A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The current application hereby incorporates by reference the material in the following patent applications:
U.S. patent application Ser. No. 13/487,973 filed Jun. 4, 2012, entitled “SYSTEM AND METHOD FOR PROVIDING SECURE SUBNET MANAGEMENT AGENT (SMA) IN AN INFINIBAND (IB) NETWORK”, by inventors Bjørn Dag Johnsen, Ola Tørudbakken and David Brean.
U.S. patent application Ser. No. 13/488,040 filed Jun. 4, 2012, entitled “SYSTEM AND METHOD FOR AUTHENTICATING IDENTITY OF DISCOVERED COMPONENT IN AN INFINIBAND (IB) NETWORK”, by inventors Bjørn Dag Johnsen, Predrag Hodoba and Ola Tørudbakken.
U.S. patent application Ser. No. 13/488,113 filed Jun. 4, 2012, entitled “SYSTEM AND METHOD FOR PROVIDING SOURCE ID SPOOF PROTECTION IN AN INFINIBAND (IB) NETWORK,” filed by inventors Bjørn Dag Johnsen, Line Holen and David Brean.
The present invention is generally related to computer systems, and is particularly related to supporting an InfiniBand (IB) network.
The interconnection network plays a beneficial role in the next generation of super computers, clusters, and data centers. High performance network technology, such as the InfiniBand (IB) technology, is replacing proprietary or low-performance solutions in the high performance computing domain, where high bandwidth and low latency are the key requirements. For example, IB installations are used in supercomputers such as Los Alamos National Laboratory's Roadrunner, Texas Advanced Computing Center's Ranger, and Forschungszcntrum Juelich's JuRoPa.
IB was first standardized in October 2000 as a merge of two older technologies called Future I/O and Next Generation I/O. Due to its low latency, high bandwidth, and efficient utilization of host-side processing resources, it has been gaining acceptance within the High Performance Computing (HPC) community as a solution to build large and scalable computer clusters. The de facto system software for IB is OpenFabrics Enterprise Distribution (OFED), which is developed by dedicated professionals and maintained by the OpenFabrics Alliance. OFED is open source and is available for both GNU/Linux and Microsoft Windows.
Described herein is a system and method that can support consistent handling of internal ID space for different partitions in an InfiniBand (IB) network. A plurality of partitions can be provided for a subnet with a plurality of hosts, wherein each partition of the subnet includes one or more hosts and each host can be associated with one or more physical HCA instances. Each partition in the subnet can be associated with a separate internal ID space, and a single physical HCA instance is prevented from being shared by different tenants that use a same internal ID value in different partitions.
Described herein is a system and method that can support consistent handling of internal ID space for different partitions in an interconeted network, such as an InfiniBand (IB) network.
The designated management hosts 107 can be installed with HCAs 105, 106, a network software stack and relevant management software in order to perform network management tasks. Furthermore, firmware and management software can be deployed on the switches 101-103, and the bridges and routers 104 to direct traffic flow in the fabric. Here, the host HCA drivers, OS and Hypervisors on hosts 108 that are not designated management hosts may be considered outside the scope of the fabric from a management perspective.
The fabric 100 can be in a single media type, e.g. an IB only fabric, and be fully connected. The physical connectivity in the fabric ensures in-band connectivity between any fabric components in the non-degraded scenarios. Alternatively, the fabric can be configured to include Ethernet (Enet) connectivity outside gateway (GW) external ports on a gateway 109. Additionally, it is also possible to have independent fabrics operating in parallel as part of a larger system. For example, the different fabrics can only be indirectly connected via different HCAs or HCA ports.
InfiniBand (IB) Architecture
IB architecture is a serial point-to-point technology. Each of the IB networks, or subnets, can include a set of hosts interconnected using switches and point-to-point links. A single subnet can be scalable to more than ten-thousand nodes and two or more subnets can be interconnected using an IB router. The hosts and switches within a subnet are addressed using local identifiers (LIDs), e.g. a single subnet may be limited to 49151 unicast addresses.
An IB subnet can employ at least one subnet manager (SM) which is responsible for initializing and starting up the sub-net including the configuration of all the IB ports residing on switches, routers and host channel adapters (HCAs) in the subset. The SM's responsibility also includes routing table calculation and deployment. Routing of the network aims at obtaining full connectivity, deadlock freedom, and load balancing between all source and destination pairs. Routing tables can be calculated at network initialization time and this process can be repeated whenever the topology changes in order to update the routing tables and ensure optimal performance.
