System and method for tagging multimedia content elements

Information

  • Patent Grant
  • 10380267
  • Patent Number
    10,380,267
  • Date Filed
    Thursday, October 10, 2013
    11 years ago
  • Date Issued
    Tuesday, August 13, 2019
    5 years ago
Abstract
A method for tagging multimedia content elements is provided. The method comprises receiving at least one multimedia content element from a user device; generating at least one signature for the at least one multimedia content element; generating at least one tag based on the least one generated signature, wherein the at least one tag is searchable by the user device; and sending the tag generated for the received multimedia content element to storage on the user device.
Description
TECHNICAL FIELD

The present invention relates generally to the analysis of multimedia content displayed in a web-page, and more specifically to a system and methods for enhancing a user's search experience for multimedia content that exists on a user device.


BACKGROUND

Search engines are used for searching for information over the World Wide Web. Search engines are also utilized to search locally over the user device. A search query refers to a query that a user enters into such a search engine in order to receive search results. The search query may be in a form of a textual query, an image, or an audio query.


Searching for multimedia content elements (e.g., picture, video clips, audio clips, etc.) stored locally on the user device as well as on the web may not be an easy task. According to the prior art solutions, respective of an input query a search is performed through the metadata of the available multimedia content elements. The metadata is typically associated with a multimedia content element and includes parameters, such as the element's size, type, name, and short description, and so on. The description and name of the element are typically provided by the creator of the element and by a person saving or placing the element in a local device and/or a website. Therefore, metadata of an element, in most cases, is not sufficiently descriptive of the multimedia element. For example, a user may save a picture of a cat under the file name of “weekend fun”, thus the metadata would not be descriptive of the contents of the picture.


As a result, searching for multimedia content elements based solely on their metadata may not provide the most accurate results. Following the above example, the input query ‘cat’ would not return the picture saved under “weekend fun”. In computer science, a tag is a non-hierarchical keyword or term assigned to a piece of information, such as multimedia content elements.


Tagging has gained wide popularity due to the growth of social networking, photograph sharing, and bookmarking of websites. Some websites allow users to create and manage tags that categorize content using simple keywords. The users of such sites manually add and define the description of the tags. However, some websites limit the tagging options of multimedia elements, for example, by only allowing tagging of people shown in a picture. Therefore, searching for all multimedia content elements solely based on the tags would not be efficient.


It would be therefore advantageous to provide a solution that overcomes the deficiencies of the prior art by providing search results respective of the contents of the multimedia elements. It should be further advantageous to provide a solution for automatically tagging multimedia elements based on their contents.


SUMMARY

Certain embodiments disclosed herein include a system and method tagging multimedia content elements. The method comprises receiving at least one multimedia content element from a user device; generating at least one signature for the at least one multimedia content element; generating at least one tag based on the least one generated signature, wherein the at least one tag is searchable by the user device; and sending the tag generated for the received multimedia content element to storage on the user device.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is a schematic block diagram of a network system utilized to describe the various embodiments disclosed herein.



FIG. 2 is a flowchart describing the process of identifying multimedia content elements collected by a user device.



FIG. 3 is a flowchart describing the process of enhancing a user search experience through a user device according to an embodiment.



FIG. 4 is a block diagram depicting the basic flow of information in the signature generator system.



FIG. 5 is a diagram showing the flow of patches generation, response vector generation, and signature generation in a large-scale speech-to-text system.





DETAILED DESCRIPTION

It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.


The certain disclosed embodiments provide a system and a method for enhancing and enriching users' experience while navigating through multimedia content sources that exist on a user device. In an embodiment, the system is configured to receive multimedia content elements from the user device. The system is further configured to analyze the multimedia content elements and generate one or more signatures respective thereto. Based on the generated signatures at least one tag is provided which includes descriptive information about the contents of the multimedia elements. The generated tags are searchable. The system is configured to store the multimedia content elements together with their respective tags in a data storage unit accessible by the user device, a search engine, and so on. In one embodiment, upon receiving a query or a portion thereof from a user, the system is configured to search through the data storage unit for tags related to the user's query and provide the multimedia content elements respective of the tags associated thereto.



