System and method for switching between closed loop and open loop control of an ambulatory infusion pump

Information

  • Patent Grant
  • 11638781
  • Patent Number
    11,638,781
  • Date Filed
    Friday, February 14, 2020
    4 years ago
  • Date Issued
    Tuesday, May 2, 2023
    a year ago
Abstract
An infusion pump system providing therapy to a patient in a closed-loop or semi-closed loop mode can safely automatically revert to open-loop therapy. The system stores a default open-loop basal rate profile in memory. The system also continually tracks the insulin on board for the patient over a plurality of closed-loop therapy intervals. When an error or event occurs requiring reversion to open-loop therapy, the system automatically provides therapy according to the open-loop basal rate profile and the tracked insulin on board amount.
Description
FIELD OF THE INVENTION

The present invention relates generally to ambulatory infusion pumps and, more particularly, to ambulatory infusion pumps that are able to safely transition from closed loop operation to open-loop operation.


BACKGROUND OF THE INVENTION

There are many applications in academic, industrial, and medical fields that benefit from devices and methods that are capable of accurately and controllably delivering fluids, such as liquids and gases that have a beneficial effect when administered in known and controlled quantities. Such devices and methods can be particularly useful in the medical field where treatments for many patients include the administration of a known amount of a substance at predetermined intervals.


One category of devices for delivering such fluids is that of pumps that have been developed for the administration of insulin and other medicaments for those suffering from both type I and type II diabetes. Some pumps configured as portable infusion devices can provide continuous subcutaneous medicament injection and/or infusion therapy for the treatment of diabetes. Such therapy may include, e.g., the regular and/or continuous injection or infusion of insulin into the skin of a person suffering from diabetes and offer an alternative to multiple daily injections of insulin by an insulin syringe or an insulin pen. Such pumps can be ambulatory/portable infusion pumps that are worn by the user and may use replaceable cartridges. Examples of such pumps and various features that can be associated with such pumps include those disclosed in U.S. Patent Publication Nos. 2013/0324928 and 2013/0053816 and U.S. Pat. Nos. 8,287,495; 8,573,027; 8,986,253; and 9,381,297, each of which is incorporated herein by reference in its entirety.


Portable infusion pumps for delivering insulin or other medicaments can be used in conjunction with blood glucose monitoring systems, such as blood glucose meters (BGMs) and continuous glucose monitoring devices (CGMs). A CGM provides a substantially continuous estimated blood glucose level through a transcutaneous sensor that estimates blood analyte levels, such as blood glucose levels, via interrogation of the patient's interstitial fluid rather than the patient's blood. CGM systems typically consist of a transcutaneously-placed sensor, a transmitter and a monitor. A CGM system allows a patient or caregiver to insert a single sensor probe under the skin for multiple days. Thus, the patient is only required to perform a single moderately invasive action with a single entry point in the subdermal layer on, e.g., a weekly basis.


Ambulatory infusion pumps typically allow the patient or caregiver to adjust the amount of insulin or other medicament delivered, by a basal rate or a bolus, based on blood glucose data obtained by a BGM or a CGM, and in some cases include the capability to automatically adjust such medicament delivery. Some ambulatory infusion pumps may include the capability to interface with a BGM or CGM such as, e.g., by receiving measured or estimated blood glucose levels and automatically adjusting or prompting the user to adjust the level of medicament being administered or planned for administration or, in cases of abnormally low blood glucose readings, automatically temporarily ceasing or prompting the user temporarily to cease insulin administration. These portable pumps may incorporate a BGM or CGM within the hardware of the pump or may communicate with a dedicated BGM or CGM via wired or wireless data communication protocols, directly and/or via a device such as a smartphone. Such pumps may be particularly important in facilitating patient compliance and improved or more accurate treatment of diabetes. One example of integration of infusion pumps with CGM devices is described in U.S. Patent Publication No. 2014/0276419, which is hereby incorporated by reference herein.


The delivery of insulin or other medicament from a portable infusion pump making use of CGM data necessitates accurate and reliable CGM data output. Some CGM devices are calibrated with blood samples to correlate actual blood glucose data with the CGM readings. However, such calibrations are only done periodically, such as every few days or hours, such as 12 hours, and the longer it has been since a calibration event the more likely the CGM is unreliable to some degree and the more unreliable the CGM is likely to become until the next calibration.


As noted above, insulin or other medicament dosing by basal rate and/or bolus techniques could automatically be provided by a pump based on readings received into the pump from a CGM device that is, e.g., external to the portable insulin pump or integrated with the pump as a pump-CGM system in a closed-loop or semi-closed-loop fashion. With respect to insulin delivery, some systems including this feature can be referred to as artificial pancreas systems because the systems serve to mimic biological functions of the pancreas for patients with diabetes.


However, there are a number of risks in automatically dosing insulin, or other medicaments, based on CGM readings that may be inaccurate or unreliable. For example, a CGM reading or readings may indicate that a user's blood glucose level is high and therefore the pump may automatically deliver a bolus of a medicament such as insulin or increase the basal rate of a medicament such as insulin to lower the user's blood glucose to a target level. If the CGM reading inaccurately indicates that the user's blood glucose level is high, the extra insulin delivered in response may actually lower the user's blood glucose level below a desired target level, possibly to a dangerously low level. This problem may not be detected until the CGM is next calibrated, perhaps not for several hours. Thus, automatically dosing medicaments such as insulin based on CGM readings can have potentially dangerous effects in situations where the CGM readings are inaccurate or unreliable relative to the user's actual blood glucose levels. Similarly, any failure of the CGM sensor, loss of signal or communication between the CGM and the pump, other mechanical or electrical failures with the system or problems with the user's operation of the system or its components, for example, may also be dangerous to the patient.


Thus, a need exists for devices and methods that maintain safe delivery of insulin to a patient in the event of a failure of closed-loop or semi-closed-loop automatic dosing of an insulin pump.


SUMMARY OF THE INVENTION

An infusion pump system providing therapy to a patient in a closed-loop or semi-closed loop mode can safely automatically revert to open-loop therapy. The system stores a default open-loop basal rate profile in memory. The system also continually tracks the insulin on board for the patient over a plurality of closed-loop therapy intervals. When an error or event occurs requiring reversion to open-loop therapy, the system automatically provides therapy according to the open-loop basal rate profile and the tracked insulin on board amount.


In one embodiment, an infusion pump system includes a pump mechanism, a memory that stores a default open-loop basal rate profile and a communications device configured to receive information from a continuous glucose monitoring system (CGM). A processor of the system causes the pump mechanism to deliver medicament to the patient in a closed-loop manner based on the information from the CGM, while continually tracking an amount of insulin on board in the patient. When an error requiring reversion from closed-loop mode to open-loop mode is detected, the processor causes the pump mechanism to deliver medicament according to the open-loop basal rate profile stored in memory and the amount of insulin on board in the patient tracked during the closed-loop mode.


In one embodiment, an infusion pump system includes a pump mechanism and a memory that stores a default open-loop basal rate profile. A processor of the system receives information from a CGM and causes the pump mechanism to automatically deliver medicament to the patient based on therapy parameters automatically determined based on the information from the CGM while continually tracking an amount of insulin on board in the patient. When an error pertaining to the CGM occurs, the pump mechanism ceases automatically delivering medicament based on the determined therapy parameters and delivers medicament according to the open-loop basal rate profile stored in memory and the tracked amount of insulin on board in the patient.


In some embodiments, the default open-loop basal rate profile is continually updated. The closed-loop therapy can be provided over a plurality of time intervals. The insulin on board can be tracked for each time interval. The open-loop basal rate profile can be updated after each time interval based on the respective tracked insulin on board amount.


The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:



FIG. 1 is a medical device that can be used with embodiments of the present invention.



FIG. 2 is a block diagram representing a medical device that can be used with embodiments of the present invention.



FIG. 3 depicts an exemplary screen shot of a home screen page of a user interface for use with an infusion pump system that can be used with embodiments of the present invention.



FIG. 4 is a schematic representation of a system according to embodiments of the present invention.



FIG. 5 is a flowchart of a method of operating a pump in a closed-loop mode according to an embodiment of the present invention.



FIG. 6 is a flowchart of a method of reverting to open-loop mode according to an embodiment of the present invention.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION OF THE INVENTION

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.



FIG. 1 depicts an embodiment of a medical device that can be used with embodiments of the present invention. In this embodiment, the medical device is configured as a pump 12, such as an infusion pump, that can include a pumping or delivery mechanism and reservoir for delivering medicament to a patient and an output/display 44. The type of output/display 44 may vary as may be useful for a particular application. When output/display 44 is of the visual type, it may comprise an LCD display, LED display, plasma display, graphene-based display, OLED display or the like. The output/display 44 may include an interactive and/or touch sensitive screen 46 having an input device such as, for example, a touch screen comprising a capacitive screen or a resistive screen. The pump 12 may additionally or instead include one or more of a keyboard, a microphone or other input devices known in the art for data entry, some or all of which may be separate from the display. The pump 12 may also include a capability to operatively couple to one or more other display devices such as a remote display, a remote control device, a laptop computer, personal computer, tablet computer, a mobile communication device such as a smartphone, a wearable electronic watch or electronic health or fitness monitor, or personal digital assistant (PDA), a CGM display etc.


Such one or more other display devices may be configured to be used in place of output/display 44 or to work in connection with output/display 44 such that information may be repeated in exact or similar fashion between output/display 44 and one or more other displays, such that different information may be repeated between/among output/display 44 and one or more other display devices, or such that information is presented solely on one or more other display devices. Such one or more other display devices may also include the capability to allow a user to input information and/or commands for operation of the infusion pump, such as, e.g., via a touchscreen, microphone, keyboard or other input devices as are known in the art.