At the time of initialization, the SM starts in the discovering phase where the SM does a sweep of the network in order to discover all switches and hosts. During the discovering phase, the SM may also discover any other SMs present and negotiate who should be the master SM. When the discovering phase is completed, the SM can enter a master phase. In the master phase, the SM proceeds with LID assignment, switch configuration, routing table calculations and deployment, and port configuration. At this point, the subnet is up and ready to use.
After the subnet is configured, the SM can monitor the network for changes (e.g. a link goes down, a device is added, or a link is removed). If a change is detected during the monitoring process, a message (e.g. a trap) can be forwarded to the SM and the SM can reconfigure the network. Part of the reconfiguration process, or a heavy sweep process, is the rerouting of the network which can be performed in order to guarantee full connectivity, deadlock freedom, and proper load balancing between all source and destination pairs.
The HCAs in an IB network can communicate with each other using queue pairs (QPs). A QP is created during the communication setup, and a set of initial attributes such as QP number, HCA port, destination LID, queue sizes, and transport service are supplied. On the other hand, the QP associated with the HCAs in a communication is destroyed when the communication is over. An HCA can handle many QPs, each QP consists of a pair of queues, a send queue (SQ) and a receive queue (RQ). There is one such pair present at each end-node that is participating in the communication. The send queue holds work requests to be transferred to the remote node, while the receive queue holds information on what to do with the data received from the remote node. In addition to the QPs, each HCA can have one or more completion queues (CQs) that are associated with a set of send and receive queues. The CQ holds completion notifications for the work requests posted to the send and receive queue.
The IB architecture is a flexible architecture. Configuring and maintaining an IB subnet can be carried out via special in-band subnet management packets (SMPs). The functionalities of a SM can, in principle, be implemented from any node in the IB subnet. Each end-port in the IB subnet can have an associated subnet management agent (SMA) that is responsible for handling SMP based request packets that are directed to it. In the IB architecture, a same port can represent a SM instance or other software component that uses SMP based communication. Thus, only a well defined sub-set of SMP operations can be handled by the SMA.
SMPs use dedicated packet buffer resources in the fabric, e.g. a special virtual lane (VL15) that is not flow-controlled (i.e. SMP packets may be dropped in the case of buffer overflow. Also, SMPs can use either the routing that the SM sets up based on end-port Local Identifiers (LIDs), or SMPs can use direct routes where the route is fully defined by the sender and embedded in the packet. Using direct routes, the packet's path goes through the fabric in terms of an ordered sequence of port numbers on HCAs and switches.
The SM can monitor the network for changes using SMAs that are presented in every switch and/or every HCA. The SMAs communicate changes, such as new connections, disconnections, and port state change, to the SM using traps and notices. A trap is a message sent to alert end-nodes about a certain event. A trap can contain a notice attribute with the details describing the event. Different traps can be defined for different events. In order to reduce the unnecessary distribution of traps, IB applies an event forwarding mechanism where end-nodes are required to explicitly subscribe to the traps they want to be informed about.
The subnet administrator (SA) is a subnet database associated with the master SM to store different information about a subnet. The communication with the SA can help the end-node to establish a QP by sending a general service management datagram (MAD) through a designated QP, .e.g. QP1. Both sender and receiver require information such as source/destination LIDs, service level (SL), maximum transmission unit (MTU), etc. to establish communication via a QP. This information can be retrieved from a data structure known as a path record that is provided by the SA. In order to obtain a path record, the end-node can perform a path record query to the SA, e.g. using the SubnAdmGet/SubnAdmGetable operation. Then, the SA can return the requested path records to the end-node.
The IB architecture provides partitions as a way to define which IB end-ports should be allowed to communicate with other IB end-ports. Partitioning is defined for all non-SMP packets on the IB fabric. The use of partitions other than the default partition is optional. The partition of a packet can be defined by a 16 bit P_Key that consists of a 15 bit partition number and a single bit member type (full or limited).
The partition membership of a host port, or an HCA port, can be based on the premise that the SM sets up the P_Key table of the port with P_Key values that corresponds to the current partition membership policy for that host. In order to compensate for the possibility that the host may not be fully trusted, the IB architecture also defines that switch ports can optionally be set up to do partition enforcement. Hence, the P_Key tables of switch ports that connect to host ports can then be set up to reflect the same partitions as the host port is supposed to be a member of (i.e. in essence equivalent to switch enforced virtual local area network (VLAN) control in Ethernet local area networks).
