The present invention relates generally to the analysis of multimedia content displayed in a web-page, and more specifically to a system and methods for enhancing a user's search experience for multimedia content that exists on a user device.
Search engines are used for searching for information over the World Wide Web. Search engines are also utilized to search locally over the user device. A search query refers to a query that a user enters into such a search engine in order to receive search results. The search query may be in a form of a textual query, an image, or an audio query.
Searching for multimedia content elements (e.g., picture, video clips, audio clips, etc.) stored locally on the user device as well as on the web may not be an easy task. According to the prior art solutions, respective of an input query a search is performed through the metadata of the available multimedia content elements. The metadata is typically associated with a multimedia content element and includes parameters, such as the element's size, type, name, and short description, and so on. The description and name of the element are typically provided by the creator of the element and by a person saving or placing the element in a local device and/or a website. Therefore, metadata of an element, in most cases, is not sufficiently descriptive of the multimedia element. For example, a user may save a picture of a cat under the file name of “weekend fun”, thus the metadata would not be descriptive of the contents of the picture.
As a result, searching for multimedia content elements based solely on their metadata may not provide the most accurate results. Following the above example, the input query ‘cat’ would not return the picture saved under “weekend fun”. In computer science, a tag is a non-hierarchical keyword or term assigned to a piece of information, such as multimedia content elements.
Tagging has gained wide popularity due to the growth of social networking, photograph sharing, and bookmarking of websites. Some websites allow users to create and manage tags that categorize content using simple keywords. The users of such sites manually add and define the description of the tags. However, some websites limit the tagging options of multimedia elements, for example, by only allowing tagging of people shown in a picture. Therefore, searching for all multimedia content elements solely based on the tags would not be efficient.
It would be therefore advantageous to provide a solution that overcomes the deficiencies of the prior art by providing search results respective of the contents of the multimedia elements. It should be further advantageous to provide a solution for automatically tagging multimedia elements based on their contents.
Certain embodiments disclosed herein include a system and method tagging multimedia content elements. The method comprises receiving at least one multimedia content element from a user device; generating at least one signature for the at least one multimedia content element; generating at least one tag based on the least one generated signature, wherein the at least one tag is searchable by the user device; and sending the tag generated for the received multimedia content element to storage on the user device.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.
The certain disclosed embodiments provide a system and a method for enhancing and enriching users' experience while navigating through multimedia content sources that exist on a user device. In an embodiment, the system is configured to receive multimedia content elements from the user device. The system is further configured to analyze the multimedia content elements and generate one or more signatures respective thereto. Based on the generated signatures at least one tag is provided which includes descriptive information about the contents of the multimedia elements. The generated tags are searchable. The system is configured to store the multimedia content elements together with their respective tags in a data storage unit accessible by the user device, a search engine, and so on. In one embodiment, upon receiving a query or a portion thereof from a user, the system is configured to search through the data storage unit for tags related to the user's query and provide the multimedia content elements respective of the tags associated thereto.
Further connected to the network 110 is a user device 120. A user device 120 may be, for example, a personal computer (PC), a personal digital assistant (PDA), a mobile phone, a smart phone, a tablet computer, an electronic wearable device (e.g., glasses, a watch, etc.), and other kinds of wired and mobile appliances, equipped with browsing, viewing, capturing, storing, listening, filtering, and managing capabilities enabled as further discussed herein below.
The user device 120 may further include a software application (App) 125 installed thereon. A software application App 125 may be downloaded from an application repository, such as the AppStore®, Google Play®, or any repositories hosting software applications. The application 125 may be pre-installed in the user device 120. In one embodiment, the application 125 is a web-browser. It should be noted that only one user device 120 and one application 125 are discussed with reference to
Also communicatively connected to the network 110 is a data warehouse 150 that stores multimedia content elements, tags related to the multimedia content elements, and so on. In the embodiment illustrated in
The system 100 shown in
The server 130 is configured to receive and serve multimedia content elements. This includes, but is not limited to, generating at least one tag for each received multimedia content element, saving the received elements and their associated tags in the data warehouse 150 and/or the user device 120, and searching for multimedia elements using the assigned tags responsive of an input query. The tag is a textual index term assigned to certain content. A multimedia content element may include, for example, an image, a graphic, a video stream, a video clip, an audio stream, an audio clip, a video frame, a photograph, and an image of signals (e.g., spectrograms, phasograms, scalograms, etc.), and/or combinations thereof and portions thereof.
Specifically, according to the disclosed embodiments, the server 130 is configured to receive multimedia content elements from the user device 120 accompanied by a request to tag the elements. With this aim, the server 130 sends each received multimedia content element to the SGS 140 and/or DCC system 160. The decision which is used (e.g., the SGS 140 and/or DCC system 160) may be a default configuration or the results by each approach.
In an embodiment, the SGS 140 receives a multimedia content element and returns at least one signature respective thereto. The generated signature(s) may be robust to noise and distortion. The process for generating the signatures is discussed in detail below.
