The invention relates generally to the field of RFID.
In the field of radio frequency identification (RFID), where multiple transponder interrogators (readers) are present is a limited area, it is sometimes necessary to synchronize the readers is to reduce or eliminate interference from one reader onto another reader or from two readers onto a transponder. By synchronizing the readers both readers can communicate with transponders in a way that both readers to communicate with their respective transponders without interfering with each other's signals.
This invention consists of a method for using a signal (either at RF or baseband) to synchronize in time two or more RFID readers, and to minimize interference among a group of reader using time and frequency multiplexing. The reason to synchronize the readers is to reduce or eliminate interference from one reader onto another reader or from two readers onto a transponder. By synchronizing the readers both readers can communicate with transponders in a way that both readers to communicate with their respective transponders without interfering with each other's signals. Adding frequency multiplexing to additional groups of readers will allow this configuration to exist in areas with multiple readers such as a toll plaza with multiple traffic lanes.
An exemplary synchronization circuit looks for specific patterns in the RF or modulation signal from reader 1. The patterns are based on the transponder protocol reader 1 is using to communicate. Once the synchronization circuit detects the pattern, the circuit generates a signal or pulse that is sent to reader 2. This indicates that reader 1 is in the process of transmitting a command. Reader 2 uses that pulse to know when reader 1 is communication with a transponder.
The synchronization circuit does not have to be an external circuit. Reader 2 could be modified to look at the RF output or modulation signal of reader 1 to detect the modulation from reader 1 to generate a synchronization signal.
To maximize efficiency, different reader/transponder systems may need to use different multiple access schemes. As an example, in RFID tolling systems active transponders all use the same frequency to communicate from transponder to reader. These active transponders need to use separate time slots to minimize interference among readers. Backscatter or passive transponders use different RF frequencies to minimize interference among readers. This invention combines the synchronization method above with the concept of using time slots for appropriate protocols and separate frequencies for other protocols to minimize interference and other deleterious effects like cross-lane reads.
With respect to the timing diagram in
With respect to the timing diagram in
With respect to
In this example each of the synchronization circuits detects the modulation of reader 1. Reader 2 uses the output of the synchronization circuit to start a delay. The delay for each pair of readers is different, but allows the RF from each of the reader 2s in the diagram to operate simultaneously. The RF frequency for each of the reader 2s in the diagram is different. This allows the group of reader 1s to operate with TDM and the group of reader 2s to operate with FDM. This diagram shows that all of the readers 2s are operating at the same time on different frequencies. This is not the only configuration that could be used. Each of the reader 2s do not have to be aligned in time. The reader 2s in the diagram could each operate at different times as long as they did not interfere with the operation of the reader is in their group.
This is utility application claims the benefit under 35 U.S.C. 119(e) of provisional application Ser. No. 61/761,033 filed on Feb. 5, 2013 entitled “System and Method for Synchronizing RFID Readers Utilizing RF or Modulation Signals” and on provisional application Ser. No. 61/775,328 filed on Mar. 8, 2013 and entitled “System and Method for Synchronizing RFID Readers Utilizing RF or Modulation Signals.”
Number | Date | Country | |
---|---|---|---|
61761033 | Feb 2013 | US | |
61775328 | Mar 2013 | US |