Since the IB architecture allows full in-band configuration and maintenance of an IB subnet via SMPs, the SMPs themselves are not subject to any partition membership restrictions. Thus, in order to avoid the possibility that any rough or compromised node on the IB fabric is able to define an arbitrary fabric configuration (including partition membership), other protection mechanisms are needed.
M_Keys can be used as the basic protection/security mechanism in the IB architecture for SMP access. An M_Key is a 64 bit value that can be associated individually with each individual node in the IB subnet, and where incoming SMP operations may be accepted or rejected by the target node depending on whether the SMP includes the correct M_Key value (i.e. unlike P_Keys, the ability to specify the correct M_Key value—like a password—represents the access control).
By using an out-of-band method for defining M_Keys associated with switches, it is possible to ensure that no host node is able to set up any switch configuration, including partition membership for the local switch port. Thus, an M_Key value is defined when the switch IB links becomes operational. Hence, as long as the M_Key value is not compromised or “guessed” and the switch out-of-band access is secure and restricted to authorized fabric administrators, the fabric is secure.
Furthermore, the M_Key enforcement policy can be set up to allow read-only SMP access for all local state information except the current M_Key value. Thus, it is possible to protect the switch based fabric from un-authorized (re-)configuration, and still allow host based tools to perform discovery and diagnostic operations.
The flexibility provided by the IB architecture allows the administrators of IB fabrics/subnets, e.g. HPC clusters, to decide whether to use embedded SM instances on one or more switches in the fabric and/or set up one or more hosts on the IB fabric to perform the SM function. Also, since the wire protocol defined by the SMPs used by the SMs is available through APIs, different tools and commands can be implemented based on use of such SMPs for discovery, diagnostics and are controlled independently of any current Subnet Manager operation.
From a security perspective, the flexibility of IB architecture indicates that there is no fundamental difference between root access to the various hosts connected to the IB fabric and the root access allowing access to the IB fabric configuration. This is fine for systems that are physically secure and stable. However, this can be problematic for system configurations where different hosts on the IB fabric are controlled by different system administrators, and where such hosts should be logically isolated from each other on the IB fabric.
Single ID Space in Each IB Partition
In accordance with an embodiment of the invention, a single ID space can be supported in each partition in the IB fabric so that there can be name/address/ID space separation between different partitions, just like the Ethernet VLAN construct where each VLAN ID in principle represents a different Media Access Control (MAC) address space. The complete isolation for the exchange of information between tenants within a single subnet can be achieved based on the secure HCAs and completely independent partitions.
The IB fabric 200 allows different separate ID spaces to be associated with different partitions, or with a specific group of partitions. For example, partition A 221 is associated with an ID space A 231 and partition B 222 is associated with an ID space B 232. Furthermore, a SM 210 can allow a same ID value in different ID spaces 231-232 to be used by different tenants 241-244 in the different partitions 221-222.
Examples of these internal IDs can include the alias globally unique identifiers/virtual globally unique identifiers (alias GUIDs/vGUIDs) and the multicast group IDs (MCGIDs). For example, the IB fabric can support the reuse of same vGUID values for different physical ports in different partitions in order to allow vGUID handling to be consistent with how Enet MAC addresses can be reused in different VLANs.
Using a single internal ID space in each partition, the protocols and communication schemes that depend on these specific IDs, e.g. the MCGIDs used by Internet Protocol over InfiniBand (IPoIB), may be subject to temporary Denial of Service (DoS) conditions when the relevant ID is allocated, and thereby occupied, by unauthorized entities. Furthermore, in virtualized systems, the use of alias/virtual GUIDs can be subject to conflicting use of the same alias GUID. In both cases, these conflicts can arise even if there are no shared partitions between the involved nodes.
In accordance with an embodiment of the invention, in order to ensure that no “ID hijacking” can take place, a single physical HCA instance 211-214 may not be shared by two or more tenants 241-244 that use the same IDs in different partitions. Additionally, a higher level management interface 215 controlled by the site/fabric administrator can be used in order to control which IDs 231-232 are used by which physical servers and partitions.
Additionally, the IB fabric 200 can support one or more shared partitions, within which shared services are full members and clients from one or more tenants are limited members. For example, the default partition 224, which is a shared partition, can provide clients in different partitions 221-223 with access to a SA 220 instance, which is a shared service.
In accordance with an embodiment of the invention, different internal ID values, e.g. different multicast or unicast GIDs values that may be included in the global route headers (GRHs), can be used for different partitions on a same HCA (e.g. partition A 221 and partition C 223 may both use HCA 211), in order to ensure that the hardware implementation functions correctly. This is due to that the IB hardware implementation that handles the multicast and unicast packets with the GRHs may not support correlating the multicast or unicast GIDs included in the GRHs with different partitions.