Then, using the generated signature(s), the server 130 is configured to search for similar multimedia content elements in the data warehouse 150. The process of matching between multimedia content elements is discussed in detail below with respect to
Upon identification of similar multimedia content elements, the server 130 is configured to extract tags associated with the identified elements and assigned such tags to the received multimedia content elements. It should be noted that if multiple tags are found matching, the server 130 may correlate between the tags or select tags that are most descriptive or strongly related to the received element. Such determination may be achieved by selecting tags associated with multimedia content elements such that their respective signatures match the input element over a predefined threshold.
According to another embodiment, the tag for a received multimedia content element is determined based on a concept structure (or concept). A concept is a collection of signatures representing elements of the unstructured data and metadata describing the concept. As a non-limiting example, a ‘Superman concept’ is a signature-reduced cluster of signatures describing elements (such as multimedia elements) related to, e.g., a Superman cartoon: a set of metadata representing proving textual representation of the Superman concept. Techniques for generating concept structures are also described in U.S. Pat. No. 8,266,185 (hereinafter '185) to Raichelgauz et al., which is assigned to common assignee, and is incorporated hereby by reference for all that it contains.
According to this embodiment, a query is sent to the DCC system 160 to match a received content element of at least one concept structure. If such a match is found, then the metadata of the concept structure is used to tag the received content element. The identification of a concept matching the received multimedia content element includes matching at least one signature generated for the received element (such signature(s) may be produced either by the SGS 140 or the DCC system 160) and comparing the element's signatures to signatures representing a concept structure. The matching can be performed across all concept structures maintained by the system DCC 160.
It should be noted that if the query sent to the DCC system 160 returns multiple concept structures, a correlation for matching concept structures is performed to generate a tag that best describes the element. The correlation can be achieved by identifying a ratio between signatures' sizes, a spatial location of each signature, and using the probabilistic models.
The one or more tags are assigned to each of the multimedia content elements returned to the user device 120. In addition, the server 130 may save each of the received elements and their respective tags in the storage device. As a non-liming example, if the multimedia content element received is a picture in which a dog, a human and a ball are shown, signatures are generated respective of these objects (i.e., the dog, the human, and the ball). Based on the signatures, one or more tags are generated by the server 130 and assigned to the multimedia content element. Because the tag is generated respective of the contents of the picture, the tags may be “dog lovers”, “man plays with his dog”, a similarly descriptive tag.
In another embodiment, the multimedia content elements can be searched using the generated tags, either locally in the user device 120 or remotely in the data warehouse 150. Upon receiving a query or a portion thereof from a user, the search returns one or more multimedia content elements respective of the correlation of the query and the elements' tags. It should be noted that when a local search is performed, for example, by means of the application 125, no connection to the network 110 is required.
It should further be noted that the signatures generated for multimedia content elements would enable accurate tagging of the elements, because the signatures generated for the multimedia content elements, according to the disclosed embodiments, allow for recognition and classification of multimedia content.
In S220, at least one signature is generated for the multimedia content element. The signature(s) are generated by a signature generator (e.g., SGS 140) as described below with respect to
In S230, at least one tag is created and assigned to the received multimedia content element based on generated signatures. According to one embodiment, S230 includes searching for at least one matching multimedia content element in the data warehouse 150 and using the tag of the matching content element to tag the received content element. Two signatures are determined to be matching if their respective signatures at least partially match (e.g., in comparison to a predefined threshold). According to another embodiment, S230 includes querying a DCC system with the generated signature to identify at least one matching concept structure. The metadata of the matching concept structure is used to tag the received multimedia element.
In S240, the multimedia content element together with its respective tags is sent to the user device to be stored locally on the user device. In addition, multimedia content element together with its respective tag(s) may be saved in a data warehouse (e.g., warehouse 150). In S250, it is checked whether received multimedia content elements have been processed, and if so, execution continues with S220 where a new element is selected for processing; otherwise, execution terminates.
In S320, based on the query, a search is performed for appropriate multimedia content elements through the user device 120 based on a correlation between their assigned tags and the multimedia content elements. In S330, it is checked whether at least one related tag is identified, and if so execution continues with S350; otherwise, execution continues with S340 where a notification is sent to the user device that no matching tags were identified. Then execution terminates.
In S350, respective of the matching tags the appropriate multimedia content elements are displayed in the user device 120 as search results. In S360, it is checked whether there are additional queries and if so, execution continues with S310; otherwise, execution terminates.
Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the Signatures (hereinafter the “Architecture”). Further details on the computational Cores generation are provided below. The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in
To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames. In an embodiment the server 130 is configured with a plurality of computational cores to perform matching between signatures.
The Signatures' generation process is now described with reference to
In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame ‘i’ is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: {right arrow over (S)} which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.
For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni}(1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:
where, ␣ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component ‘j’ (for example, grayscale value of a certain pixel j); Thx is a constant Threshold value, where ‘x’ is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.
The Threshold values Thx are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:
1: For: Vi>ThRS
2: p(Vi>ThRS)≈l/L
i.e., approximately l out of the total L nodes can be found to generate a Robust Signature according to the above definition.