FIG. 1 shows an exemplary and non-limiting schematic diagram of a network system 100 utilized to describe the various embodiments disclosed herein. A network 110 is used to communicate between different parts of the system 100. The network 110 may be the Internet, the world-wide-web (WWW), a local area network (LAN), a wide area network (WAN), a metro area network (MAN), and other networks capable of enabling communication between the elements of the system 100.


Further connected to the network 110 is a user device 120. A user device 120 may be, for example, a personal computer (PC), a personal digital assistant (PDA), a mobile phone, a smart phone, a tablet computer, an electronic wearable device (e.g., glasses, a watch, etc.), and other kinds of wired and mobile appliances, equipped with browsing, viewing, capturing, storing, listening, filtering, and managing capabilities enabled as further discussed herein below.


The user device 120 may further include a software application (App) 125 installed thereon. A software application App 125 may be downloaded from an application repository, such as the AppStore®, Google Play®, or any repositories hosting software applications. The application 125 may be pre-installed in the user device 120. In one embodiment, the application 125 is a web-browser. It should be noted that only one user device 120 and one application 125 are discussed with reference to FIG. 1 merely for the sake of simplicity. However, the embodiments disclosed herein are applicable to a plurality of user devices that can access the server 130 and multiple applications installed thereon.


Also communicatively connected to the network 110 is a data warehouse 150 that stores multimedia content elements, tags related to the multimedia content elements, and so on. In the embodiment illustrated in FIG. 1, a server 130 communicatively communicates with the data warehouse 150 through the network 110. In other non-limiting configurations, the server 130 is directly connected to the data warehouse 150.


The system 100 shown in FIG. 1 includes a signature generator system (SGS) 140 and a deep-content classification (DCC) system 160 which are utilized by the server 130 to perform the various disclosed embodiments. The SGS 140 and the DCC system 160 may be connected to the server 130 directly or through the network 110. In certain configurations, the DCC system 160 and the SGS 140 may be embedded in the server 130. It should be noted that the server 130 typically comprises a processing unit and a memory (not shown). The processor is coupled to the memory, which is configured to contain instructions that can be executed by the processing unit. The server 130 also includes a network interface (not shown) to the network 110. In one embodiment the server 130 is commutatively connected or includes an array of Computational Cores configured as discussed in more detail below.


The server 130 is configured to receive and serve multimedia content elements. This includes, but is not limited to, generating at least one tag for each received multimedia content element, saving the received elements and their associated tags in the data warehouse 150 and/or the user device 120, and searching for multimedia elements using the assigned tags responsive of an input query. The tag is a textual index term assigned to certain content. A multimedia content element may include, for example, an image, a graphic, a video stream, a video clip, an audio stream, an audio clip, a video frame, a photograph, and an image of signals (e.g., spectrograms, phasograms, scalograms, etc.), and/or combinations thereof and portions thereof.


Specifically, according to the disclosed embodiments, the server 130 is configured to receive multimedia content elements from the user device 120 accompanied by a request to tag the elements. With this aim, the server 130 sends each received multimedia content element to the SGS 140 and/or DCC system 160. The decision which is used (e.g., the SGS 140 and/or DCC system 160) may be a default configuration or the results by each approach.


In an embodiment, the SGS 140 receives a multimedia content element and returns at least one signature respective thereto. The generated signature(s) may be robust to noise and distortion. The process for generating the signatures is discussed in detail below.


Then, using the generated signature(s), the server 130 is configured to search for similar multimedia content elements in the data warehouse 150. The process of matching between multimedia content elements is discussed in detail below with respect to FIGS. 4 and 5.


Upon identification of similar multimedia content elements, the server 130 is configured to extract tags associated with the identified elements and assigned such tags to the received multimedia content elements. It should be noted that if multiple tags are found matching, the server 130 may correlate between the tags or select tags that are most descriptive or strongly related to the received element. Such determination may be achieved by selecting tags associated with multimedia content elements such that their respective signatures match the input element over a predefined threshold.


According to another embodiment, the tag for a received multimedia content element is determined based on a concept structure (or concept). A concept is a collection of signatures representing elements of the unstructured data and metadata describing the concept. As a non-limiting example, a ‘Superman concept’ is a signature-reduced cluster of signatures describing elements (such as multimedia elements) related to, e.g., a Superman cartoon: a set of metadata representing proving textual representation of the Superman concept. Techniques for generating concept structures are also described in U.S. Pat. No. 8,266,185 (hereinafter '185) to Raichelgauz et al., which is assigned to common assignee, and is incorporated hereby by reference for all that it contains.