While an HCA 211-214 can be shared by different partitions, the multicast or unicast GIDs may not be shared by different partitions that use overlapping ID value spaces. Thus, when multiple tenants use different partitions, the workloads from different tenants can either use different hosts (thereby use different HCAs) or use different HCAs on the same host. Furthermore, a workload provisioning system, or a human administrator that is aware of the tenant associations for different workloads and the constraints associated with the different tenants and the different partitions, can be used to implement the restrictions in the case of fully independent workloads that have no mutual communication.
Furthermore, a shared service can implement services for multiple clients from different tenants in shared partitions. The shared partitions can be used where clients are limited members and services are full members. In this case, the different shared partitions may not include any overlapping ID values that can cause any involved IB hardware to operate incorrectly. On the other hand, overlapping ID values are allowed where the correct ID to partition relationship can be defined or configured using software. Thus, the multicast ID values are preferably unique across multiple shared partitions implemented by the same HCA, while the unicast GUIDs associated with different client ports or different partitions can be correctly correlated with the correct client even when the GUID values are not unique.
In an IB fabric 200, the SA 220 can be a shared service within the default partition. When the incoming SA request packets from different clients have IB packet headers that represent the default partition 224 and overlapping source GUID values, the request payload can define the context to be a specific unique partition, and also the source physical port can be uniquely defined based on the source LID. The SA 220 can determine the correct scope as long as either the partition specified in the payload or the source LID is different. Also, since the SA 220 has full control of which partitions are valid for which ports in the IB subnet, the SA 220 can verify that partition numbers specified in the SA request payloads are valid for the relevant source port.
Additionally, shared services in multiple shared partitions can use different HCAs for different shared partitions that may have overlapping ID spaces. As a result, multiple hosts may need to be used for a single service when the number of shared partitions is larger than the number of HCAs for any such host.
Furthermore, IB address resolution and multicast group membership can depend on in-band access to the SA 220, which can be implemented as an integral part of the SM implementation 210. Therefore, it is possible for a rough or “runaway” node to cause DoS type effects for other nodes by producing an “unlimited” request rate, as long as the fabric buffering and the SA node receive buffering resources are shared between multiple requesting nodes.
The IB fabric 200 can prevent two or more nodes from establishing traffic patterns that may cause severe congestion scenarios and significant DOS type effects, by preventing different communication flows from sharing the fabric buffering resources. Furthermore, additional provisioning logic can ensure that traffic in different IB partitions use independent fabric buffer resources (such as VLs). However, the number of independent buffer resources and/or link resources may not scale up with the increase of the number of partitions.
In accordance with an embodiment of the invention, the IB fabric 200 can be configured to ensure complete traffic separation in different partitions 221-223 and support different service level agreements (SLAB) for both control and data traffic between different tenants 241-244 in different partitions 221-223. Fabric buffer resources, such as VLs, and routes in the fabric can be provisioned among different partitions 221-223 and different tenants 241-244. Furthermore, workloads for different tenants can also be provisioned onto physical compute, storage and external network (or gateway) resources in the fabric 200.
The communication for each tenant/system can be contained within a corresponding sub-set of the complete fabric topology, including the corresponding storage and external network resources. For example, the communication between different sets of hosts on a same leaf switch with a single switch chip, and the communication between non-overlapping sets of leaf-switches in an IB fabric configuration, can be completely independent since the single switch chip ensures a full crossbar feature. Furthermore, if shared services are used between the tenants, then separate fabric buffer resources (VLs) can be used for this communication in order to avoid impact on the tenant/system internal traffic.
For more complex topologies as well as more complex communication patterns between different components and sub-systems/sub-topologies, other advanced methods for handling allocation and adjustment of bandwidth can be implemented. These advanced methods can include both static and dynamic routing, static and dynamic SL/VL usage, as well as dynamic monitoring and handling of congestion conditions.
The present invention may be conveniently implemented using one or more conventional general purpose or specialized digital computer, computing device, machine, or microprocessor, including one or more processors, memory and/or computer readable storage media programmed according to the teachings of the present disclosure. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art.