3: Both Robust Signature and Signature are generated for certain frame i.
It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to common assignee, which are hereby incorporated by reference for all the useful information they contain.
A Computational Core generation is a process of definition, selection, and tuning of the parameters of the cores for a certain realization in a specific system and application. The process is based on several design considerations, such as:
(a) The Cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.
(b) The Cores should be optimally designed for the type of signals, i.e., the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit their maximal computational power.
(c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.
A detailed description of the Computational Core generation and the process for configuring such cores is discussed in more detail in the co-pending U.S. patent application Ser. No. 12/084,150 referenced above.
The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the disclosed embodiments and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Number | Date | Country | Kind |
---|---|---|---|
171577 | Oct 2005 | IL | national |
173409 | Jan 2006 | IL | national |
185414 | Aug 2007 | IL | national |
This application claims the benefit of U.S. provisional application 61/860,261 filed on Jul. 31, 2013. This application is a continuation-in-part (CIP) of U.S. patent application Ser. No. 13/602,858 filed Sep. 4, 2012, now issued as U.S. Pat. No. 8,868,619, which is a continuation of U.S. patent application Ser. No. 12/603,123, filed on Oct. 21, 2009, now issued as U.S. Pat. No. 8,266,185, which is a continuation-in-part of: (1) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now issued as U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005 and Israeli Application No. 173409 filed on 29 Jan. 2006; (2) U.S. patent application Ser. No. 12/195,863, filed Aug. 21, 2008, now issued as U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150; (3) U.S. patent application Ser. No. 12/348,888, filed Jan. 5, 2009, now pending, which is a CIP of U.S. patent application Ser. No. 12/084,150, having a filing date of Apr. 7, 2009 and U.S. patent application Ser. No. 12/195,863 filed on Aug. 21, 2008; and (4) U.S. patent application Ser. No. 12/538,495, filed Aug. 10, 2009, now issued as U.S. Pat. No. 8,312,031, which is a CIP of U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, U.S. patent application Ser. No. 12/195,863, filed on Aug. 21, 2008; and U.S. patent application Ser. No. 12/348,888, filed Jan. 5, 2009. All of the applications referenced above are herein incorporated by reference for all that they contain.
Number | Name | Date | Kind |
---|---|---|---|
4733353 | Jaswa | Mar 1988 | A |
4932645 | Schorey et al. | Jun 1990 | A |
4972363 | Nguyen et al. | Nov 1990 | A |
5214746 | Fogel et al. | May 1993 | A |
5307451 | Clark | Apr 1994 | A |
5568181 | Greenwood et al. | Oct 1996 | A |
5638425 | Meador et al. | Jun 1997 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5870754 | Dimitrova et al. | Feb 1999 | A |
5873080 | Coden et al. | Feb 1999 | A |
5887193 | Takahashi | Mar 1999 | A |
5933527 | Ishikawa | Aug 1999 | A |
5940821 | Wical | Aug 1999 | A |
5978754 | Kumano | Nov 1999 | A |
5987454 | Hobbs | Nov 1999 | A |
6038560 | Wical | Mar 2000 | A |
6052481 | Grajski et al. | Apr 2000 | A |
6070167 | Qian et al. | May 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6144767 | Bottou et al. | Nov 2000 | A |
6147636 | Gershenson | Nov 2000 | A |
6240423 | Hirata | May 2001 | B1 |
6243375 | Speicher | Jun 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6329986 | Cheng | Dec 2001 | B1 |
6363373 | Steinkraus | Mar 2002 | B1 |
6381656 | Shankman | Apr 2002 | B1 |
6411229 | Kobayashi | Jun 2002 | B2 |
6422617 | Fukumoto et al. | Jul 2002 | B1 |
6493692 | Kobayashi et al. | Dec 2002 | B1 |
6493705 | Kobayashi et al. | Dec 2002 | B1 |
6507672 | Watkins et al. | Jan 2003 | B1 |
6523022 | Hobbs | Feb 2003 | B1 |
6523046 | Liu et al. | Feb 2003 | B2 |
6524861 | Anderson | Feb 2003 | B1 |
6526400 | Takata et al. | Feb 2003 | B1 |
6539100 | Amir et al. | Mar 2003 | B1 |
6550018 | Abonamah et al. | Apr 2003 | B1 |
6557042 | He et al. | Apr 2003 | B1 |
6560597 | Dhillon et al. | May 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6601060 | Tomaru | Jul 2003 | B1 |
6611628 | Sekiguchi et al. | Aug 2003 | B1 |
6611837 | Schreiber | Aug 2003 | B2 |
6618711 | Ananth | Sep 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643643 | Lee et al. | Nov 2003 | B1 |
6675159 | Lin et al. | Jan 2004 | B1 |
6704725 | Lee | Mar 2004 | B1 |