In one embodiment, the medical device can be a portable insulin pump configured to deliver insulin to a patient. Further details regarding such pump devices can be found in U.S. Pat. No. 8,287,495, which is incorporated herein by reference in its entirety. In other embodiments, the medical device can be an infusion pump configured to deliver one or more additional or other medicaments to a patient. In a further embodiment, the medical device can be a glucose meter such as a BGM or CGM. Further detail regarding such systems and definitions of related terms can be found in, e.g., U.S. Pat. Nos. 8,311,749, 7,711,402 and 7,497,827, each of which is hereby incorporated by reference herein in its entirety. In other embodiments, the medical device can monitor other physiological parameters of a patient.



FIG. 2 illustrates a block diagram of some of the features that can be used with embodiments of the present invention, including features that may be incorporated within the housing 26 of a medical device such as a pump 12. The pump 12 can include a processor 42 that controls the overall functions of the device. The infusion pump 12 may also include, e.g., a memory device 30, a transmitter/receiver 32, an alarm 34, a speaker 36, a clock/timer 38, an input device 40, a user interface suitable for accepting input and commands from a user such as a caregiver or patient, a drive mechanism 48, an estimator device 52 and a microphone (not pictured). One embodiment of a user interface as shown in FIG. 2 is a graphical user interface (GUI) 60 having a touch sensitive screen 46 with input capability. In some embodiments, the processor 42 may communicate with one or more other processors within the pump 12 and/or one or more processors of other devices, for example, a continuous glucose monitor (CGM), display device, smartphone, etc. through the transmitter/receiver. The processor 42 may also include programming that may allow the processor to receive signals and/or other data from an input device, such as a sensor that may sense pressure, temperature or other parameters.


Referring to FIG. 3, a front view of pump 12 is depicted. Pump 12 may include a user interface, such as, for example, a GUI 60 on a front surface 58 or other location of pump 12. GUI 60 may include a touch-sensitive screen 46 that may be configured for displaying data, facilitating data and/or command entry, providing visual tutorials, as well as other interface features that may be useful to a caregiver or to the patient operating pump 12. The GUI can also present alarms or alerts to the user. Although described with respect to infusion pump 12, such a GUI 60 could additionally or alternatively be employed on any other device employed as part of an infusion pump system such as, for example, a CGM (described below), dedicated remote controller, smartphone, electronic tablet, computer, etc.


Pump 12 can interface directly or indirectly (via, e.g., a smartphone or other device) with a glucose meter, such as a blood glucose meter (BGM) or a continuous glucose monitor (CGM); the latter category of which provides a substantially continuous estimated blood glucose level through a transcutaneous sensor that estimates blood analyte levels, such as blood glucose levels, via interrogation of the patient's interstitial fluid rather than the patient's blood. Referring to FIG. 4, an exemplary CGM system 100 according to an embodiment of the present invention is shown (other CGM systems can be used). The illustrated CGM system includes a sensor 102 affixed to a patient 104 and can be associated with the insulin infusion device 12 in a CGM-pump system. The sensor 102 includes a sensor probe 106 configured to be inserted to a point below the dermal layer (skin) of the patient 104. The sensor probe 106 is therefore exposed to the patient's interstitial fluid or plasma beneath the skin and reacts with that interstitial fluid to produce a signal that can be associated with the patient's blood glucose (BG) level. The sensor 102 includes a sensor body 108 that transmits data associated with the interstitial fluid to which the sensor probe 106 is exposed. The data may be transmitted from the sensor 102 to the glucose monitoring system receiver 100 via a wireless transmitter, such as a near field communication (NFC) radio frequency (RF) transmitter or a transmitter operating according to a “Wi-Fi” or Bluetooth® protocol, Bluetooth® low energy protocol or the like, or the data may be transmitted via a wire connector from the sensor 102 to the monitoring system 100. Transmission of sensor data to the glucose monitoring system receiver by wireless or wired connection is represented in FIG. 4 by the arrow line 112. Further detail regarding such systems and definitions of related terms can be found in, e.g., U.S. Pat. Nos. 8,311,749, 7,711,402 and 7,497,827, each of which is hereby incorporated by reference in its entirety.


In one embodiment of a pump-CGM system, part of the CGM system 100 is incorporated into the housing of the pump 12 such that the processor 42 of the pump 12 is adapted to receive the data directly from the sensor 102 through a wired or wireless link and process and display the data on the pump display 44. In another embodiment, the CGM 100 is a separate device that communicates with the pump 12 processor 42 through a wired or wireless link to transmit processed CGM data to the pump 12 for display on the pump display 44. In further embodiments, the CGM system can transmit data to an intermediary device, such as, for example, a smartphone or dedicated remote controller that can then communicate the data to the pump.


In an embodiment of a pump-CGM system having a pump 12 that communicates with a CGM and that integrates CGM data and pump data as described herein, the CGM can automatically transmit the glucose data to the pump. The pump can then automatically determine therapy parameters and deliver medicament based on the data. For example, if the CGM data indicates that the user's blood glucose level is over a high blood glucose threshold level stored in memory, the pump can automatically calculate and deliver an insulin bolus amount and/or an increase to a user's basal rate to bring the user's blood glucose level below the threshold and/or to a target value. As with other parameters related to therapy, such thresholds and target values can be stored in memory located in the pump or, if not located in the pump, stored in a separate location and accessible by the pump processor (e.g., “cloud” storage, a smartphone, a CGM, a dedicated controller, a computer, etc., any of which is accessible via a network connection). The pump processor can periodically and/or continually execute instructions for a checking function that accesses these data in memory, compares them with data received from the CGM and acts accordingly to adjust therapy. In further embodiments, rather than the pump determining the therapy parameters, the parameters can be determined by a separate device and transmitted to the pump for execution. In such embodiments, a separate device such as the CGM or a device in communication with the CGM, such as, for example, a smartphone, dedicated controller, electronic tablet, computer, etc. can include a processor programmed to calculate therapy parameters based on the CGM data that then instruct the pump to provide therapy according to the calculated parameters.


In one embodiment, such an automatic pump-CGM system for insulin delivery is referred to as an artificial pancreas system that provides closed-loop therapy to the patient to approximate or even mimic the natural functions of a healthy pancreas. In such a system, insulin doses are calculated based on the CGM readings (that may or may not be automatically transmitted to the pump) and are automatically delivered to the patient at least in part based on the CGM reading(s). For example, if the CGM indicates that the user has a high blood glucose level or hyperglycemia, the system can automatically calculate an insulin dose necessary to reduce the user's blood glucose level below a threshold level or to a target level and automatically deliver the dose. Alternatively, the system can automatically suggest a change in therapy upon receiving the CGM data such as an increased insulin basal rate or delivery of a bolus, but can require the user to accept the suggested change prior to delivery rather than automatically delivering the therapy adjustments.


If the CGM data indicates that the user has a low blood glucose level or hypoglycemia, the system can, for example, automatically reduce a basal rate, suggest to the user to reduce a basal rate, automatically deliver or suggest that the user initiate the delivery of an amount of a substance such as, e.g., a hormone (glucagon) to raise the concentration of glucose in the blood, automatically suggest that the user, e.g., ingest carbohydrates and/or take other actions and/or make other suggestions as may be appropriate to address the hypoglycemic condition, singly or in any desired combination or sequence. Such determination can be made by the infusion pump providing therapy or by a separate device that transmits therapy parameters to the infusion pump. In some embodiments, multiple medicaments can be employed in such a system as, for example, a first medicament, e.g., insulin, that lowers blood glucose levels and a second medicament, e.g., glucagon, that raises blood glucose levels.


Because such artificial pancreas systems that incorporate CGM data automatically to adjust insulin therapy in a closed-loop fashion rely on the CGM data to be sufficiently accurate, it may be desirable to implement various features to, e.g., ensure the safety of the patient. Embodiments of the present invention therefore incorporate a temporary suspend feature for artificial pancreas and any other systems that provide closed-loop or semi-closed-loop therapy in which CGM data is relied upon, in whole or in part, automatically to determine dosing information. Semi-closed-loop therapy can include systems that provide some functions on an automatic, closed-loop basis and other functions on a manual or open-loop basis. For example, a system could automatically adjust basal delivery in a closed-loop mode as discussed above while still providing for manual administration of boluses. A system such as that described previously (that automatically suggests a change in therapy upon receiving CGM data such as an increased insulin basal rate or delivery of a bolus, but that requires the user to accept the suggested change prior to delivery rather than automatically delivering the therapy adjustments) could also be considered as providing semi-closed-loop therapy.


During operation of pump 12 in closed-loop mode, it may be desirable to revert to a conventional open-loop delivery mode under certain circumstances. Such circumstances may include, for example, a calibration error with sensor 102, a failure of sensor 102, a loss of signal between sensor 102 and glucose monitoring system 100, a loss of signal between glucose monitoring system 100 and pump 12, a failure of a user to replace a CGM sensor within the recommended expiration period (e.g., a number of days) such that the CGM sensor has lost adequate accuracy, a failure to calibrate a sensor properly, a failure to calibrate a sensor within a time interval, including a manufacturer's recommended time interval, or any other errors which may affect the accuracy of insulin delivery and/or patient safety.