In some embodiments, the present invention includes a computer program product which is a storage medium or computer readable medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the present invention. The storage medium can include, but is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
This application claims the benefit of priority on U.S. Provisional Patent Application No. 61/493,330, entitled “STATEFUL SUBNET MANAGER FAILOVER IN A MIDDLEWARE MACHINE ENVIRONMENT” filed Jun. 3, 2011, which application is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5805805 | Civanlar et al. | Sep 1998 | A |
5964837 | Chao et al. | Oct 1999 | A |
6014669 | Slaughter | Jan 2000 | A |
6091706 | Shaffer | Jul 2000 | A |
6202067 | Blood | Mar 2001 | B1 |
6463470 | Mohaban et al. | Oct 2002 | B1 |
6594759 | Wang | Jul 2003 | B1 |
6629145 | Pham | Sep 2003 | B1 |
6647419 | Mogul | Nov 2003 | B1 |
6678835 | Shah et al. | Jan 2004 | B1 |
6748429 | Talluri et al. | Jun 2004 | B1 |
6829685 | Neal et al. | Dec 2004 | B2 |
6904545 | Erimli et al. | Jun 2005 | B1 |
6941350 | Frazier et al. | Sep 2005 | B1 |
6963932 | Bhat | Nov 2005 | B2 |
6978300 | Beukema et al. | Dec 2005 | B1 |
6981025 | Frazier et al. | Dec 2005 | B1 |
6985956 | Luke et al. | Jan 2006 | B2 |
7023811 | Pinto | Apr 2006 | B2 |
7069468 | Olson | Jun 2006 | B1 |
7113995 | Beukema et al. | Sep 2006 | B1 |
7185025 | Rosenstock et al. | Feb 2007 | B2 |
7194540 | Aggarwal et al. | Mar 2007 | B2 |
7200704 | Njoku et al. | Apr 2007 | B2 |
7216163 | Sinn | May 2007 | B2 |
7221676 | Green | May 2007 | B2 |
7231518 | Bakke | Jun 2007 | B1 |
7290277 | Chou et al. | Oct 2007 | B1 |
7302484 | Stapp et al. | Nov 2007 | B1 |
7356841 | Wilson et al. | Apr 2008 | B2 |
7398394 | Johnsen et al. | Jul 2008 | B1 |
7409432 | Recio et al. | Aug 2008 | B1 |
7437447 | Brey et al. | Oct 2008 | B2 |
7493409 | Craddock et al. | Feb 2009 | B2 |
7500236 | Janzen | Mar 2009 | B2 |
7633955 | Saraiya et al. | Dec 2009 | B1 |
7634608 | Droux | Dec 2009 | B2 |
7636772 | Kirby | Dec 2009 | B1 |
7653668 | Shelat | Jan 2010 | B1 |
7685385 | Choudhary et al. | Mar 2010 | B1 |
7724748 | Davis | May 2010 | B2 |
7783788 | Quinn et al. | Aug 2010 | B1 |
7843822 | Paul et al. | Nov 2010 | B1 |
7853565 | Liskov | Dec 2010 | B1 |
7860961 | Finkelstein et al. | Dec 2010 | B1 |
7873711 | Adams et al. | Jan 2011 | B2 |
7953890 | Katkar | May 2011 | B1 |
8184555 | Mouton et al. | May 2012 | B1 |
8214558 | Sokolov | Jul 2012 | B1 |
8214653 | Marr | Jul 2012 | B1 |
8234407 | Sugumar | Jul 2012 | B2 |
8327437 | McAlister | Dec 2012 | B2 |
8331381 | Brown et al. | Dec 2012 | B2 |
8335915 | Plotkin et al. | Dec 2012 | B2 |
8423780 | Plotkin et al. | Apr 2013 | B2 |
8549281 | Samovskiy et al. | Oct 2013 | B2 |
8583921 | Shu | Nov 2013 | B1 |
8635318 | Shankar | Jan 2014 | B1 |
8769152 | Gentieu | Jul 2014 | B2 |
8924952 | Hou | Dec 2014 | B1 |
8935206 | Aguilera | Jan 2015 | B2 |
8935333 | Beukema | Jan 2015 | B2 |
8972966 | Kelso | Mar 2015 | B2 |
9130858 | Bogdanski | Sep 2015 | B2 |
9172602 | Dropps | Oct 2015 | B1 |
20020059597 | Kikinis et al. | May 2002 | A1 |
20020120720 | Moir | Aug 2002 | A1 |
20020143914 | Cihula | Oct 2002 | A1 |
20020188711 | Meyer et al. | Dec 2002 | A1 |
20020198755 | Birkner | Dec 2002 | A1 |
20030009487 | Prabakaran et al. | Jan 2003 | A1 |