According to this embodiment, a query is sent to the DCC system 160 to match a received content element of at least one concept structure. If such a match is found, then the metadata of the concept structure is used to tag the received content element. The identification of a concept matching the received multimedia content element includes matching at least one signature generated for the received element (such signature(s) may be produced either by the SGS 140 or the DCC system 160) and comparing the element's signatures to signatures representing a concept structure. The matching can be performed across all concept structures maintained by the system DCC 160.


It should be noted that if the query sent to the DCC system 160 returns multiple concept structures, a correlation for matching concept structures is performed to generate a tag that best describes the element. The correlation can be achieved by identifying a ratio between signatures' sizes, a spatial location of each signature, and using the probabilistic models.


The one or more tags are assigned to each of the multimedia content elements returned to the user device 120. In addition, the server 130 may save each of the received elements and their respective tags in the storage device. As a non-liming example, if the multimedia content element received is a picture in which a dog, a human and a ball are shown, signatures are generated respective of these objects (i.e., the dog, the human, and the ball). Based on the signatures, one or more tags are generated by the server 130 and assigned to the multimedia content element. Because the tag is generated respective of the contents of the picture, the tags may be “dog lovers”, “man plays with his dog”, a similarly descriptive tag.


In another embodiment, the multimedia content elements can be searched using the generated tags, either locally in the user device 120 or remotely in the data warehouse 150. Upon receiving a query or a portion thereof from a user, the search returns one or more multimedia content elements respective of the correlation of the query and the elements' tags. It should be noted that when a local search is performed, for example, by means of the application 125, no connection to the network 110 is required.


It should further be noted that the signatures generated for multimedia content elements would enable accurate tagging of the elements, because the signatures generated for the multimedia content elements, according to the disclosed embodiments, allow for recognition and classification of multimedia content.



FIG. 2 depicts an exemplary and non-limiting flowchart 200 describing a method for tagging multimedia content elements according to an embodiment. At S210, at least one multimedia content element is received.


In S220, at least one signature is generated for the multimedia content element. The signature(s) are generated by a signature generator (e.g., SGS 140) as described below with respect to FIGS. 4 and 5.


In S230, at least one tag is created and assigned to the received multimedia content element based on generated signatures. According to one embodiment, S230 includes searching for at least one matching multimedia content element in the data warehouse 150 and using the tag of the matching content element to tag the received content element. Two signatures are determined to be matching if their respective signatures at least partially match (e.g., in comparison to a predefined threshold). According to another embodiment, S230 includes querying a DCC system with the generated signature to identify at least one matching concept structure. The metadata of the matching concept structure is used to tag the received multimedia element.


In S240, the multimedia content element together with its respective tags is sent to the user device to be stored locally on the user device. In addition, multimedia content element together with its respective tag(s) may be saved in a data warehouse (e.g., warehouse 150). In S250, it is checked whether received multimedia content elements have been processed, and if so, execution continues with S220 where a new element is selected for processing; otherwise, execution terminates.



FIG. 3 depicts an exemplary and non-limiting flowchart 300 describing a method for enhancing a user search experience through a user device according to one embodiment. At S310, a search query or a portion thereof is attempted by a user of a user device, for example, the user device 120. According to one embodiment, when the user device is on-line in communication with the server 130, upon entering at least a portion of a query, the server 130 is configured to extract one or more suggested queries from the data warehouse 150 and provide them to the user device 120.


In S320, based on the query, a search is performed for appropriate multimedia content elements through the user device 120 based on a correlation between their assigned tags and the multimedia content elements. In S330, it is checked whether at least one related tag is identified, and if so execution continues with S350; otherwise, execution continues with S340 where a notification is sent to the user device that no matching tags were identified. Then execution terminates.


In S350, respective of the matching tags the appropriate multimedia content elements are displayed in the user device 120 as search results. In S360, it is checked whether there are additional queries and if so, execution continues with S310; otherwise, execution terminates.



FIGS. 4 and 5 illustrate the generation of signatures for the multimedia content elements by the SGS 140 according to one embodiment. An exemplary high-level description of the process for large scale matching is depicted in FIG. 4. In this example, the matching is for a video content.


Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the Signatures (hereinafter the “Architecture”). Further details on the computational Cores generation are provided below. The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in FIG. 4. Finally, Target Robust Signatures and/or Signatures are effectively matched, by a matching algorithm 9, to Master Robust Signatures and/or Signatures database to find all matches between the two databases.


To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames. In an embodiment the server 130 is configured with a plurality of computational cores to perform matching between signatures.


The Signatures' generation process is now described with reference to FIG. 5. The first step in the process of signatures generation from a given speech-segment is to breakdown the speech-segment to K patches 14 of random length P and random position within the speech segment 12. The breakdown is performed by the patch generator component 21. The value of the number of patches K, random length P and random position parameters is determined based on optimization, considering the tradeoff between accuracy rate and the number of fast matches required in the flow process of the server 130 and SGS 140. Thereafter, all the K patches are injected in parallel into all computational Cores 3 to generate K response vectors 22, which are fed into a signature generator system 23 to produce a database of Robust Signatures and Signatures 4.


In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame ‘i’ is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: {right arrow over (S)} which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.


For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni}(1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:







V
i

=



j








w
ij



k
j










n
i

=




(

Vi
-

Th
x


)






where, ␣ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component ‘j’ (for example, grayscale value of a certain pixel j); Thx is a constant Threshold value, where ‘x’ is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.


The Threshold values Thx are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:


1: For: Vi>ThRS

    • 1−p(V>ThS)−1−(1−ε)l«1


      i.e., given that l nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these I nodes will belong to the Signature of same, but noisy image, custom character is sufficiently low (according to a system's specified accuracy).


2: p(Vi>ThRS)≈l/L


i.e., approximately l out of the total L nodes can be found to generate a Robust Signature according to the above definition.


3: Both Robust Signature and Signature are generated for certain frame i.


It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to common assignee, which are hereby incorporated by reference for all the useful information they contain.


A Computational Core generation is a process of definition, selection, and tuning of the parameters of the cores for a certain realization in a specific system and application. The process is based on several design considerations, such as:


(a) The Cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.


(b) The Cores should be optimally designed for the type of signals, i.e., the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit their maximal computational power.


(c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.


A detailed description of the Computational Core generation and the process for configuring such cores is discussed in more detail in the co-pending U.S. patent application Ser. No. 12/084,150 referenced above.


The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the disclosed embodiments and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