In order for pump 12 safely to revert to open-loop operation mode, a basal rate profile for the patient should be known and the amount of insulin on board (JOB) in the patient at the time of transition between closed-loop and open-loop should be known. Pump 12 therefore includes a default open-loop basal rate profile 202, optionally stored within memory device 30 or optionally stored elsewhere and accessible by pump 12. In one embodiment, default open-loop basal rate profile 202 is programmed into pump 12 prior to patient use. Optionally, the open-loop basal rate profile may be updated during pump operation, such as at the conclusion of an operating interval 230 as described more fully below, to create an updated open-loop basal rate profile 203.


To determine the amount of IOB during closed-loop operation, pump 12, or other device monitoring the therapy, may continually track the amount of insulin delivered 210 over a period of time, such as an interval 230. Interval 230 may comprise a period of time such as hourly, daily, weekly, or other. In one embodiment, an amount of IOB 220 is calculated by comparing the amount of insulin delivered 210 over interval 230 to default open-loop basal rate profile 202. In another embodiment, the amount of IOB 220 is calculated by comparing the amount of insulin delivered 210 over interval 230 to an updated open-loop basal rate profile 203. In either embodiment, IOB 220 represents the difference between the amount of insulin actually delivered to the patient and a default basal rate. In various embodiments, the system can continually track IOB during closed-loop and/or open-loop operation, that is, repeatedly but with breaks/intervals in between where IOB is not tracked, or can continuously track IOB during closed-loop and/or open-loop operation, that is, constant tracking throughout system operation without interruption.


Optionally, the calculation of IOB 220 may take into account an IOB from one or more previous intervals. For example, if at the beginning of an interval 230, the patient already has a positive IOB value, that value will decrease over interval 230 according to known insulin pharmacokinetic models. The calculated decay of insulin already within the patient over interval 230 may be added to the IOB 220 determined as described above.


In embodiments utilizing updated open-loop basal rate profile 203, pump processor or other device may update profile 203 at the conclusion of an interval 230 as needed. For example, if IOB 220 is outside of a predetermined acceptable range, pump 12 may set updated open-loop basal rate profile 203 to correspond to the amount of insulin delivered 210 over the previous interval 230. In another embodiment, pump 12 may compare profile 203, amount of insulin delivered 210 and/or IOB 220 to determine and set a new updated open-loop basal rate profile 203. In some embodiments, when the actual basal insulin delivered 210 is less than the open-loop basal rate profile 203, the IOB 220 calculated during the interval 230 is not used to update the profile 203, or, alternatively, may be used as a negative contribution to reduce the open-loop basal rate profile 203.


During operation of pump 12 in closed-loop mode, upon occurrence of an event that requires reversion to open-loop mode to maintain patient safety, one of basal rate profiles 202 or 203 may be used along with IOB 220 to easily and safely transition to open-loop operation. Although primarily described herein as pump 12 processor 42 receiving CGM data, calculating therapy parameters, tracking JOB, storing and updating open-loop basal profiles, determining whether therapy should revert to open-loop, etc., in various embodiments a processor of any other device operated as a part of an infusion pump system could provide some or all of these functions. Examples of such devices include for example, a CGM, a smartphone, a dedicated remote controller, an electronic tablet, a computer, etc.


Referring now to FIG. 5, an operational flowchart for pump/processor in closed-loop mode is depicted. At step 302, pump 12 begins operating in closed-loop mode according to an algorithm stored in memory 30 or stored in a separate location and accessible by pump 12. At step 304, the amount of IOB 220 is continually tracked during operation of pump 12 over an interval 230. At step 306, upon the conclusion of interval 230 the amount of JOB 220 is calculated and stored as described herein. At step 308, the open-loop basal rate profile 202 or 203 is updated and stored in memory 30 or stored in a separate location and accessible by pump 12 as described herein.


Referring now to FIG. 6, an operational flowchart is depicted upon detection of an error. Such error may include a calibration error with sensor 102 (including, e.g., failure to calibrate the sensor within a time interval, such as a manufacturer's recommended time interval), a failure of sensor 102, an expiration of sensor 102, a loss of signal between sensor 102 and glucose monitoring system 100, a loss of signal between glucose monitoring system 100 and pump 12, or any other errors that may affect the accuracy and safety of delivery of insulin to the patient. Such error may occur at any time during operation of pump 12 in closed-loop mode. At step 314, the open-loop basal rate profile stored in step 308 is accessed. At step 316, pump 12 switches from closed-loop to open-loop operation based at least in part on the amount of IOB calculated in step 306 and/or the open-loop basal rate profile stored in step 308.


Although embodiments described herein may be discussed in the context of the controlled delivery of insulin, delivery of other medicaments, singly or in combination with one another or with insulin, including, for example, glucagon, pramlintide, etc., as well as other applications are also contemplated. Device and method embodiments discussed herein may be used for pain medication, chemotherapy, iron chelation, immunoglobulin treatment, dextrose or saline IV delivery, treatment of various conditions including, e.g., pulmonary hypertension, or any other suitable indication or application. Non-medical applications are also contemplated.


With regard to the above detailed description, like reference numerals used therein may refer to like elements that may have the same or similar dimensions, materials, and configurations. While particular forms of embodiments have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the embodiments herein. Accordingly, it is not intended that the invention be limited by the forgoing detailed description.


The entirety of each patent, patent application, publication, and document referenced herein is hereby incorporated by reference. Citation of the above patents, patent applications, publications and documents is not an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these documents.


Also incorporated herein by reference in their entirety are commonly owned U.S. Pat. Nos. 8,287,495; 8,408,421 8,448,824; 8,573,027; 8,650,937; 8,986,523; 9,173,998; 9,180,242; 9,180,243; 9,238,100; 9,242,043; 9,335,910; 9,381,297; 9,421,329; 9,486,171; 9,486,571; 9,492,608; and 9,503,526 commonly owned U.S. Patent Publication Nos. 2009/0287180; 2012/0123230; 2013/0053816; 2013/0324928; 2013/0332874; 2014/0276419; 2014/0276420; 2014/0276423; 2014/0276531; 2014/0276553; 2014/0276556 2014/0276569; 2014/0276570; 2014/0378898; 2015/0073337; 2015/0072613; 2015/0182693; 2015/0182695; 2016/0030669; 2016/0082188; and 2016/0339172 and commonly owned U.S. patent application Ser. Nos. 14/707,851; 15/241,257 and 15/354,495 and commonly owned U.S. Provisional Application Ser. Nos. 61/911,576; 61/920,902; 61/920,914; 61/920,940; 62/139,275; 62/272,255; 62/300,410; 62/352,164; 62/365,167; and 62/394,806.


Further incorporated by reference herein in their entirety are U.S. Pat. Nos. 8,601,465; 8,502,662; 8,452,953; 8,451,230; 8,449,523; 8,444,595; 8,343,092; 8,285,328; 8,126,728; 8,117,481; 8,095,123; 7,999,674; 7,819,843; 7,782,192; 7,109,878; 6,997,920; 6,979,326; 6,936,029; 6,872,200; 6,813,519; 6,641,533; 6,554,798; 6,551,276; 6,295,506; and 5,665,065.


Modifications may be made to the foregoing embodiments without departing from the basic aspects of the technology. Although the technology may have been described in substantial detail with reference to one or more specific embodiments, changes may be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the technology. The technology illustratively described herein may suitably be practiced in the absence of any element(s) not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation and use of such terms and expressions do not exclude any equivalents of the features shown and described or portions thereof and various modifications are possible within the scope of the technology claimed. Although the present technology has been specifically disclosed by representative embodiments and optional features, modification and variation of the concepts herein disclosed may be made, and such modifications and variations may be considered within the scope of this technology.

