscious users. In the illustrative embodiment, the “click-to-dot” time added to the print cycle is less than 2 seconds, although this time may vary.
b is a perspective view of an input drive mechanism 34 designed in accordance with an illustrative embodiment of the present invention. In the illustrative embodiment, the input drive mechanism 34 is a swing arm assembly including two gears, a small driver 36 and an arm idler 38, supported between two flat swing arm bodies, a right arm body 40 and a left arm body 42. The input drive mechanism 34 may also include a follower spring 48 for applying a normal force at the idler 38 and arm body 42 interface, and an arm clip 50 for supplying strength and stiffness to the swing arm assembly 34.
The small driver 36 is adapted to engage a rack 44 embedded in the tray 20 and pull the tray 20 in from the load position to the pick position. The rack 44 is oriented in the direction of motion, parallel to the edge guides 24 and 26.
The arm idler 38 is adapted to engage a pick shaft pinion 46 mounted on the pick shaft 32 and rotate the swing arm assembly 34. When the pick shaft 32 rotates in the pick direction (counter-clockwise in the example), the swing arm 34 is rotated (clockwise) and lifted up, disengaging the small driver 36 from the rack 44. When the pick shaft 32 rotates in the reverse pick direction (clockwise), the swing arm 34 is lowered such that the small driver 36 engages the rack 44, pulling the tray 20 into the pick position.
Since both directions of the pick shaft 32 are being used, a separate output drive mechanism 52 (
In the illustrative embodiment shown in
In some embodiments, the tray 20 is driven out until the driver gear 56 loses engagement with the output rack 54. At this point, a spring loaded retention system may be used to keep the tray disengaged from the output drive system 52. In the illustrative embodiment, the spring loaded retention system includes a retention spring 66 mounted on the left guide 24, which biases the tray 20 in the full “out” or load position and assures the output rack 54 will not self-engage on the double driver gear 56. If the tray is reliably disengaged from the output drive system 52, an extension to the transmission can then be used to drive additional printer functionality such as CD printing, wherein the tray 20 supports a CD while a surface of the CD is printed upon. CD printing, in some embodiments, uses both rotational directions from the pinion gear 60 that transmits motion to the output drive transmission 52. CD printing, unlike traditional paper printing, typically uses both feed directions. Because CDs are rigid, they cannot be passed through the traditional “U” shaped paper path. If a CD is to be loaded from the front of a printer, it must be driven bi-directionally into the printer and out from the printer by the feed mechanism. The retention system 66 provides that both directions of rotations will be available for CD printing (or other printer functions) until the automated tray 20 is activated (i.e. pulled into the pick position).
While the illustrative embodiment shown has a rack and pinion output drive system, the specific configurations may vary. Other output mechanisms, such. as a biased spring, may be used to move the tray from the pick position to the load position without departing from the scope of the present teachings.
a is an isometric view of an illustrative power transmission arrangement 80 for providing power to the media supply system 18 of
A carriage shift may be used to shift from one gear train to another. The carriage (not shown) is adapted to engage a leash 98, allowing the swing arm 99 to rotate and change position, and coupling the gears 87 and 89 to a selected gear train. In
In this example, when a user wants to print from the automated tray 20, the power transmission system 80 is shifted from neutral to gear train 90. Motor 82 is therefore coupled to the pick shaft 32. The motor 82 is driven in a first direction, causing the pick shaft 32 to rotate in the reverse pick direction, pulling the tray 20 into the pick position (as described above). The motor 82 is then reversed, causing the pick shaft 32 to rotate in the pick direction, feeding paper into the printer. Reversing the motor 82 takes a relatively small amount of time. In contrast, when the tray 20 is to be output to the load position, the transmission system 80 is shifted from gear train 90 to gear train 92, coupling motor 82 to the output shaft 62. This shifting of gears typically takes a much longer time than reversing a motor; however, additional time after printing (unlike before printing) is usually deemed acceptable.
This friction is strong enough to generate a moment and lift the arm 70, yet light enough to allow “slip” to occur once the pick arm 70 reaches its up most position. In the example of
In one embodiment of the invention, when the tray 20 is out in the load position, the pick arm 70 can be lowered to pick media from a second media supply being held in a second input tray 22, which is located beneath the first tray 20 (as shown in
In an illustrative embodiment of the invention, the operation of the automated input tray 20 is controlled by software, which may comprise firmware stored on a computer-readable medium at the printer 10.