Claims
  • 1. A method for tagging multimedia content elements, comprising: receiving at least one multimedia content element from a user device;generating at least one signature for the at least one multimedia content element;generating at least one tag based on the at least one generated signature and at least one concept structure, wherein the at least one concept structure is a collection of signatures representing different multimedia content elements and metadata describing the concept structure, wherein the at least one tag is a textual term assigned to the at least one multimedia content element and is searchable by the user device; andsending the generated at least one tag to a storage on the user device.
  • 2. The method of claim 1, wherein the at least one multimedia content element is at least one of: an image, graphics, a video stream, a video clip, an audio stream, an audio clip, a video frame, a photograph, images of signals, and portions thereof.
  • 3. The method of claim 1, further comprising: searching a data warehouse for at least one multimedia content element that is similar to the at least one multimedia content element received from the user device, wherein an identification of the similar multimedia content element is performed based on the at least one signature generated for the at least one multimedia content element received from the user device and a signature of each multimedia content element stored in the data warehouse;extracting at least one tag associated with the at least one similar multimedia content element; andassigning the at least one extracted tag to the at least one multimedia content element received from the user device.
  • 4. The method of claim 3, further comprising: providing a most descriptive tag based on the at least one extracted tag by performing any one of: correlating between tags of the at least one extracted tag; andselecting a tag associated with the at least one similar multimedia content element, wherein the respective signature of the selected tag matches the at least one multimedia content element received from the user device over a predefined threshold.
  • 5. The method of claim 1, further comprising: querying a deep-content-classification (DCC) system to find a match between the at least one concept structure and the received at least one multimedia content element; andutilizing metadata associated with the at least one matching concept structure as the at least one tag.
  • 6. The method of claim 5, further comprising: providing a most descriptive tag, wherein the most descriptive tag is determined based on the at least one extracted tag by correlation of matching concept structures.
  • 7. The method of claim 1, wherein the at least one signature is generated for at least one portion of the received at least one multimedia content element.
  • 8. A non-transitory computer readable medium having stored thereon instructions for causing one or more processing units to execute the method according to claim 1.
  • 9. The method of claim 1, wherein the at least one signature is generated by a signature generator system, wherein the signature generator system includes a plurality of computational cores configured to receive a plurality of unstructured data elements, each computational core of the plurality of computational cores having properties that are at least partly statistically independent of other of the computational cores, the properties are set independently of each other core.
  • 10. A system for tagging multimedia content elements, comprising: a network interface for allowing connectivity to at least one user device and for receiving at least one multimedia content element from a user device;a processor; anda memory connected to the processor, the memory contains instructions that when executed by the processor, configure the system to: generate at least one signature for the at least one multimedia content element;generate at least one tag based on the at least one generated signature and at least one concept structure, wherein the at least one concept structure is a collection of signatures representing different multimedia content elements and metadata describing the at least one concept structure, wherein the at least one tag is a textual term assigned to the at least one multimedia content element and is searchable by the user device; andsend the generated at least one tag to a storage on the user device.
  • 11. The system of claim 10, wherein the at least one multimedia content element is at least one of: an image, graphics, a video stream, a video clip, an audio stream, an audio clip, a video frame, a photograph, and images of signals.
  • 12. The system of claim 11, wherein the system is further configured to provide a most descriptive tag based on the at least one extracted tag.
  • 13. The system of claim 10, wherein the system is further configured to: search a data warehouse for at least one multimedia content element that is similar to the at least one multimedia content element received from the user device, wherein an identification of the similar signature is performed based on the at least one signature generated for the at least one multimedia content element received from the user device and a signature of each multimedia content element stored in the data warehouse;extract at least one tag associated with the at least one similar multimedia content element; andassign the at least one extracted tag to the at least one multimedia content element received from the user device.
  • 14. The system of claim 10, wherein the system is further configured to perform any one of: correlate between the at least one extracted tag, and select a tag associated with the at least one similar multimedia content element, wherein the respective signature of the selected tag matches the at least one multimedia content element received from the user device over a predefined threshold.
  • 15. The system of claim 10, wherein the system is further configured to: query a deep-content-classification (DCC) system to find a match between the at least one concept structure and the received at least one multimedia content element; andutilize metadata associated with the at least one matching concept structure as the at least one tag.
  • 16. The system of claim 15, wherein the system is further configured to correlate matching concept structures to provide a most descriptive tag based on the at least one extracted tag.
  • 17. The system of claim 16, wherein the DCC system is communicatively connected to the system or included in the system.
  • 18. The system of claim 10, wherein the generation of the at least one signature is made by a signature generator, wherein the at least one signature is generated for at least one portion of the at least one multimedia content element.
Priority Claims (3)
Number Date Country Kind
171577 Oct 2005 IL national
173409 Jan 2006 IL national
185414 Aug 2007 IL national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional application 61/860,261 filed on Jul. 31, 2013. This application is a continuation-in-part (CIP) of U.S. patent application Ser. No. 13/602,858 filed Sep. 4, 2012, now issued as U.S. Pat. No. 8,868,619, which is a continuation of U.S. patent application Ser. No. 12/603,123, filed on Oct. 21, 2009, now issued as U.S. Pat. No. 8,266,185, which is a continuation-in-part of: (1) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now issued as U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005 and Israeli Application No. 173409 filed on 29 Jan. 2006; (2) U.S. patent application Ser. No. 12/195,863, filed Aug. 21, 2008, now issued as U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150; (3) U.S. patent application Ser. No. 12/348,888, filed Jan. 5, 2009, now pending, which is a CIP of U.S. patent application Ser. No. 12/084,150, having a filing date of Apr. 7, 2009 and U.S. patent application Ser. No. 12/195,863 filed on Aug. 21, 2008; and (4) U.S. patent application Ser. No. 12/538,495, filed Aug. 10, 2009, now issued as U.S. Pat. No. 8,312,031, which is a CIP of U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, U.S. patent application Ser. No. 12/195,863, filed on Aug. 21, 2008; and U.S. patent application Ser. No. 12/348,888, filed Jan. 5, 2009. All of the applications referenced above are herein incorporated by reference for all that they contain.