Claims
  • 1. A method of providing diabetes therapy to a patient, comprising: delivering medicament to the patient with an infusion pump in a closed-loop mode in which therapy parameters are automatically determined and medicament is automatically delivered according to the therapy parameters based on information from a continuous glucose monitoring system;continually tracking an amount of insulin on board in the patient during the closed-loop mode;detecting that an error has occurred, the error requiring reversion from the closed-loop mode to an open-loop mode; andcausing the infusion pump to begin to deliver the medicament to the patient in the open-loop mode in amounts according to an open-loop basal rate profile stored in memory and the amount of insulin on board in the patient in response to detection of the error.
  • 2. The method of claim 1, wherein delivering medicament to the patient in the closed-loop mode includes delivering in the closed-loop mode for a plurality of time intervals and continually tracking the amount of insulin on board includes tracking the amount of insulin on board over a first time interval, and further comprising modifying the open-loop basal rate profile stored in memory after the first time interval based on the tracked amount of insulin on board over the first time interval.
  • 3. The method of claim 2, wherein continually tracking the amount of insulin on board includes tracking the amount of insulin on board for each subsequent time interval after the first time interval, and further comprising modifying the open-loop basal rate profile stored in memory after each of the subsequent time intervals based on the tracked amount of insulin on board over each of the respective subsequent time intervals.
  • 4. The method of claim 1, wherein detecting that the error has occurred includes detecting an error selected from the set consisting of: a calibration error of a sensor of the continuous glucose monitoring system, a failure to calibrate the sensor within a calibration time interval, a failure of the sensor, an expiration of the sensor, a loss of signal between the sensor and the continuous glucose monitoring system, a loss of signal with sensor, and a loss of signal with the continuous glucose monitoring system.
  • 5. The method of claim 1, further comprising determining the therapy parameters for the closed-loop mode.
  • 6. The method of claim 1, further comprising receiving the therapy parameters for the closed-loop mode from a separate device.
  • 7. The method of claim 1, further comprising receiving the information from the continuous glucose monitoring system directly from a sensor of the continuous glucose monitoring system.
  • 8. The method of claim 1, further comprising receiving the information from the continuous glucose monitoring system from a continuous glucose monitor receiver of the continuous glucose monitoring system.
  • 9. The method of claim 1, further comprising calculating the amount of insulin on board based on a difference between an amount of insulin delivered to the patient over a time interval during the closed-loop mode and an amount of insulin in the open-loop basal rate profile over the time interval.
  • 10. A method of providing diabetes therapy to a patient, comprising: receiving information from a continuous glucose monitoring system;causing an infusion pump to automatically deliver medicament to the patient based on therapy parameters automatically determined based on the information from the continuous glucose monitoring system;continually tracking an amount of insulin on board in the patient while automatically delivering the medicament based on the therapy parameters;detecting an error pertaining to the continuous glucose monitoring system; andcausing the infusion pump to cease automatically delivering the medicament based on the therapy parameters automatically determined based on the information from the continuous glucose monitoring system and to begin to deliver the medicament in amounts according to an open-loop basal rate profile stored in memory and the amount of insulin on board in the patient in response to detection of the error.
  • 11. The method of claim 10, wherein causing the infusion pump to automatically deliver medicament to the patient includes automatically delivering medicament to the patient for a plurality of time intervals and continually tracking the amount of insulin on board includes tracking the amount of insulin on board over a first time interval, and further comprising modifying the open-loop basal rate profile stored in memory after the first time interval based on the tracked amount of insulin on board over the first time interval.
  • 12. The method of claim 11, wherein continually tracking the amount of insulin on board includes tracking the amount of insulin on board for each subsequent time interval after the first time interval, and further comprising modifying the open-loop basal rate profile stored in memory after each of the subsequent time intervals based on the tracked amount of insulin on board over each of the respective subsequent time intervals.
  • 13. The method of claim 10, wherein detecting the error pertaining to the continuous glucose monitoring system includes detecting an error selected from the set consisting of: a calibration error of a sensor of the continuous glucose monitoring system, a failure to calibrate the sensor within a calibration time interval, a failure of the sensor, an expiration of the sensor, a loss of signal with the sensor and a loss of signal with the continuous glucose monitoring system.
  • 14. The method of claim 10, further comprising determining the therapy parameters.
  • 15. The method of claim 10, further comprising receiving the therapy parameters from a separate device.
  • 16. The method of claim 10, wherein receiving the information from the continuous glucose monitoring system includes receiving the information directly from a sensor of the continuous glucose monitoring system.
  • 17. The method of claim 10, wherein receiving the information from the continuous glucose monitoring system includes receiving the information from a continuous glucose monitor receiver of the continuous glucose monitoring system.
  • 18. The method of claim 10, further comprising calculating the amount of insulin on board based on a difference between an amount of insulin delivered to the patient over a time interval when medicament is automatically delivered according to the therapy parameters and an amount of insulin in the open-loop basal rate profile over the time interval.
  • 19. A method of providing diabetes therapy to a patient, comprising: causing an infusion pump to deliver medicament to the patient in a closed-loop mode in which therapy parameters are automatically determined and medicament is automatically delivered according to the therapy parameters based on estimated blood glucose levels;continually tracking an amount of insulin on board in the patient during the closed-loop mode;detecting that an error has occurred, the error requiring reversion from the closed-loop mode to an open-loop mode; andcausing the infusion pump to begin to deliver the medicament to the patient in the open-loop mode in amounts according to an open-loop basal rate profile and the amount of insulin on board in the patient in response to detection of the error.
  • 20. The method of claim 19, further comprising calculating the amount of insulin on board based on a difference between an amount of insulin delivered to the patient over a time interval when medicament is automatically delivered according to the therapy parameters and an amount of insulin in the open-loop basal rate profile over the time interval.
RELATED APPLICATIONS

This application is a continuation of application Ser. No. 15/394,066 filed Dec. 29, 2016 which claims the benefit of U.S. Provisional Application No. 62/272,255 filed Dec. 29, 2015, which is hereby incorporated herein in its entirety by reference.