A print cycle begins at Step 102 when a user clicks on “print photo” in the printer driver. This starts an input cycle 104.
An input cycle 104, according to this example embodiment, includes the following steps. At Step 106, shift the transmission from neutral to position 1 (coupling the motors 82 and 84 to the gear train 90 to drive the pick shaft 32, as shown in
Once the tray 20 is in the pick position, at Step 114, determine whether the printer 10 is supposed to be printing or hiding the tray 20 (both of which start an input cycle). If printing, then enter the pick sequence at Step 122. If hiding, then enter a standby mode 116 with the tray 20 in the pick position. This enables compact storage 118 of the tray 20. While the automated tray 20 is in the pick position, printing using media from the second tray 22 cannot occur (the automated tray 20 must first be ejected). If printing from the first media supply (photo printing) is desired while the automated tray 20 is in the pick position, the printer 10 can then go straight to the pick sequence at Step 122.
At Step 124, determine whether media was successfully picked. If yes, at Step 126 prepare for the next print job. If the next print job is another photo (same media supply), then go to Step 122 to pick another media sheet. If the next print job is a full sized document (second media supply from the second input tray 22) or the print jobs are completed, then go to the output cycle 132.
If, at Step 124, an error occurred during the pick sequence, then determine whether the automated tray 20 is out of paper (Step 128). If yes, then go to the output cycle 132. If no, then solve the problem that occurred (Step 130).
The output cycle 132 begins at Step 134, rotating the pick shaft 32 in the reverse pick direction by a small amount to lift the pick arm 70 off of the automated tray 20. At Step 136, shift the transmission from position 1 (pick shaft 32) to position 2 (coupling the motors 82 and 84 to the gear train 92 to drive the output shaft 62, as shown in
At Step 148, determine if continued printing with the first media supply (photo media) is desired. If yes, at Step 150, a user can load more media into the automated tray 20. Printing can then continue at Step 102, when “print photo” is clicked in the driver. If no, at Step 152, determine whether the automated tray 20 should be hidden (for storage). If yes, then go to the input cycle 104. If no, then enter a standby mode 154 with the automated tray 20 in the load position. From this position, CD printing 156 is possible, and a user can load more media into the automated tray 20 (Step 150).
Thus, the automated tray of the present invention is a software driven media tray that automatically moves media from a load position (where media can be loaded by a user) to a pick position (where transport of the media through the printer mechanism begins). Once the tray is empty, or photo printing is finished, the driver automatically outputs the tray back into the load position. The only user interface is the physical loading of the media into the tray and then clicking “print photo” in the device driver. In some embodiments, the user should only have to touch the media and not the printer during loading.
In an illustrative embodiment, the media in the automated tray is oriented in the “landscape” direction, providing a significant increase in print speed (as compared to orientation in the “portrait” direction) and also allowing for a compact printer design with foldable trays. In addition, the driver settings can be adapted to automatically change to a desired print mode (such as optimized for 4×6″ borderless photo printing) whenever the automated tray is instructed to retract once “print photo” is clicked. In one embodiment, the automated tray is dedicated to one type of media, such as 4×6″ photo media. The driver settings can therefore be set to that specific size and type of media. The user would always have the correct print mode settings since, in this example, all 4×6″ photo printing would occur in this tray. Dedicating a tray to 4×6″ photo media would not only automate the loading of the media, but also the driver settings to support this specific media.
An automated tray designed in accordance with the teachings of the present invention could also support wireless printing of photos and normal media (as long as photo media was already loaded in the automated tray). With a supply of photo media in the automated tray, a user could wirelessly order a normal (full-size fast mode) print job and then consecutively a best mode borderless photo print with zero physical interaction.
Thus, the present invention has been described herein with reference to particular embodiments. Those having ordinary. skill in the art and access to the present teachings will recognize additional modifications, applications and embodiments within the scope thereof.
It is therefore intended by the appended claims to cover any and all such applications, modifications and embodiments within the scope of the present invention.
Accordingly,