US Referenced Citations (399)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5214746 Fogel et al. May 1993 A
5307451 Clark Apr 1994 A
5568181 Greenwood et al. Oct 1996 A
5638425 Meador et al. Jun 1997 A
5745678 Herzberg et al. Apr 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi Mar 1999 A
5933527 Ishikawa Aug 1999 A
5940821 Wical Aug 1999 A
5978754 Kumano Nov 1999 A
5987454 Hobbs Nov 1999 A
6038560 Wical Mar 2000 A
6052481 Grajski et al. Apr 2000 A
6070167 Qian et al. May 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6240423 Hirata May 2001 B1
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6275599 Adler et al. Aug 2001 B1
6329986 Cheng Dec 2001 B1
6363373 Steinkraus Mar 2002 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6493692 Kobayashi et al. Dec 2002 B1
6493705 Kobayashi et al. Dec 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523022 Hobbs Feb 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6526400 Takata et al. Feb 2003 B1
6539100 Amir et al. Mar 2003 B1
6550018 Abonamah et al. Apr 2003 B1
6557042 He et al. Apr 2003 B1
6560597 Dhillon et al. May 2003 B1
6594699 Sahai et al. Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6601060 Tomaru Jul 2003 B1
6611628 Sekiguchi et al. Aug 2003 B1
6611837 Schreiber Aug 2003 B2
6618711 Ananth Sep 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6675159 Lin et al. Jan 2004 B1
6704725 Lee Mar 2004 B1
6728706 Aggarwal et al. Apr 2004 B2
6732149 Kephart May 2004 B1
6751363 Natsev et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6813395 Kinjo Nov 2004 B1
6816857 Weissman et al. Nov 2004 B1
6819797 Smith et al. Nov 2004 B1
6836776 Schreiber Dec 2004 B2
6845374 Oliver Jan 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
6963659 Tumey et al. Nov 2005 B2
6970881 Mohan et al. Nov 2005 B1
6978264 Chandrasekar et al. Dec 2005 B2
7006689 Kasutani Feb 2006 B2
7013051 Sekiguchi et al. Mar 2006 B2
7043473 Rassool et al. May 2006 B1
7124149 Smith et al. Oct 2006 B2
7158681 Persiantsev Jan 2007 B2
7199798 Echigo et al. Apr 2007 B1
7215828 Luo May 2007 B2
7248300 Ono Jul 2007 B1
7260564 Lynn et al. Aug 2007 B1
7277928 Lennon Oct 2007 B2
7296012 Ohashi Nov 2007 B2
7299261 Oliver et al. Nov 2007 B1
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7346629 Kapur et al. Mar 2008 B2
7392238 Zhou et al. Jun 2008 B1
7406459 Chen et al. Jul 2008 B2
7441037 Saxena Oct 2008 B2
7450740 Shah et al. Nov 2008 B2
7523102 Bjarnestam et al. Apr 2009 B2
7526607 Singh et al. Apr 2009 B1
7529659 Wold May 2009 B2
7536384 Venkataraman et al. May 2009 B2
7542969 Rappaport et al. Jun 2009 B1
7548910 Chu et al. Jun 2009 B1
7555477 Bayley et al. Jun 2009 B2
7555478 Bayley et al. Jun 2009 B2
7562076 Kapur Jul 2009 B2
7574436 Kapur et al. Aug 2009 B2
7574668 Nunez et al. Aug 2009 B2
7577656 Kawai et al. Aug 2009 B2
7581166 Renger et al. Aug 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7694318 Eldering et al. Apr 2010 B2
7836054 Kawai et al. Nov 2010 B2
7920894 Wyler Apr 2011 B2
7921107 Chang et al. Apr 2011 B2
7933407 Keidar et al. Apr 2011 B2
7974994 Li et al. Jul 2011 B2
7987194 Walker et al. Jul 2011 B1
7987217 Long et al. Jul 2011 B2
7991715 Schiff et al. Aug 2011 B2
8000655 Wang et al. Aug 2011 B2
8023739 Hohimer et al. Sep 2011 B2
8036893 Reich Oct 2011 B2
8098934 Vincent et al. Jan 2012 B2
8112376 Raichelgauz et al. Feb 2012 B2
8266185 Raichelgauz Sep 2012 B2
8312031 Raichelgauz Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8316005 Moore Nov 2012 B2
8326775 Raichelgauz et al. Dec 2012 B2
8345982 Gokturk et al. Jan 2013 B2
8352745 McKeeth Jan 2013 B2
8548828 Longmire Oct 2013 B1
8655801 Raichelgauz et al. Feb 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8688446 Yanagihara Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8775442 Moore et al. Jul 2014 B2