6728706 | Aggarwal et al. | Apr 2004 | B2 |
6732149 | Kephart | May 2004 | B1 |
6751363 | Natsev et al. | Jun 2004 | B1 |
6754435 | Kim | Jun 2004 | B2 |
6763069 | Divakaran et al. | Jul 2004 | B1 |
6763519 | McColl et al. | Jul 2004 | B1 |
6774917 | Foote et al. | Aug 2004 | B1 |
6795818 | Lee | Sep 2004 | B1 |
6804356 | Krishnamachari | Oct 2004 | B1 |
6813395 | Kinjo | Nov 2004 | B1 |
6816857 | Weissman et al. | Nov 2004 | B1 |
6819797 | Smith et al. | Nov 2004 | B1 |
6836776 | Schreiber | Dec 2004 | B2 |
6845374 | Oliver | Jan 2005 | B1 |
6901207 | Watkins | May 2005 | B1 |
6938025 | Lulich et al. | Aug 2005 | B1 |
6963659 | Tumey et al. | Nov 2005 | B2 |
6970881 | Mohan et al. | Nov 2005 | B1 |
6978264 | Chandrasekar et al. | Dec 2005 | B2 |
7006689 | Kasutani | Feb 2006 | B2 |
7013051 | Sekiguchi et al. | Mar 2006 | B2 |
7043473 | Rassool et al. | May 2006 | B1 |
7124149 | Smith et al. | Oct 2006 | B2 |
7158681 | Persiantsev | Jan 2007 | B2 |
7199798 | Echigo et al. | Apr 2007 | B1 |
7215828 | Luo | May 2007 | B2 |
7248300 | Ono | Jul 2007 | B1 |
7260564 | Lynn et al. | Aug 2007 | B1 |
7277928 | Lennon | Oct 2007 | B2 |
7296012 | Ohashi | Nov 2007 | B2 |
7299261 | Oliver et al. | Nov 2007 | B1 |
7302117 | Sekiguchi et al. | Nov 2007 | B2 |
7313805 | Rosin et al. | Dec 2007 | B1 |
7346629 | Kapur et al. | Mar 2008 | B2 |
7392238 | Zhou et al. | Jun 2008 | B1 |
7406459 | Chen et al. | Jul 2008 | B2 |
7441037 | Saxena | Oct 2008 | B2 |
7450740 | Shah et al. | Nov 2008 | B2 |
7523102 | Bjarnestam et al. | Apr 2009 | B2 |
7526607 | Singh et al. | Apr 2009 | B1 |
7529659 | Wold | May 2009 | B2 |
7536384 | Venkataraman et al. | May 2009 | B2 |
7542969 | Rappaport et al. | Jun 2009 | B1 |
7548910 | Chu et al. | Jun 2009 | B1 |
7555477 | Bayley et al. | Jun 2009 | B2 |
7555478 | Bayley et al. | Jun 2009 | B2 |
7562076 | Kapur | Jul 2009 | B2 |
7574436 | Kapur et al. | Aug 2009 | B2 |
7574668 | Nunez et al. | Aug 2009 | B2 |
7577656 | Kawai et al. | Aug 2009 | B2 |
7581166 | Renger et al. | Aug 2009 | B2 |
7657100 | Gokturk et al. | Feb 2010 | B2 |
7660468 | Gokturk et al. | Feb 2010 | B2 |
7694318 | Eldering et al. | Apr 2010 | B2 |
7836054 | Kawai et al. | Nov 2010 | B2 |
7920894 | Wyler | Apr 2011 | B2 |
7921107 | Chang et al. | Apr 2011 | B2 |
7933407 | Keidar et al. | Apr 2011 | B2 |
7974994 | Li et al. | Jul 2011 | B2 |
7987194 | Walker et al. | Jul 2011 | B1 |
7987217 | Long et al. | Jul 2011 | B2 |
7991715 | Schiff et al. | Aug 2011 | B2 |
8000655 | Wang et al. | Aug 2011 | B2 |
8023739 | Hohimer et al. | Sep 2011 | B2 |
8036893 | Reich | Oct 2011 | B2 |
8098934 | Vincent et al. | Jan 2012 | B2 |
8112376 | Raichelgauz et al. | Feb 2012 | B2 |
8266185 | Raichelgauz | Sep 2012 | B2 |
8312031 | Raichelgauz | Nov 2012 | B2 |
8315442 | Gokturk et al. | Nov 2012 | B2 |
8316005 | Moore | Nov 2012 | B2 |
8326775 | Raichelgauz et al. | Dec 2012 | B2 |
8345982 | Gokturk et al. | Jan 2013 | B2 |
8352745 | McKeeth | Jan 2013 | B2 |
8548828 | Longmire | Oct 2013 | B1 |
8655801 | Raichelgauz et al. | Feb 2014 | B2 |
8677377 | Cheyer et al. | Mar 2014 | B2 |
8682667 | Haughay | Mar 2014 | B2 |
8688446 | Yanagihara | Apr 2014 | B2 |
8706503 | Cheyer et al. | Apr 2014 | B2 |
8775442 | Moore et al. | Jul 2014 | B2 |
8799195 | Raichelgauz et al. | Aug 2014 | B2 |
8799196 | Raichelquaz et al. | Aug 2014 | B2 |
8818916 | Raichelgauz et al. | Aug 2014 | B2 |
8856051 | Song et al. | Oct 2014 | B1 |
8868619 | Raichelgauz | Oct 2014 | B2 |
8868861 | Shimizu et al. | Oct 2014 | B2 |
8880539 | Raichelgauz et al. | Nov 2014 | B2 |
8880566 | Raichelgauz et al. | Nov 2014 | B2 |
8886648 | Procopio et al. | Nov 2014 | B1 |
8898568 | Bull et al. | Nov 2014 | B2 |
8922414 | Raichelgauz et al. | Dec 2014 | B2 |
8959037 | Raichelgauz et al. | Feb 2015 | B2 |
8990125 | Raichelgauz et al. | Mar 2015 | B2 |
9009086 | Raichelgauz et al. | Apr 2015 | B2 |
9031999 | Raichelgauz | May 2015 | B2 |
9087049 | Raichelgauz et al. | Jul 2015 | B2 |
9104747 | Raichelgauz et al. | Aug 2015 | B2 |
9111134 | Rogers et al. | Aug 2015 | B1 |
9165406 | Gray et al. | Oct 2015 | B1 |
9191626 | Raichelgauz et al. | Nov 2015 | B2 |
9197244 | Raichelgauz et al. | Nov 2015 | B2 |
9218606 | Raichelgauz et al. | Dec 2015 | B2 |
9235557 | Raichelgauz et al. | Jan 2016 | B2 |
9256668 | Raichelgauz et al. | Feb 2016 | B2 |
9323754 | Ramanathan et al. | Apr 2016 | B2 |
9330189 | Raichelgauz et al. | May 2016 | B2 |
9384196 | Raichelgauz et al. | Jul 2016 | B2 |
9438270 | Raichelgauz et al. | Sep 2016 | B2 |
9466068 | Raichelgauz et al. | Oct 2016 | B2 |
9606992 | Geisner et al. | Mar 2017 | B2 |
9646006 | Raichelgauz et al. | May 2017 | B2 |