US Referenced Citations (884)
Number Name Date Kind
675881 Cassullo Jun 1901 A
2462596 Bent Feb 1949 A
2629376 Pierre et al. Feb 1953 A
2691542 Chenoweth Oct 1954 A
3059639 Blackman et al. Oct 1962 A
4392849 Petre et al. Jul 1983 A
4393365 Kondo et al. Jul 1983 A
4475901 Kraegen et al. Oct 1984 A
5000664 Lawless et al. Mar 1991 A
5050612 Matsumura Sep 1991 A
5122362 Phillips et al. Jun 1992 A
5153827 Coutre et al. Oct 1992 A
5181910 Scanlon Jan 1993 A
5207666 Idriss et al. May 1993 A
5219330 Bollish et al. Jun 1993 A
5311175 Waldman May 1994 A
5338157 Blomquist Aug 1994 A
5364346 Schrezenmeir Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5376070 Purvis et al. Dec 1994 A
5389078 Zalesky et al. Feb 1995 A
5395326 Haber et al. Mar 1995 A
5482446 Williamson et al. Jan 1996 A
5485408 Blomquist Jan 1996 A
5551850 Williamson et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5569186 Lord et al. Oct 1996 A
5658250 Blomquist et al. Aug 1997 A
5658252 Johnson Aug 1997 A
5665065 Colman et al. Sep 1997 A
5669877 Blomquist Sep 1997 A
5674240 Bonutti et al. Oct 1997 A
5681285 Ford et al. Oct 1997 A
5685844 Marttila Nov 1997 A
5695473 Olsen Dec 1997 A
5713856 Eggers et al. Feb 1998 A
5745378 Barker et al. Apr 1998 A
5782805 Meinzer et al. Jul 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5810771 Blomquist Sep 1998 A
5814015 Gargano et al. Sep 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5876370 Blomquist Mar 1999 A
5879143 Cote et al. Mar 1999 A
5885211 Eppstein et al. Mar 1999 A
5935099 Peterson et al. Aug 1999 A
5935106 Olsen Aug 1999 A
5960403 Brown Sep 1999 A
6023629 Tamada Feb 2000 A
6024539 Blomquist Feb 2000 A
6077055 Vilks Jun 2000 A
6122536 Sun et al. Sep 2000 A
6142939 Eppstein et al. Nov 2000 A
6175752 Say et al. Jan 2001 B1
6233471 Berner et al. May 2001 B1
6241704 Peterson et al. Jun 2001 B1
6248057 Mavity et al. Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6249717 Nicholson et al. Jun 2001 B1
6255781 Tsumura Jul 2001 B1
6272364 Kurnik Aug 2001 B1
6298254 Tamada Oct 2001 B2
6306420 Cheikh Oct 2001 B1
6368272 Porumbescu Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6422057 Anderson Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6475180 Peterson et al. Nov 2002 B2
6505059 Kollias et al. Jan 2003 B1
6517482 Elden et al. Feb 2003 B1
6535714 Melker et al. Mar 2003 B2
6539250 Bettinger Mar 2003 B1
6544212 Galley et al. Apr 2003 B2
6544229 Danby et al. Apr 2003 B1
6546269 Kurnik Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6553244 Lesho et al. Apr 2003 B2
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6577899 Lebel et al. Jun 2003 B2
6582366 Porumbescu Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6595919 Berner et al. Jul 2003 B2
6623698 Kuo Sep 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650951 Jones et al. Nov 2003 B1
6656114 Poulsen et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6659978 Kasuga et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6687522 Tamada Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6733446 Lebel et al. May 2004 B2
6740072 Starkweather et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6744350 Blomquist Jun 2004 B2
6771250 Oh Aug 2004 B1
6773412 O'Mahony et al. Aug 2004 B2
6790198 White et al. Sep 2004 B1
6809633 Cern Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6827702 Lebel et al. Dec 2004 B2
6835175 Porumbescu Dec 2004 B1
6852104 Blomquist Feb 2005 B2
6862466 Ackerman Mar 2005 B2
6872200 Mann et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6880564 Erickson Apr 2005 B2
6882940 Potts et al. Apr 2005 B2
6895263 Shin et al. May 2005 B2
6902905 Burson et al. Jun 2005 B2
6916159 Rush et al. Jul 2005 B2
6918542 Silverbrook et al. Jul 2005 B2
6934220 Cruitt et al. Aug 2005 B1
6936029 Mann et al. Aug 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6957655 Erickson et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6966325 Erickson Nov 2005 B2
6970742 Mann et al. Nov 2005 B2
6974437 Lebel et al. Dec 2005 B2
6979326 Mann et al. Dec 2005 B2
6997920 Mann et al. Feb 2006 B2
6998387 Goke et al. Feb 2006 B1
6999854 Roth Feb 2006 B2
7004928 Aceti et al. Feb 2006 B2
7022072 Fox et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7033338 Vilks et al. Apr 2006 B2
7041082 Blomquist et al. May 2006 B2
7073713 Silverbrook et al. Jul 2006 B2
7083108 Silverbrook et al. Aug 2006 B2
7092011 Silverbrook et al. Aug 2006 B2
7097108 Zellner et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7109878 Mann et al. Sep 2006 B2
7150741 Erickson et al. Dec 2006 B2
7156808 Quy Jan 2007 B2
7179226 Crothall et al. Feb 2007 B2
7181505 Haller et al. Feb 2007 B2
7183068 Burson et al. Feb 2007 B2
7187404 Silverbrook et al. Mar 2007 B2
7201319 Silverbrook et al. Apr 2007 B2
7204823 Estes et al. Apr 2007 B2
7231263 Choi Jun 2007 B2
7234645 Silverbrook et al. Jun 2007 B2
7247702 Gardner et al. Jul 2007 B2
7254782 Sherer Aug 2007 B1
7267665 Steil et al. Sep 2007 B2
7278983 Ireland et al. Oct 2007 B2
7282029 Poulsen et al. Oct 2007 B1
7289142 Silverbrook Oct 2007 B2
7291107 Hellwig et al. Nov 2007 B2
7295867 Berner et al. Nov 2007 B2
7307245 Faries, Jr. et al. Dec 2007 B2
7320675 Pastore et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7341577 Gill Mar 2008 B2
7347819 Lebel et al. Mar 2008 B2
7347836 Peterson et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7362971 Silverbrook et al. Apr 2008 B2
7369635 Spital et al. May 2008 B2
7373083 Silverbrook et al. May 2008 B2
7377706 Silverbrook et al. May 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7446091 Van Den Berghe Nov 2008 B2
7460152 Silverbrook et al. Dec 2008 B2
7464010 Yang et al. Dec 2008 B2
7471994 Ford et al. Dec 2008 B2
7475825 Silverbrook et al. Jan 2009 B2
7483050 Silverbrook et al. Jan 2009 B2
7483743 Mann et al. Jan 2009 B2
7491187 Van Den Berghe et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7515060 Blomquist Apr 2009 B2
7524045 Silverbrook et al. Apr 2009 B2
7534226 Mernoe et al. May 2009 B2
7547281 Hayes et al. Jun 2009 B2
7553281 Hellwig et al. Jun 2009 B2
7556613 Wittmann et al. Jul 2009 B2
7559926 Blischak Jul 2009 B1
7569030 Lebel et al. Aug 2009 B2
7588046 Erickson Sep 2009 B1
7591801 Brauker et al. Sep 2009 B2
7602310 Mann et al. Oct 2009 B2
7647237 Malave et al. Jan 2010 B2
7651489 Estes et al. Jan 2010 B2
7651845 Doyle, III et al. Jan 2010 B2
7654976 Peterson et al. Feb 2010 B2
7674485 Bhaskaran et al. Mar 2010 B2
7676519 McBride et al. Mar 2010 B2
7678071 Lebel et al. Mar 2010 B2
7678762 Green et al. Mar 2010 B2
7678763 Green et al. Mar 2010 B2
7687272 Buchwald et al. Mar 2010 B1
7697967 Stafford Apr 2010 B2
7704226 Mueller, Jr. et al. Apr 2010 B2
7708717 Estes et al. May 2010 B2
7711402 Shults et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7717903 Estes et al. May 2010 B2
7722536 Goodnow May 2010 B2
7734323 Blomquist et al. Jun 2010 B2
7751907 Blomquist Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7766830 Fox et al. Aug 2010 B2
7768386 Hayter et al. Aug 2010 B2
7768408 Reggiardo et al. Aug 2010 B2
7774145 Brauker et al. Aug 2010 B2
7776030 Estes et al. Aug 2010 B2
7778680 Goode, Jr. et al. Aug 2010 B2
7785313 Mastrototaro Aug 2010 B2
7794426 Briones et al. Sep 2010 B2
7794427 Estes et al. Sep 2010 B2
7794428 Estes et al. Sep 2010 B2
7797028 Goode, Jr. et al. Sep 2010 B2
7801582 Peyser Sep 2010 B2
7806853 Wittmann et al. Oct 2010 B2
7806886 Kanderian, Jr. et al. Oct 2010 B2
7815602 Mann et al. Oct 2010 B2
7819843 Mann et al. Oct 2010 B2
7822455 Hoss et al. Oct 2010 B2
7826879 Hoss et al. Nov 2010 B2
7828528 Estes et al. Nov 2010 B2
7831310 Lebel et al. Nov 2010 B2
7833196 Estes et al. Nov 2010 B2
7837647 Estes et al. Nov 2010 B2
7837651 Bishop et al. Nov 2010 B2
7850641 Lebel et al. Dec 2010 B2
7860544 Say et al. Dec 2010 B2
7869851 Hellwig et al. Jan 2011 B2
7869853 Say et al. Jan 2011 B1
7875022 Wenger et al. Jan 2011 B2
7884729 Reggiardo et al. Feb 2011 B2
7885699 Say et al. Feb 2011 B2
7887512 Estes et al. Feb 2011 B2
7890295 Shin et al. Feb 2011 B2
7892199 Mhatre et al. Feb 2011 B2
7912674 Killoren Clark et al. Mar 2011 B2
7914450 Goode, Jr. et al. Mar 2011 B2
7914499 Gonnelli et al. Mar 2011 B2
7920907 McGarraugh et al. Apr 2011 B2
7933780 De La Huerga Apr 2011 B2
7935076 Estes et al. May 2011 B2
7938797 Estes May 2011 B2
7938803 Mernoe et al. May 2011 B2
7941200 Weinert et al. May 2011 B2
7942844 Moberg et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7951114 Rush et al. May 2011 B2
7959598 Estes Jun 2011 B2
7963946 Moubayed et al. Jun 2011 B2
7967773 Amborn et al. Jun 2011 B2
7972296 Braig et al. Jul 2011 B2
7976492 Brauker et al. Jul 2011 B2
7981034 Jennewine et al. Jul 2011 B2