20030009551 | Benfield et al. | Jan 2003 | A1 |
20030033427 | Brahmaroutu | Feb 2003 | A1 |
20030079040 | Jain et al. | Apr 2003 | A1 |
20030093509 | Li et al. | May 2003 | A1 |
20030105903 | Garnett et al. | Jun 2003 | A1 |
20030115276 | Flaherty | Jun 2003 | A1 |
20030120852 | McConnell et al. | Jun 2003 | A1 |
20030208572 | Shah et al. | Nov 2003 | A1 |
20040022245 | Forbes et al. | Feb 2004 | A1 |
20040022256 | Green | Feb 2004 | A1 |
20040024905 | Liao | Feb 2004 | A1 |
20040024911 | Chung | Feb 2004 | A1 |
20040031052 | Wannamaker | Feb 2004 | A1 |
20040068501 | McGoveran | Apr 2004 | A1 |
20040090925 | Schoeberl | May 2004 | A1 |
20040139083 | Hahn | Jul 2004 | A1 |
20040153849 | Tucker et al. | Aug 2004 | A1 |
20040162973 | Rothman | Aug 2004 | A1 |
20040193768 | Carnevale | Sep 2004 | A1 |
20040199764 | Koechling | Oct 2004 | A1 |
20040220947 | Aman et al. | Nov 2004 | A1 |
20040249928 | Jacobs et al. | Dec 2004 | A1 |
20040255286 | Rothman | Dec 2004 | A1 |
20050025520 | Murakami | Feb 2005 | A1 |
20050044363 | Zimmer et al. | Feb 2005 | A1 |
20050071382 | Rosenstock et al. | Mar 2005 | A1 |
20050071709 | Rosenstock et al. | Mar 2005 | A1 |
20050086342 | Burt | Apr 2005 | A1 |
20050091396 | Nilakantan et al. | Apr 2005 | A1 |
20050105554 | Kagan et al. | May 2005 | A1 |
20050125520 | Hanson et al. | Jun 2005 | A1 |
20050182701 | Cheston | Aug 2005 | A1 |
20050182831 | Uchida et al. | Aug 2005 | A1 |
20050182853 | Lewites et al. | Aug 2005 | A1 |
20050198164 | Moore et al. | Sep 2005 | A1 |
20050198250 | Wang | Sep 2005 | A1 |
20050213608 | Modi | Sep 2005 | A1 |
20050273641 | Sandven et al. | Dec 2005 | A1 |
20060079278 | Ferguson et al. | Apr 2006 | A1 |
20060112297 | Davidson | May 2006 | A1 |
20060114863 | Sanzgiri | Jun 2006 | A1 |
20060168192 | Sharma | Jul 2006 | A1 |
20060177103 | Hildreth | Aug 2006 | A1 |
20060195560 | Newport | Aug 2006 | A1 |
20060221975 | Lo et al. | Oct 2006 | A1 |
20060233168 | Lewites et al. | Oct 2006 | A1 |
20070016694 | Achler | Jan 2007 | A1 |
20070050763 | Kagan | Mar 2007 | A1 |
20070070959 | Almeroth | Mar 2007 | A1 |
20070110245 | Sood et al. | May 2007 | A1 |
20070129917 | Blevins | Jun 2007 | A1 |
20070195774 | Sherman | Aug 2007 | A1 |
20070195794 | Fujita et al. | Aug 2007 | A1 |
20070206735 | Silver et al. | Sep 2007 | A1 |
20070253328 | Harper et al. | Nov 2007 | A1 |
20080031266 | Tallet et al. | Feb 2008 | A1 |
20080144614 | Fisher et al. | Jun 2008 | A1 |
20080159277 | Vobbilisetty et al. | Jul 2008 | A1 |
20080183853 | Manion et al. | Jul 2008 | A1 |
20080184332 | Gerkis | Jul 2008 | A1 |
20080192750 | Ko et al. | Aug 2008 | A1 |
20080201486 | Hsu et al. | Aug 2008 | A1 |
20080209018 | Hernandez et al. | Aug 2008 | A1 |
20080229096 | Alroy et al. | Sep 2008 | A1 |
20080250125 | Brey et al. | Oct 2008 | A1 |
20080288646 | Hasha | Nov 2008 | A1 |
20080310421 | Teisberg | Dec 2008 | A1 |
20080310422 | Booth et al. | Dec 2008 | A1 |
20090049164 | Mizuno | Feb 2009 | A1 |
20090116404 | Mahop et al. | May 2009 | A1 |
20090178033 | Challener | Jul 2009 | A1 |
20090216853 | Burrow et al. | Aug 2009 | A1 |
20090249472 | Litvin | Oct 2009 | A1 |
20090271472 | Scheifler | Oct 2009 | A1 |
20090307499 | Senda | Dec 2009 | A1 |
20090327462 | Adams et al. | Dec 2009 | A1 |
20100014526 | Chavan | Jan 2010 | A1 |
20100020806 | Vahdat et al. | Jan 2010 | A1 |