20010019633 | Tenze et al. | Sep 2001 | A1 |
20010038876 | Anderson | Nov 2001 | A1 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020010715 | Chinn et al. | Jan 2002 | A1 |
20020019881 | Bokhari et al. | Feb 2002 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020059580 | Kalker et al. | May 2002 | A1 |
20020072935 | Rowse et al. | Jun 2002 | A1 |
20020087530 | Smith | Jul 2002 | A1 |
20020099870 | Miller et al. | Jul 2002 | A1 |
20020107827 | Benitez-Jimenez et al. | Aug 2002 | A1 |
20020123928 | Eldering et al. | Sep 2002 | A1 |
20020126872 | Brunk et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020129296 | Kwiat et al. | Sep 2002 | A1 |
20020143976 | Barker et al. | Oct 2002 | A1 |
20020147637 | Kraft et al. | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020157116 | Jasinschi | Oct 2002 | A1 |
20020159640 | Vaithilingam et al. | Oct 2002 | A1 |
20020161739 | Oh | Oct 2002 | A1 |
20020163532 | Thomas et al. | Nov 2002 | A1 |
20020174095 | Lulich et al. | Nov 2002 | A1 |
20020178410 | Haitsma et al. | Nov 2002 | A1 |
20030028660 | Igawa et al. | Feb 2003 | A1 |
20030041047 | Chang et al. | Feb 2003 | A1 |
20030050815 | Seigel et al. | Mar 2003 | A1 |
20030078766 | Appelt et al. | Apr 2003 | A1 |
20030086627 | Berriss et al. | May 2003 | A1 |
20030089216 | Birmingham et al. | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030123713 | Geng | Jul 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030182567 | Barton et al. | Sep 2003 | A1 |
20030191764 | Richards | Oct 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030217335 | Chung et al. | Nov 2003 | A1 |
20030229531 | Heckerman et al. | Dec 2003 | A1 |
20040003394 | Ramaswamy | Jan 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040068510 | Hayes et al. | Apr 2004 | A1 |
20040107181 | Rodden | Jun 2004 | A1 |
20040111465 | Chuang | Jun 2004 | A1 |
20040117367 | Smith et al. | Jun 2004 | A1 |
20040117638 | Monroe | Jun 2004 | A1 |
20040128142 | Whitham | Jul 2004 | A1 |
20040128511 | Sun et al. | Jul 2004 | A1 |
20040133927 | Sternberg et al. | Jul 2004 | A1 |
20040153426 | Nugent | Aug 2004 | A1 |
20040215663 | Liu et al. | Oct 2004 | A1 |
20040249779 | Nauck et al. | Dec 2004 | A1 |
20040260688 | Gross | Dec 2004 | A1 |
20040264744 | Zhang et al. | Dec 2004 | A1 |
20040267774 | Lin et al. | Dec 2004 | A1 |
20050021394 | Miedema et al. | Jan 2005 | A1 |
20050114198 | Koningstein et al. | May 2005 | A1 |
20050131884 | Gross et al. | Jun 2005 | A1 |
20050144455 | Haitsma | Jun 2005 | A1 |
20050172130 | Roberts | Aug 2005 | A1 |
20050177372 | Wang et al. | Aug 2005 | A1 |
20050238198 | Brown et al. | Oct 2005 | A1 |
20050238238 | Xu et al. | Oct 2005 | A1 |
20050245241 | Durand et al. | Nov 2005 | A1 |
20050249398 | Khamene et al. | Nov 2005 | A1 |
20050256820 | Dugan et al. | Nov 2005 | A1 |
20050262428 | Little et al. | Nov 2005 | A1 |
20050281439 | Lange | Dec 2005 | A1 |
20050289163 | Gordon et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060013451 | Haitsma | Jan 2006 | A1 |
20060020860 | Tardif et al. | Jan 2006 | A1 |
20060020958 | Allamanche et al. | Jan 2006 | A1 |
20060026203 | Tan et al. | Feb 2006 | A1 |
20060031216 | Semple et al. | Feb 2006 | A1 |
20060041596 | Stirbu et al. | Feb 2006 | A1 |
20060048191 | Xiong | Mar 2006 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060112035 | Cecchi et al. | May 2006 | A1 |
20060129822 | Snijder et al. | Jun 2006 | A1 |
20060143674 | Jones et al. | Jun 2006 | A1 |
20060153296 | Deng | Jul 2006 | A1 |
20060159442 | Kim et al. | Jul 2006 | A1 |
20060173688 | Whitham | Aug 2006 | A1 |
20060184638 | Chua et al. | Aug 2006 | A1 |
20060204035 | Guo et al. | Sep 2006 | A1 |
20060217818 | Fujiwara | Sep 2006 | A1 |
20060217828 | Hicken | Sep 2006 | A1 |
20060224529 | Kermani | Oct 2006 | A1 |
20060236343 | Chang | Oct 2006 | A1 |
20060242139 | Butterfield et al. | Oct 2006 | A1 |
20060242554 | Gerace et al. | Oct 2006 | A1 |
20060247983 | Dalli | Nov 2006 | A1 |
20060248558 | Barton et al. | Nov 2006 | A1 |
20060253423 | McLane et al. | Nov 2006 | A1 |
20070009159 | Fan | Jan 2007 | A1 |
20070011151 | Hagar et al. | Jan 2007 | A1 |
20070019864 | Koyama et al. | Jan 2007 | A1 |
20070022374 | Huang et al. | Jan 2007 | A1 |
20070027844 | Toub et al. | Feb 2007 | A1 |
20070033163 | Epstein et al. | Feb 2007 | A1 |
20070038608 | Chen | Feb 2007 | A1 |
20070038614 | Guha | Feb 2007 | A1 |
20070042757 | Jung et al. | Feb 2007 | A1 |
20070061302 | Ramer et al. | Mar 2007 | A1 |
20070067304 | Ives | Mar 2007 | A1 |
20070067682 | Fang | Mar 2007 | A1 |
20070071330 | Oostveen et al. | Mar 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070083611 | Farago et al. | Apr 2007 | A1 |