7981084 Estes et al. Jul 2011 B2
7981102 Patel et al. Jul 2011 B2
7983745 Hatlestad et al. Jul 2011 B2
7983759 Stahmann et al. Jul 2011 B2
7985330 Wang et al. Jul 2011 B2
7988630 Osorio et al. Aug 2011 B1
7988849 Biewer et al. Aug 2011 B2
7996158 Hayter et al. Aug 2011 B2
8005524 Brauker et al. Aug 2011 B2
8012119 Estes et al. Sep 2011 B2
8016783 Pastore et al. Sep 2011 B2
8025634 Moubayed et al. Sep 2011 B1
8029459 Rush et al. Oct 2011 B2
8029460 Rush et al. Oct 2011 B2
8062249 Wilinska et al. Nov 2011 B2
8066665 Rush et al. Nov 2011 B2
8075527 Rush et al. Dec 2011 B2
8079983 Rush et al. Dec 2011 B2
8079984 Rush et al. Dec 2011 B2
8083718 Rush et al. Dec 2011 B2
8088098 Yodfat et al. Jan 2012 B2
8093212 Gardner et al. Jan 2012 B2
8105268 Lebel et al. Jan 2012 B2
8105279 Mernoe et al. Jan 2012 B2
8109921 Estes et al. Feb 2012 B2
8114350 Silver et al. Feb 2012 B1
8118770 Galley et al. Feb 2012 B2
8119593 Richardson et al. Feb 2012 B2
8127046 Grant et al. Feb 2012 B2
8129429 Sporn et al. Mar 2012 B2
8133197 Blomquist et al. Mar 2012 B2
8140275 Campbell et al. Mar 2012 B2
8140312 Hayter et al. Mar 2012 B2
8147446 Yodfat et al. Apr 2012 B2
8152789 Starkweather et al. Apr 2012 B2
8170721 Nickerson May 2012 B2
8177716 Say et al. May 2012 B2
8182445 Moubayed et al. May 2012 B2
8192394 Estes et al. Jun 2012 B2
8192395 Estes et al. Jun 2012 B2
8202267 Field et al. Jun 2012 B2
8204729 Sher Jun 2012 B2
8206296 Jennewine Jun 2012 B2
8206350 Mann et al. Jun 2012 B2
8208984 Blomquist et al. Jun 2012 B2
8211062 Estes et al. Jul 2012 B2
8219222 Blomquist Jul 2012 B2
8221345 Blomquist Jul 2012 B2
8221385 Estes Jul 2012 B2
8226558 Say et al. Jul 2012 B2
8226891 Sloan et al. Jul 2012 B2
8231562 Buck et al. Jul 2012 B2
8234126 Estes Jul 2012 B1
8234128 Martucci et al. Jul 2012 B2
8237715 Buck et al. Aug 2012 B2
8246540 Ginsberg Aug 2012 B2
8250483 Blomquist Aug 2012 B2
8251904 Zivitz et al. Aug 2012 B2
8251906 Brauker et al. Aug 2012 B2
8257259 Brauker et al. Sep 2012 B2
8257300 Budiman et al. Sep 2012 B2
8260630 Brown Sep 2012 B2
8262617 Aeschlimann et al. Sep 2012 B2
8277435 Estes Oct 2012 B2
8282601 Mernoe et al. Oct 2012 B2
8287454 Wolpert et al. Oct 2012 B2
8287495 Michaud et al. Oct 2012 B2
8287514 Miller et al. Oct 2012 B2
8290562 Goode, Jr. et al. Oct 2012 B2
8298184 DiPerna et al. Oct 2012 B2
8311749 Brauker et al. Nov 2012 B2
8323188 Tran Dec 2012 B2
8328754 Estes et al. Dec 2012 B2
8343092 Rush et al. Jan 2013 B2
8344847 Moberg et al. Jan 2013 B2
8346399 Blomquist Jan 2013 B2
8348885 Moberg et al. Jan 2013 B2
8348886 Kanderian, Jr. et al. Jan 2013 B2
8348923 Kanderian, Jr. et al. Jan 2013 B2
8349319 Schuchman et al. Jan 2013 B2
8357091 Say et al. Jan 2013 B2
8369919 Kamath Feb 2013 B2
8372040 Huang et al. Feb 2013 B2
8376943 Kovach et al. Feb 2013 B2
8377031 Hayter et al. Feb 2013 B2
8380273 Say et al. Feb 2013 B2
8409131 Say et al. Apr 2013 B2
8414523 Blomquist et al. Apr 2013 B2
8444595 Brukalo et al. May 2013 B2
8449523 Brukalo et al. May 2013 B2
8451230 Celentano et al. May 2013 B2
8452953 Buck et al. May 2013 B2
8454510 Yodfat et al. Jun 2013 B2
8454575 Estes et al. Jun 2013 B2
8454576 Mastrototaro et al. Jun 2013 B2
8454581 Estes et al. Jun 2013 B2
8460231 Brauker et al. Jun 2013 B2
8465460 Yodfat et al. Jun 2013 B2
8467980 Campbell et al. Jun 2013 B2
8475409 Javitt Jul 2013 B2
8486005 Yodfat et al. Jul 2013 B2
8552880 Kopp et al. Oct 2013 B2
8562558 Kamath et al. Oct 2013 B2
8573027 Rosinko et al. Nov 2013 B2
8579853 Reggiardo et al. Nov 2013 B2
8650937 Brown Feb 2014 B2
8657779 Blomquist Feb 2014 B2
8712748 Thukral et al. Apr 2014 B2
8718949 Blomquist et al. May 2014 B2
8726266 Kiaie et al. May 2014 B2
8775877 McVey et al. Jul 2014 B2
8801657 Blomquist et al. Aug 2014 B2
8882701 DeBelser et al. Nov 2014 B2
8938306 Lebel et al. Jan 2015 B2
8986253 DiPerna Mar 2015 B2
8992475 Mann et al. Mar 2015 B2
9008803 Blomquist Apr 2015 B2
9037254 John May 2015 B2
9089305 Hovorka Jul 2015 B2
9364679 John Jun 2016 B2
9381297 Brown et al. Jul 2016 B2
9474856 Blomquist Oct 2016 B2
9486171 Saint Nov 2016 B2
9486578 Finan et al. Nov 2016 B2
9669160 Harris et al. Jun 2017 B2
9833177 Blomquist Dec 2017 B2
9867937 Saint et al. Jan 2018 B2
9867953 Rosinko Jun 2018 B2
10016561 Saint et al. Jul 2018 B2
10052049 Blomquist et al. Aug 2018 B2
10130766 Bibian Nov 2018 B1
10213547 Rosinko Feb 2019 B2
10357606 Blomquist et al. Jul 2019 B2
10357607 Blomquist et al. Jul 2019 B2
10549051 Rosinko Feb 2020 B2
10569016 Rosinko Feb 2020 B2
10864322 Saint et al. Dec 2020 B2
20010001144 Kapp May 2001 A1
20010031944 Peterson et al. Oct 2001 A1
20010037217 Abensour et al. Nov 2001 A1
20010041831 Starkweather et al. Nov 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020016568 Lebel et al. Feb 2002 A1
20020065454 Lebel et al. May 2002 A1
20020072932 Swamy Jun 2002 A1
20020077852 Ford et al. Jun 2002 A1
20020107476 Mann et al. Aug 2002 A1
20020143580 Bristol et al. Oct 2002 A1
20020183693 Peterson et al. Dec 2002 A1
20020193679 Malave et al. Dec 2002 A1
20030032867 Crothall et al. Feb 2003 A1
20030036683 Kehr et al. Feb 2003 A1
20030050621 Lebel et al. Mar 2003 A1
20030060765 Campbell et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030104982 Wittmann et al. Jun 2003 A1
20030114836 Estes et al. Jun 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030145854 Hickle Aug 2003 A1
20030159945 Miyazaki et al. Aug 2003 A1
20030160683 Blomquist Aug 2003 A1
20030161744 Vilks et al. Aug 2003 A1
20030163088 Blomquist Aug 2003 A1
20030163090 Blomquist et al. Aug 2003 A1
20030163223 Blomquist Aug 2003 A1
20030163789 Blomquist Aug 2003 A1
20030199854 Kovach et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030236489 Jacobson et al. Dec 2003 A1
20040015102 Cummings et al. Jan 2004 A1
20040015132 Brown Jan 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040073095 Causey, III et al. Apr 2004 A1
20040115067 Rush et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040180810 Pilarski Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040225252 Gillespie et al. Nov 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20050021006 Tonnies Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050030164 Blomquist Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050050621 Thomas Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050065760 Murtfeldt et al. Mar 2005 A1
20050081847 Lee et al. Apr 2005 A1
20050095063 Fathallah et al. May 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143864 Blomquist Jun 2005 A1
20050171513 Mann et al. Aug 2005 A1
20050182358 Veit et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050197553 Cooper Sep 2005 A1
20050197621 Poulsen et al. Sep 2005 A1
20050203349 Nanikashvili Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050228234 Yang Oct 2005 A1
20050272640 Doyle, III et al. Dec 2005 A1
20050277872 Colby, Jr. et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001550 Mann et al. Jan 2006 A1
20060014670 Green et al. Jan 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060047192 Hellwig et al. Mar 2006 A1
20060047538 Condurso et al. Mar 2006 A1
20060080059 Stupp et al. Apr 2006 A1
20060085223 Anderson et al. Apr 2006 A1
20060093785 Hickle May 2006 A1
20060094985 Aceti et al. May 2006 A1
20060122577 Poulsen et al. Jun 2006 A1
20060132292 Blomquist Jun 2006 A1
20060137695 Hellwig et al. Jun 2006 A1
20060167345 Vespasiani Jul 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060202859 Mastrototaro et al. Sep 2006 A1
20060224109 Steil et al. Oct 2006 A1
20060253097 Braig et al. Nov 2006 A1
20060253296 Liisberg et al. Nov 2006 A1
20060264895 Flanders Nov 2006 A1
20060271020 Huang et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060276771 Galley et al. Dec 2006 A1
20070016127 Staib et al. Jan 2007 A1
20070016170 Kovelman Jan 2007 A1
20070016449 Cohen et al. Jan 2007 A1
20070021733 Hansen et al. Jan 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070060796 Kim Mar 2007 A1
20070060871 Istoc et al. Mar 2007 A1
20070060874 Nesbitt et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070073236 Mernoe et al. Mar 2007 A1
20070083152 Williams, Jr. et al. Apr 2007 A1
20070083335 Moerman Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070112298 Mueller, Jr. et al. May 2007 A1
20070112299 Smit et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070149861 Crothall et al. Jun 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070156092 Estes et al. Jul 2007 A1
20070156457 Brown Jul 2007 A1
20070167905 Estes et al. Jul 2007 A1
20070167912 Causey et al. Jul 2007 A1
20070173712 Shah et al. Jul 2007 A1
20070173762 Estes et al. Jul 2007 A1
20070179355 Rosen Aug 2007 A1
20070179444 Causey et al. Aug 2007 A1