20100080117 | Coronado et al. | Apr 2010 | A1 |
20100082853 | Block et al. | Apr 2010 | A1 |
20100114826 | Voutilainen | May 2010 | A1 |
20100138532 | Glaeser et al. | Jun 2010 | A1 |
20100142544 | Chapel et al. | Jun 2010 | A1 |
20100166167 | Karimi-Cherkandi et al. | Jul 2010 | A1 |
20100235488 | Sharma et al. | Sep 2010 | A1 |
20100268857 | Bauman et al. | Oct 2010 | A1 |
20100306772 | Arnold et al. | Dec 2010 | A1 |
20110022574 | Hansen | Jan 2011 | A1 |
20110072206 | Ross et al. | Mar 2011 | A1 |
20110110366 | Moore et al. | May 2011 | A1 |
20110138082 | Khatri | Jun 2011 | A1 |
20110138185 | Ju et al. | Jun 2011 | A1 |
20110173302 | Rider | Jul 2011 | A1 |
20110179195 | O'Mullan | Jul 2011 | A1 |
20110209202 | Otranen | Aug 2011 | A1 |
20110222492 | Borsella et al. | Sep 2011 | A1 |
20110264577 | Winbom et al. | Oct 2011 | A1 |
20110283017 | Alkhatib | Nov 2011 | A1 |
20110307886 | Thanga | Dec 2011 | A1 |
20120005480 | Batke et al. | Jan 2012 | A1 |
20120039331 | Astigarraga et al. | Feb 2012 | A1 |
20120195417 | Hua et al. | Aug 2012 | A1 |
20120239928 | Judell | Sep 2012 | A1 |
20120290698 | Alroy et al. | Nov 2012 | A1 |
20120311333 | Johnsen et al. | Dec 2012 | A1 |
20130041969 | Falco et al. | Feb 2013 | A1 |
20130046904 | Hilland | Feb 2013 | A1 |
20130159865 | Smith et al. | Jun 2013 | A1 |
20130179870 | Kelso | Jul 2013 | A1 |
20130191548 | Boddukuri et al. | Jul 2013 | A1 |
20130191622 | Sasaki | Jul 2013 | A1 |
20130262613 | Hefty | Oct 2013 | A1 |
20130294773 | Fu | Nov 2013 | A1 |
20130301645 | Bogdanski et al. | Nov 2013 | A1 |
20140095853 | Sarangshar | Apr 2014 | A1 |
20140095876 | Smith et al. | Apr 2014 | A1 |
20140211808 | Koren | Jul 2014 | A1 |
20150244572 | Johnsen | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1728664 | Feb 2006 | CN |
2 051 436 | Apr 2009 | EP |
2160068 | Mar 2010 | EP |
2002-247089 | Aug 2002 | JP |
2004-166263 | Jun 2004 | JP |
1567827 | Feb 2006 | JP |
2006157285 | Jun 2006 | JP |
2007501563 | Jan 2007 | JP |
2005-522774 | Jul 2008 | JP |
2009510953 | Mar 2009 | JP |
0190838 | Nov 2001 | WO |
2008099479 | Aug 2008 | WO |
2012037518 | Mar 2012 | WO |
WO2012167268 | Jun 2012 | WO |
WO2013009846 | Jan 2013 | WO |
Entry |
---|
Tom Shanley et al., Infiniband Network Architecture, Pearson Education, published Oct. 2002 p. 83-87, 95-102, 205-208,403-406. |
Shanley, Tom, “Infiniband Network Architecture” (excerpt), Pearson Education, Copyright © 2002 by MindShare, Inc., published Oct. 2002, p. 204-209, 560-564. |
European Patent Office, International Searching Authority, International Search Report and Written Opinion dated Sep. 12, 2012 for Application No. PCT/US2012/040775, 13 pages. |
Tom Shanley, Infiniband Network Architecture (excerpt), chapter—Detailed Description of the Link Layer, Pearson Education, published 2002, p. 390-392, 485, 491-493, 537-539. |
Aurelio Bermudez, On the InfiniBand Subnet Discovery Process, IEEE The Computer Society 2003, pp. 1-6. |
Tom Shanley, Infiniband Network Architecture, Pearson Education 2002, p. 559, 561. |
Shanley, Tom, Infiniband Network Architecture (excerpt), Pearson Education, published 2002, p. 209-211, 393-394, 551, 554. |
International Search Report dated Sep. 23, 2013 for Application No. PCT/US2013/040639, 10 pages. |
International Search Report dated Sep. 26, 2013 for Application No. PCT/US2013/040656, 10 pages. |