20070091106 | Moroney | Apr 2007 | A1 |
20070130112 | Lin | Jun 2007 | A1 |
20070130159 | Gulli et al. | Jun 2007 | A1 |
20070156720 | Maren | Jul 2007 | A1 |
20070168413 | Barletta et al. | Jul 2007 | A1 |
20070174320 | Chou | Jul 2007 | A1 |
20070195987 | Rhoads | Aug 2007 | A1 |
20070220573 | Chiussi et al. | Sep 2007 | A1 |
20070244902 | Seide et al. | Oct 2007 | A1 |
20070253594 | Lu et al. | Nov 2007 | A1 |
20070255785 | Hayashi et al. | Nov 2007 | A1 |
20070268309 | Tanigawa et al. | Nov 2007 | A1 |
20070282826 | Hoeber et al. | Dec 2007 | A1 |
20070294295 | Finkelstein et al. | Dec 2007 | A1 |
20070298152 | Baets | Dec 2007 | A1 |
20080046406 | Seide et al. | Feb 2008 | A1 |
20080049629 | Morrill | Feb 2008 | A1 |
20080072256 | Boicey et al. | Mar 2008 | A1 |
20080091527 | Silverbrook et al. | Apr 2008 | A1 |
20080152231 | Gokturk et al. | Jun 2008 | A1 |
20080163288 | Ghosal et al. | Jul 2008 | A1 |
20080165861 | Wen et al. | Jul 2008 | A1 |
20080172413 | Chiu | Jul 2008 | A1 |
20080172615 | Igelman et al. | Jul 2008 | A1 |
20080201299 | Lehikoinen et al. | Aug 2008 | A1 |
20080204706 | Magne et al. | Aug 2008 | A1 |
20080228995 | Tan et al. | Sep 2008 | A1 |
20080237359 | Silverbrook et al. | Oct 2008 | A1 |
20080253737 | Kimura et al. | Oct 2008 | A1 |
20080263579 | Mears et al. | Oct 2008 | A1 |
20080270373 | Oostveen et al. | Oct 2008 | A1 |
20080313140 | Pereira | Dec 2008 | A1 |
20080313146 | Wong et al. | Dec 2008 | A1 |
20090013414 | Washington et al. | Jan 2009 | A1 |
20090022472 | Bronstein et al. | Jan 2009 | A1 |
20090024641 | Quigley et al. | Jan 2009 | A1 |
20090245603 | Koruga et al. | Jan 2009 | A1 |
20090037408 | Rodgers | Feb 2009 | A1 |
20090043637 | Eder | Feb 2009 | A1 |
20090043818 | Raichelgauz et al. | Feb 2009 | A1 |
20090089587 | Brunk et al. | Apr 2009 | A1 |
20090119157 | Dulepet | May 2009 | A1 |
20090125544 | Brindley | May 2009 | A1 |
20090148045 | Lee et al. | Jun 2009 | A1 |
20090157575 | Schobben et al. | Jun 2009 | A1 |
20090172030 | Schiff et al. | Jul 2009 | A1 |
20090175538 | Bronstein et al. | Jul 2009 | A1 |
20090220138 | Zhang et al. | Sep 2009 | A1 |
20090226930 | Roep et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090253583 | Yoganathan | Oct 2009 | A1 |
20090259687 | Do et al. | Oct 2009 | A1 |
20090277322 | Cai et al. | Nov 2009 | A1 |
20090282218 | Raichelgauz et al. | Nov 2009 | A1 |
20100042646 | Raichelgauz et al. | Feb 2010 | A1 |
20100082684 | Churchill et al. | Apr 2010 | A1 |
20100104184 | Bronstein et al. | Apr 2010 | A1 |
20100125569 | Nair et al. | May 2010 | A1 |
20100162405 | Cook et al. | Jun 2010 | A1 |
20100173269 | Puri et al. | Jul 2010 | A1 |
20100198626 | Cho et al. | Aug 2010 | A1 |
20100211565 | Lotito | Aug 2010 | A1 |
20100268524 | Nath et al. | Oct 2010 | A1 |
20100306193 | Pereira et al. | Dec 2010 | A1 |
20100318493 | Wessling | Dec 2010 | A1 |
20100322522 | Wang et al. | Dec 2010 | A1 |
20110052063 | McAuley et al. | Mar 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110145068 | King et al. | Jun 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110202848 | Ismalon | Aug 2011 | A1 |
20110246566 | Kashef et al. | Oct 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110296315 | Lin et al. | Dec 2011 | A1 |
20110313856 | Cohen et al. | Dec 2011 | A1 |
20120082362 | Diem et al. | Apr 2012 | A1 |
20120131454 | Shah | May 2012 | A1 |
20120150890 | Jeong et al. | Jun 2012 | A1 |
20120167133 | Carroll et al. | Jun 2012 | A1 |
20120185445 | Borden et al. | Jul 2012 | A1 |
20120197857 | Huang et al. | Aug 2012 | A1 |
20120239690 | Asikainen et al. | Sep 2012 | A1 |
20120239694 | Avner et al. | Sep 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120301105 | Rehg et al. | Nov 2012 | A1 |
20120315009 | Evans et al. | Dec 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20120331011 | Raichelgauz et al. | Dec 2012 | A1 |
20130031489 | Gubin et al. | Jan 2013 | A1 |
20130066856 | Ong et al. | Mar 2013 | A1 |
20130067035 | Amanat et al. | Mar 2013 | A1 |
20130067364 | Berntson et al. | Mar 2013 | A1 |
20130080433 | Raichelgauz et al. | Mar 2013 | A1 |
20130086499 | Dyor et al. | Apr 2013 | A1 |
20130089248 | Remiszewski et al. | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130159298 | Mason et al. | Jun 2013 | A1 |
20130173635 | Sanjeev | Jul 2013 | A1 |
20130226930 | Arngren et al. | Aug 2013 | A1 |
20130311924 | Denker et al. | Nov 2013 | A1 |
20130325550 | Varghese et al. | Dec 2013 | A1 |
20130332951 | Gharaat et al. | Dec 2013 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140025692 | Pappas | Jan 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140152698 | Kim et al. | Jun 2014 | A1 |