20070203454 Shermer et al. Aug 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070233051 Hohl et al. Oct 2007 A1
20070245258 Ginggen et al. Oct 2007 A1
20070251835 Mehta et al. Nov 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070253380 Jollota et al. Nov 2007 A1
20070254593 Jollota et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070255125 Moberg et al. Nov 2007 A1
20070255126 Moberg et al. Nov 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070255348 Holtzclaw Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070287985 Estes et al. Dec 2007 A1
20070299389 Halbert et al. Dec 2007 A1
20080004601 Jennewine et al. Jan 2008 A1
20080030369 Mann et al. Feb 2008 A1
20080033357 Mann et al. Feb 2008 A1
20080033360 Evans et al. Feb 2008 A1
20080033361 Evans et al. Feb 2008 A1
20080045902 Estes et al. Feb 2008 A1
20080045903 Estes et al. Feb 2008 A1
20080045904 Estes et al. Feb 2008 A1
20080045931 Estes et al. Feb 2008 A1
20080051709 Mounce et al. Feb 2008 A1
20080051714 Moberg et al. Feb 2008 A1
20080051716 Stutz Feb 2008 A1
20080058773 John Mar 2008 A1
20080065007 Peterson et al. Mar 2008 A1
20080065016 Peterson et al. Mar 2008 A1
20080071209 Moubayed et al. Mar 2008 A1
20080071210 Moubayed et al. Mar 2008 A1
20080071217 Moubayed et al. Mar 2008 A1
20080071251 Moubayed et al. Mar 2008 A1
20080071580 Marcus et al. Mar 2008 A1
20080076969 Kraft et al. Mar 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080106431 Blomquist May 2008 A1
20080114299 Damgaard-Sorensen et al. May 2008 A1
20080132844 Peterson et al. Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080147004 Mann et al. Jun 2008 A1
20080147041 Kristensen Jun 2008 A1
20080147050 Mann et al. Jun 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080171697 Jacotot et al. Jul 2008 A1
20080171967 Blomquist et al. Jul 2008 A1
20080172026 Blomquist Jul 2008 A1
20080172027 Blomquist Jul 2008 A1
20080172028 Blomquist Jul 2008 A1
20080172029 Blomquist Jul 2008 A1
20080172030 Blomquist Jul 2008 A1
20080172031 Blomquist Jul 2008 A1
20080177165 Blomquist et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080206799 Blomquist Aug 2008 A1
20080228056 Blomquist et al. Sep 2008 A1
20080249470 Malave et al. Oct 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080255517 Nair et al. Oct 2008 A1
20080264024 Baaken Oct 2008 A1
20080269585 Ginsberg Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080287922 Panduro Nov 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20080294024 Cosentino et al. Nov 2008 A1
20080294094 Mhatre et al. Nov 2008 A1
20080294108 Briones et al. Nov 2008 A1
20080294109 Estes et al. Nov 2008 A1
20080294142 Patel et al. Nov 2008 A1
20080294294 Blomquist Nov 2008 A1
20080300534 Blomquist Dec 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080300651 Gerber et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312584 Montgomery et al. Dec 2008 A1
20080312585 Brukalo et al. Dec 2008 A1
20090005726 Jones et al. Jan 2009 A1
20090018779 Cohen et al. Jan 2009 A1
20090030733 Cohen et al. Jan 2009 A1
20090036753 King Feb 2009 A1
20090054475 Chen et al. Feb 2009 A1
20090067989 Estes et al. Mar 2009 A1
20090069745 Estes et al. Mar 2009 A1
20090069749 Miller et al. Mar 2009 A1
20090069787 Estes et al. Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090088731 Campbell et al. Apr 2009 A1
20090093756 Minaie et al. Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090105646 Hendrixson et al. Apr 2009 A1
20090112626 Talbot et al. Apr 2009 A1
20090118592 Klitgaard May 2009 A1
20090131860 Nielsen May 2009 A1
20090131861 Braig et al. May 2009 A1
20090143661 Taub et al. Jun 2009 A1
20090150186 Cohen et al. Jun 2009 A1
20090150865 Young et al. Jun 2009 A1
20090156990 Wenger et al. Jun 2009 A1
20090157003 Jones et al. Jun 2009 A1
20090163855 Shin et al. Jun 2009 A1
20090171269 Jennewine et al. Jul 2009 A1
20090177142 Blomquist et al. Jul 2009 A1
20090177147 Blomquist et al. Jul 2009 A1
20090177154 Blomquist Jul 2009 A1
20090177180 Rubalcaba, Jr. et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090212966 Panduro Aug 2009 A1
20090216100 Ebner et al. Aug 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090247982 Krulevitch et al. Oct 2009 A1
20090254037 Bryant, Jr. et al. Oct 2009 A1
20090267774 Enegren et al. Oct 2009 A1
20090267775 Enegren et al. Oct 2009 A1
20090270705 Enegren et al. Oct 2009 A1
20090270810 DeBelser et al. Oct 2009 A1
20090275886 Blomquist et al. Nov 2009 A1
20090275887 Estes Nov 2009 A1
20090281393 Smith Nov 2009 A1
20100008795 DiPerna Jan 2010 A1
20100010330 Rankers et al. Jan 2010 A1
20100030045 Gottlieb et al. Feb 2010 A1
20100030387 Sen Feb 2010 A1
20100049164 Estes Feb 2010 A1
20100056993 Chase Mar 2010 A1
20100057040 Hayter Mar 2010 A1
20100057043 Kovatchev et al. Mar 2010 A1
20100064257 Buck et al. Mar 2010 A1
20100069730 Bergstrom et al. Mar 2010 A1
20100081993 O'Connor Apr 2010 A1
20100094110 Heller et al. Apr 2010 A1
20100094251 Estes Apr 2010 A1
20100095229 Dixon et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100114015 Kanderian, Jr. et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100121170 Rule May 2010 A1
20100125241 Prud'Homme et al. May 2010 A1
20100130933 Holland et al. May 2010 A1
20100138197 Sher Jun 2010 A1
20100145276 Yodfat et al. Jun 2010 A1
20100145303 Yodfat et al. Jun 2010 A1
20100156633 Buck, Jr. et al. Jun 2010 A1
20100160740 Cohen et al. Jun 2010 A1
20100161236 Cohen et al. Jun 2010 A1
20100161346 Getschmann et al. Jun 2010 A1
20100162786 Keenan et al. Jul 2010 A1
20100174228 Buckingham et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100174553 Kaufman et al. Jul 2010 A1
20100179402 Goode, Jr. et al. Jul 2010 A1
20100185142 Kamen et al. Jul 2010 A1
20100185152 Larsen et al. Jul 2010 A1
20100185175 Kamen et al. Jul 2010 A1
20100192686 Kamen et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100205001 Knudsen et al. Aug 2010 A1
20100218132 Soni et al. Aug 2010 A1
20100222765 Blomquist et al. Sep 2010 A1
20100228186 Estes et al. Sep 2010 A1
20100234709 Say et al. Sep 2010 A1
20100235439 Goodnow Sep 2010 A1
20100249530 Rankers et al. Sep 2010 A1
20100249561 Patek et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262078 Blomquist Oct 2010 A1
20100262117 Magni et al. Oct 2010 A1
20100262434 Shaya Oct 2010 A1
20100274218 Yodfat et al. Oct 2010 A1
20100274592 Nitzan et al. Oct 2010 A1
20100274751 Blomquist Oct 2010 A1
20100277119 Montague et al. Nov 2010 A1
20100280329 Randloev et al. Nov 2010 A1
20100286563 Bryer et al. Nov 2010 A1
20100286601 Yodfat et al. Nov 2010 A1
20100286653 Kubel et al. Nov 2010 A1
20100292634 Kircher, Jr. et al. Nov 2010 A1
20100295686 Sloan et al. Nov 2010 A1
20100298681 Say et al. Nov 2010 A1
20100298685 Hayter et al. Nov 2010 A1
20100305421 Ow-Wing Dec 2010 A1
20100305545 Kanderian, Jr. et al. Dec 2010 A1
20100305965 Benjamin et al. Dec 2010 A1
20100312085 Andrews et al. Dec 2010 A1
20100324382 Cantwell et al. Dec 2010 A1
20100324398 Tzyy-Ping Dec 2010 A1
20100331651 Groll Dec 2010 A1
20110004188 Shekalim Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009725 Hill et al. Jan 2011 A1
20110009813 Rankers Jan 2011 A1
20110015509 Peyser Jan 2011 A1
20110021898 Wei et al. Jan 2011 A1
20110022025 Savoie et al. Jan 2011 A1
20110033833 Blomquist et al. Feb 2011 A1
20110040247 Mandro et al. Feb 2011 A1
20110040251 Blomquist et al. Feb 2011 A1
20110047499 Mandro et al. Feb 2011 A1
20110050428 Istoc Mar 2011 A1
20110053121 Heaton Mar 2011 A1
20110054390 Searle et al. Mar 2011 A1
20110054391 Ward et al. Mar 2011 A1
20110056264 Kaplan et al. Mar 2011 A1
20110058485 Sloan Mar 2011 A1
20110060281 Aeschlimann et al. Mar 2011 A1
20110071372 Sloan et al. Mar 2011 A1
20110071464 Palerm Mar 2011 A1
20110071465 Wang et al. Mar 2011 A1
20110071765 Yodfat et al. Mar 2011 A1
20110077481 Say et al. Mar 2011 A1
20110077963 Knudsen et al. Mar 2011 A1
20110082439 Wenger et al. Apr 2011 A1
20110087165 Amborn et al. Apr 2011 A1
20110092788 Long et al. Apr 2011 A1
20110092894 McGill et al. Apr 2011 A1
20110098548 Budiman et al. Apr 2011 A1
20110098637 Hill Apr 2011 A1
20110098638 Chawla et al. Apr 2011 A1
20110098674 Vicente et al. Apr 2011 A1
20110105955 Yudovsky et al. May 2011 A1
20110106011 Cinar et al. May 2011 A1
20110106050 Yodfat et al. May 2011 A1
20110112504 Causey et al. May 2011 A1
20110112505 Starkweather et al. May 2011 A1
20110112506 Starkweather et al. May 2011 A1
20110118578 Timmerman May 2011 A1
20110118662 Mhatre et al. May 2011 A1
20110118699 Yodfat et al. May 2011 A1
20110124996 Reinke et al. May 2011 A1
20110124999 Reggiardo et al. May 2011 A1
20110125085 McGill et al. May 2011 A1
20110125095 Lebel et al. May 2011 A1