Shanley, Tom, “Infiniband Network Architecture”, Pearson Education, Copyright © 2002 by MindShare, Inc., published Oct. 2002 p. 387-394. |
InfiniBand℠ Trade Association, InfiniBand™ Architecture Specification, vol. 1, Release 1.2.1, Nov. 2007, pp. 1-1727. |
Lee, M., Security Enhancement in Infiniband Architecture, IEEE, vol. 19, Apr. 2005, pp. 1-18. |
V. Kashyap, “IP over InfiniBand (IpoIB) Architecture”, Network Working Group RFC 4392, Apr. 2006, 22 pages, retrieved on Apr. 9, 2015 from: <http://www.ietf.org/rfc/rfc4392>. |
European Patent Office, International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/US2014/068832 dated May 20, 2015, 10 pages. |
State Intellectual Property Office of the People's Republic of China dated May 5, 2015 for Chinese Patent Application No. 201180039850.7, 2 pages. |
Search Report from State Intellectual Property Office of the People's Republic of China dated May 29, 2015 for Chinese Patent Application No. 201180040064.9, 1 page. |
Search Report from State Intellectual Property Office of the People's Republic of China dated Jun. 3, 2015 for Chinese Patent Application No. 201180039807.0, 2 pages. |
State Intellectual Property Office of the People's Republic of China, Search Report dated Sep. 9, 2015 for Chinese Patent Application No. 201280027279.1, 2 page. |
United States Patent and Trademark Office, Office Action dated Jun. 3, 2016 for U.S. Appl. No. 13/235,187, 22 pages. |
Shanley, Tom, “Infiniband Network Architecture” (Excerpt), Copyright 2002 by Mindshare, Inc., pp. 8-9, 391-396, 549-551. |
United States Patent and Trademark Office, Notice of Allowance and Fee(s) Due dated Oct. 19, 2016 for U.S. Appl. No. 14/189,403, 6 Pages. |
United States Patent and Trademark Office, Office Action dated Feb. 16, 2016 for U.S. Appl. No. 13/235,113, 21 Pages. |
United States Patent and Trademark Office, Notice of Allowance and Fee(s) Due dated Mar. 31, 2016 for U.S. Appl. No. 14/189,442, 6 pages. |
United States Patent and Trademark Office, Office Action dated Apr. 8, 2016 for U.S. Appl. No. 13/235,130, 32 Pages. |
United States Patent and Trademark Office, Office Action dated Apr. 8, 2016 for U.S. Appl. No. 13/235,161, 24 Pages. |
United States Patent and Trademark Office, Office Action dated May 6, 2016 for U.S. Appl. No. 13/488,192, 14 Pages. |
Shanley, Tom, “Infiniband Network Architecture” (Excerpt), Copyright 2002 by Mindshare, Inc., p. 86-87. |
Tom Shanley, Infiniband Network Architecture (excerpt), Pearson Education, Published 2002, p. 213. |
United States Patent and Trademark Office, Office Action dated Apr. 18, 2017 for U.S. Appl. No. 13/235,113, 30 Pages. |
United States Patent and Trademark Office, Office Action dated Jun. 15, 2017 for U.S. Appl. No. 13/488,113, 22 Pages. |
Shanley, Tom “Infiniband Network Architecture” Copyright 2002 by Mindshare, Inc., ISBN: 0-321-11765-4, pp. 117-123 and 629-633. |
European Patent Office, Communication Pursuant to Article 94(3) EPC, dated Mar. 8, 2017 =or European Patent Application No. 11767106.5, 10 Pages. |
Ching-Min Lin et al., “A New Quorum-Based Scheme for Managing Replicated Data in Distributed Systems” IEEE Transactions on Computers, vol. 51, No. 12, p. 1442-1447, Dec. 2002. |
Number | Date | Country | |
---|---|---|---|
20120311123 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61493330 | Jun 2011 | US |