20140176604 | Venkitaraman et al. | Jun 2014 | A1 |
20140188786 | Raichelgauz et al. | Jul 2014 | A1 |
20140193077 | Shiiyama et al. | Jul 2014 | A1 |
20140250032 | Huang et al. | Sep 2014 | A1 |
20140282655 | Roberts | Sep 2014 | A1 |
20140300722 | Garcia | Oct 2014 | A1 |
20140310825 | Raichelgauz et al. | Oct 2014 | A1 |
20140330830 | Raichelgauz et al. | Nov 2014 | A1 |
20140341476 | Kulick et al. | Nov 2014 | A1 |
20150154189 | Raichelgauz et al. | Jun 2015 | A1 |
20150286742 | Zhang et al. | Oct 2015 | A1 |
20150289022 | Gross | Oct 2015 | A1 |
20160026707 | Ong et al. | Jan 2016 | A1 |
20160239566 | Raichelgauz et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
0231764 | Apr 2002 | WO |
2003005242 | Jan 2003 | WO |
2003067467 | Aug 2003 | WO |
2004019527 | Mar 2004 | WO |
2005027457 | Mar 2005 | WO |
20070049282 | May 2007 | WO |
2014137337 | Sep 2014 | WO |
2016040376 | Mar 2016 | WO |
Entry |
---|
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available Jul. 14, 2005. |
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003. |
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005. |
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Received Nov. 16, 2001, Available online Mar. 12, 2002. |
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475. |
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000. |
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) 1-48 Submitted Nov. 2004; published Jul. 2005. |
Lin, C.; Chang, S.: “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Mutlimedia '98; Bristol, U.K., Sep. 1998; pp. 49-54. |
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046. |
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003. |
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4. |
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251. German National Research Center for Information Technology. |
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine: a case study”, Information Processing Letters, Amsterdam, NL, vol. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190. |
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252. |
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254. |
Burgsteiner et al.: “Movement Prediction From Real-World Images Using a Liquid State Machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130. |
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688. |
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated Sep. 12, 2011. |
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008. |
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) including International Search Report for International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009. |
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009. |
Foote, Jonathan, et al. “Content-Based Retrieval of Music and Audio”, 1997 Institute of Systems Science, National University of Singapore, Singapore (Abstract). |
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995. |
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009. |
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012. |
Mahdhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009. |
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996. |
Scheper, et al. “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96. |
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009. |
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008. |
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007. |
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352. |
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines. |
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications. |
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications. |
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234. |
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications. |
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France. |
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong. |
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia. |
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26. |
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona. |
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system. |
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic. |
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523. |
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346. |
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK. |
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176. |
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003. |