20110126188 Bernstein et al. May 2011 A1
20110130716 Estes et al. Jun 2011 A1
20110130746 Budiman Jun 2011 A1
20110133946 Kopp et al. Jun 2011 A1
20110137239 Debelser et al. Jun 2011 A1
20110144586 Michaud et al. Jun 2011 A1
20110144616 Michaud et al. Jun 2011 A1
20110152770 DiPerna et al. Jun 2011 A1
20110152824 DiPerna et al. Jun 2011 A1
20110160654 Hanson et al. Jun 2011 A1
20110160695 Sigrist et al. Jun 2011 A1
20110166544 Verhoef et al. Jul 2011 A1
20110166875 Hayter et al. Jul 2011 A1
20110172744 Davis et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110178462 Moberg et al. Jul 2011 A1
20110178717 Goodnow et al. Jul 2011 A1
20110184264 Galasso et al. Jul 2011 A1
20110184342 Pesach et al. Jul 2011 A1
20110190701 Remde et al. Aug 2011 A1
20110193704 Harper et al. Aug 2011 A1
20110196213 Thukral et al. Aug 2011 A1
20110202040 Remde et al. Aug 2011 A1
20110205065 Strachan et al. Aug 2011 A1
20110208155 Palerm et al. Aug 2011 A1
20110213225 Bernstein et al. Sep 2011 A1
20110213306 Hanson et al. Sep 2011 A1
20110256024 Cole et al. Oct 2011 A1
20110257625 Jasperson et al. Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110266999 Yodfat et al. Nov 2011 A1
20120013625 Blomquist et al. Jan 2012 A1
20120013802 Blomquist et al. Jan 2012 A1
20120029433 Michaud et al. Feb 2012 A1
20120029941 Malave et al. Feb 2012 A1
20120030610 DiPerna et al. Feb 2012 A1
20120041415 Estes et al. Feb 2012 A1
20120053522 Yodfat et al. Mar 2012 A1
20120059353 Kovatchev et al. Mar 2012 A1
20120059673 Cohen et al. Mar 2012 A1
20120095315 Tenbarge et al. Apr 2012 A1
20120109100 Estes et al. May 2012 A1
20120123230 Brown et al. May 2012 A1
20120163481 Ebner et al. Jun 2012 A1
20120185267 Kamen et al. Jul 2012 A1
20120191061 Yodfat et al. Jul 2012 A1
20120191063 Brauker et al. Jul 2012 A1
20120226124 Blomquist Sep 2012 A1
20120232484 Blomquist Sep 2012 A1
20120232485 Blomquist Sep 2012 A1
20120232520 Sloan et al. Sep 2012 A1
20120232521 Blomquist Sep 2012 A1
20120238852 Brauker et al. Sep 2012 A1
20120238854 Blomquist et al. Sep 2012 A1
20120239362 Blomquist Sep 2012 A1
20120245524 Estes et al. Sep 2012 A1
20120246106 Atlas Sep 2012 A1
20120265722 Blomquist Oct 2012 A1
20120277667 Yodat et al. Nov 2012 A1
20120296269 Blomquist Nov 2012 A1
20120330227 Budiman et al. Dec 2012 A1
20130012917 Miller et al. Jan 2013 A1
20130046281 Javitt Feb 2013 A1
20130053816 DiPerna et al. Feb 2013 A1
20130131630 Blomquist May 2013 A1
20130324928 Kruse Dec 2013 A1
20130331790 Brown et al. Dec 2013 A1
20130345625 Causey, III et al. Dec 2013 A1
20130345663 Agrawal et al. Dec 2013 A1
20140005633 Finan Jan 2014 A1
20140012511 Mensinger et al. Jan 2014 A1
20140019396 Carlsgaard et al. Jan 2014 A1
20140066890 Sloan et al. Mar 2014 A1
20140074059 Howell et al. Mar 2014 A1
20140137641 Brown May 2014 A1
20140171772 Blomquist Jun 2014 A1
20140180203 Budiman Jun 2014 A1
20140273042 Saint Sep 2014 A1
20140275419 Ward et al. Sep 2014 A1
20140276419 Rosinko et al. Sep 2014 A1
20140276420 Rosinko Sep 2014 A1
20140276531 Walsh Sep 2014 A1
20140276553 Rosinko et al. Sep 2014 A1
20140276556 Saint et al. Sep 2014 A1
20140276570 Saint Sep 2014 A1
20140276574 Saint Sep 2014 A1
20140350371 Blomquist et al. Nov 2014 A1
20140378898 Rosinko Dec 2014 A1
20150045770 Debelser et al. Feb 2015 A1
20150073337 Saint et al. Mar 2015 A1
20150165117 Palerm Jun 2015 A1
20150182693 Rosinko Jul 2015 A1
20150182695 Rosinko Jul 2015 A1
20150217044 Blomquist Aug 2015 A1
20150217051 Mastrototaro Aug 2015 A1
20150314062 Blomquist et al. Nov 2015 A1
20160030669 Harris et al. Feb 2016 A1
20160082188 Blomquist et al. Mar 2016 A1
20160199571 Rosinko et al. Jul 2016 A1
20160228041 Heller et al. Aug 2016 A1
20170000943 Blomquist et al. Jan 2017 A1
20180092578 Blomquist Apr 2018 A1
20180133397 Estes May 2018 A1
20190328967 Blomquist et al. Oct 2019 A1
20190350501 Blomquist et al. Nov 2019 A1
20190365997 Harris Dec 2019 A1
20190388015 Blomquist Dec 2019 A1
20200101226 Blomquist et al. Apr 2020 A1
20200114076 Ulrich et al. Apr 2020 A1
20200261649 Michaud et al. Aug 2020 A1
Foreign Referenced Citations (49)
Number Date Country
399065 Jul 1924 DE
4407005 Mar 1995 DE
19819407 Nov 1999 DE
10121317 Nov 2002 DE
10352456 Jul 2005 DE
1102194 May 2001 EP
1571582 Sep 2005 EP
2006034323 Feb 2006 JP
WO-0045696 Aug 2000 WO
WO-0074753 Dec 2000 WO
WO-0152727 Jul 2001 WO
WO-02062212 Aug 2002 WO
WO-03082091 Oct 2003 WO
WO-2005046559 May 2005 WO
WO-2006061169 Jun 2006 WO
WO-2006127841 Nov 2006 WO
WO-2007000425 Jan 2007 WO
WO-2007056592 May 2007 WO
WO-2007065944 Jun 2007 WO
WO-2007089537 Aug 2007 WO
WO-2007149533 Dec 2007 WO
WO-2008048556 Apr 2008 WO
WO-2008048582 Apr 2008 WO
WO-2008048583 Apr 2008 WO
WO-2008048584 Apr 2008 WO
WO-2008048585 Apr 2008 WO
WO-2008048586 Apr 2008 WO
WO-2008048587 Apr 2008 WO
WO-2008091320 Jul 2008 WO
WO-2008103175 Aug 2008 WO
WO-2008112078 Sep 2008 WO
WO-2008144693 Nov 2008 WO
WO-2008144695 Nov 2008 WO
WO-2008144697 Nov 2008 WO
WO-2008144698 Nov 2008 WO
WO-2008153689 Dec 2008 WO
WO-2008153819 Dec 2008 WO
WO-2009016636 Feb 2009 WO
WO-2009032399 Mar 2009 WO
WO-2009032400 Mar 2009 WO
WO-2009035759 Mar 2009 WO
WO-2009088983 Jul 2009 WO
WO-2009089028 Jul 2009 WO
WO-2009089029 Jul 2009 WO
WO-2010111505 Sep 2010 WO
WO-2011068648 Jun 2011 WO
WO-2013016363 Jan 2013 WO
WO-2013184896 Dec 2013 WO
WO-2018085600 May 2018 WO
Non-Patent Literature Citations (19)
Entry
Application and File History for U.S. Appl. No. 15/394,066, filed Dec. 29, 2016, inventor Rosinko.
Bott, et al., “Impact of Smoking on the Metabolic Action of Subcutaneous Regular Insulin in Type 2 Diabetic Patients,” Horm. Metab. Res., vol. 37, 2005, pp. 445-449.
Chase, et at., “The Use of Insulin Pumps With Meal Bolus Alarms in Children With Type 1 Diabetes to Improve Glycemic Control,” Diabetes Carem, vol. 29, No. 5, May 2006, pp. 1012-1015.
“Compare Insulin Pump for Diabetes,” Printed from www.diabetesnet.com/diabetes-technology/insulin-pump-models.php, Jun. 18, 2009, 4 pages.
Lehmann, et al., “Combining rule-based reasoning and mathematical modeling in diabetes care,” Artificial Intelligence in Medicine, vol. 6, 1994, pp. 137-160.
Hildebrandt P, “Subcutaneous Absorption of Insulin in Insulin-Dependent Diavetic patients. Influence of Species Physico-Chemical properties of Insulin and Physiological factors,” Danish Medical Bulletin, Aug. 1991, 10 pages.
Plougmann, et al., “DiasNet—a diabetes advisory system for communication and education via the internet,” International Journal of Medical Informatics, vol. 64, 2001, pp. 319-330.
Puckett, et al., “A model for multiple subcutaneous insulin injections developed from individual diabetic patient data,” vol. 269, 1995, p. E1115-E1124.
Smith Medical MD Inc., “Deltec Cozmo, Personalized Insulin Pump, Starting Guide,” http://web.archive.org/web/20041207133223/http://www.cozmore.com/Library/-upload/starting.sub.--guide.sub.--032004.pdf, XP002497833, Dec. 7, 2004, pp. 1-83.
Stapel E., “Converting Between Decimals, Fractions, and Percents,” Purplemath, 2006, 9 pages, Available at http://www.purplemath.com/modules/percents2.htm, 2006.
Trajanoski, et al., “Pharmacokinetic Model for the Absorption of Subcutaneously Injected Soluble Insulin and Monomeric Insulin Analogues,” Biomedizinische Technik, vol. 38, No. 9. Sep. 1, 1993, pp. 224-231.
Wach, et al., “Numerical Approximation of Mathematical Model for Absorption of Subcutaneously Injected Insulin,” Med & Biol. Eng & comput., vol. 33, 1995, pp. 18-23.
Walsh, et al., “Diabetes Technology—Concept 1: Super Bolus,” available at Diabetes Technology—Concept 1: Super Bolus available at http://www.diabetesnet.com/diabetes.sub.--technology/super.sub.--bolus.ph-p&gt, Sep. 17, 2007, 3 pages.
Walsh J., et al., “Select & Test Your Correction Factor,” Pumping Insulin, Fourth Edition, Chapter 13, 2006, 10 Pages.
Walsh J., et al., “Select & Test Your Basal Rates,” Pumping Insulin, Fourth Edition, Chapter 11, 2006, 30 pages.
Walsh J., et al., “Select and Test Your Carb Factor,” Pumping Insulin, Fourth Edition, Chapter 12, 2006, 32 pages.
Walsh J., et al., “Pumping Insulin: Everything you need for Success on a Smart insulin Pump,” Torrey Pines Press, San Diego, ISBN 1-884804-86-1, 2006, 3 pages.
Wikipedia.com, “Wikipedia's definition for “basal rate”,” printed from wikipedia.com on Jun. 12, 2009, 1 page.
Wilinska, et al., “Insulin Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin,” IEEE Transactions on Biomedical Engineering, vol. 52, No. 1, Jan. 2005, pp. 3-12.
Related Publications (1)
Number Date Country
20200179603 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
62272255 Dec 2015 US
Continuations (1)
Number Date Country
Parent 15394066 Dec 2016 US
Child 16791129 US