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357. |
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10. |
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388. |
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4. |
Hua, et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004. 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004. |
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3. |
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19. |
Johnson, John L. “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications. |
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications. |
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292. |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017. |
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications. |
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230. |
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2. |
Stewart, et al., “Independent Component Representations for Face Recognition”, Proceedings of the SPIE Symposium on Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12. |
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU. |
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017. |
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11. |
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications. |
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University ADVENT technical report, 2007, pp. 222-2006-8. |
Zou, et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216. |
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15. |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts institute of Technology, 2004, pp. 1-106. |
Marian Stewart Bet al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging ,iii Jose, California, Jan., 1998, pp. 1-12. |
Vallet et al., “Personalized Content Retrieval in Context Using Ontological Knowledge”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, March 2007. pp. 336-346. |
Li et al., “Matching Commercial Clips from TV Streams Using a Unigue, Robust and Compact Signature”, IEEE 2005, pp. 1-8. |
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: <https://bigbangtrans.wordpress.com/series-4-episode-12-the-bus-pants-utilization/>]. |
Wang et al., “Classifying Objectionable Websites Based onlmage Content”, Stanford University, pp. 1-12. |
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144. |
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of ArtificialIntelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48. |
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12. |
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol.: 9, pp. 41-44. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp 1-14. |
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4. |
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16 1996, vol.: 3 Pages 1472-1475, vol. 3. |
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989. |
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314. |
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281. |
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528. |
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300. |
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China Received Nov. 2001, Available online Mar. 12, 2002, pp. 239-263. |
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol.: 7, Issue: 1, Mar. 2003, pp. 37-42. |
Hua et al., “Robust Video Signature Based on Ordinal Measure”, International Conference on Image Proceesing (ICIP), 2004 IEEE, pp. 685-688. |
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University Advent Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17. |
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173. |
Number | Date | Country | |
---|---|---|---|
20140040232 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61860261 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12603123 | Oct 2009 | US |
Child | 13602858 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13602858 | Sep 2012 | US |
Child | 14050991 | US | |
Parent | 12084150 | US | |
Child | 12603123 | US | |
Parent | 12195863 | Aug 2008 | US |
Child | 12084150 | US | |
Parent | 12084150 | Apr 2009 | US |
Child | 12195863 | US | |
Parent | 12348888 | Jan 2009 | US |
Child | 12603123 | US | |
Parent | 12084150 | Apr 2009 | US |
Child | 12348888 | US | |
Parent | 12195863 | Aug 2008 | US |
Child | 12084150 | US | |
Parent | 12538495 | Aug 2009 | US |
Child | 12603123 | US | |
Parent | 12084150 | Apr 2009 | US |
Child | 12538495 | US | |
Parent | 12195863 | Aug 2008 | US |
Child | 12084150 | US | |
Parent | 12348888 | Jan 2009 | US |
Child | 12195863 | US |