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelquaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8856051 Song et al. Oct 2014 B1
8868619 Raichelgauz Oct 2014 B2
8868861 Shimizu et al. Oct 2014 B2
8880539 Raichelgauz et al. Nov 2014 B2
8880566 Raichelgauz et al. Nov 2014 B2
8886648 Procopio et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8922414 Raichelgauz et al. Dec 2014 B2
8959037 Raichelgauz et al. Feb 2015 B2
8990125 Raichelgauz et al. Mar 2015 B2
9009086 Raichelgauz et al. Apr 2015 B2
9031999 Raichelgauz May 2015 B2
9087049 Raichelgauz et al. Jul 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9111134 Rogers et al. Aug 2015 B1
9165406 Gray et al. Oct 2015 B1
9191626 Raichelgauz et al. Nov 2015 B2
9197244 Raichelgauz et al. Nov 2015 B2
9218606 Raichelgauz et al. Dec 2015 B2
9235557 Raichelgauz et al. Jan 2016 B2
9256668 Raichelgauz et al. Feb 2016 B2
9323754 Ramanathan et al. Apr 2016 B2
9330189 Raichelgauz et al. May 2016 B2
9384196 Raichelgauz et al. Jul 2016 B2
9438270 Raichelgauz et al. Sep 2016 B2
9466068 Raichelgauz et al. Oct 2016 B2
9606992 Geisner et al. Mar 2017 B2
9646006 Raichelgauz et al. May 2017 B2
20010019633 Tenze et al. Sep 2001 A1
20010038876 Anderson Nov 2001 A1
20010056427 Yoon et al. Dec 2001 A1
20020010682 Johnson Jan 2002 A1
20020010715 Chinn et al. Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020059580 Kalker et al. May 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith Jul 2002 A1
20020099870 Miller et al. Jul 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020129296 Kwiat et al. Sep 2002 A1
20020143976 Barker et al. Oct 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020152267 Lennon Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020159640 Vaithilingam et al. Oct 2002 A1
20020161739 Oh Oct 2002 A1
20020163532 Thomas et al. Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020178410 Haitsma et al. Nov 2002 A1
20030028660 Igawa et al. Feb 2003 A1
20030041047 Chang et al. Feb 2003 A1
20030050815 Seigel et al. Mar 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030086627 Berriss et al. May 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030123713 Geng Jul 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030182567 Barton et al. Sep 2003 A1
20030191764 Richards Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung et al. Nov 2003 A1
20030229531 Heckerman et al. Dec 2003 A1
20040003394 Ramaswamy Jan 2004 A1
20040025180 Begeja et al. Feb 2004 A1
20040068510 Hayes et al. Apr 2004 A1
20040107181 Rodden Jun 2004 A1
20040111465 Chuang Jun 2004 A1
20040117367 Smith et al. Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040128142 Whitham Jul 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040133927 Sternberg et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040215663 Liu et al. Oct 2004 A1
20040249779 Nauck et al. Dec 2004 A1
20040260688 Gross Dec 2004 A1
20040264744 Zhang et al. Dec 2004 A1
20040267774 Lin et al. Dec 2004 A1
20050021394 Miedema et al. Jan 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050144455 Haitsma Jun 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050238198 Brown et al. Oct 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050245241 Durand et al. Nov 2005 A1
20050249398 Khamene et al. Nov 2005 A1
20050256820 Dugan et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060013451 Haitsma Jan 2006 A1
20060020860 Tardif et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060026203 Tan et al. Feb 2006 A1
20060031216 Semple et al. Feb 2006 A1
20060041596 Stirbu et al. Feb 2006 A1
20060048191 Xiong Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060143674 Jones et al. Jun 2006 A1
20060153296 Deng Jul 2006 A1
20060159442 Kim et al. Jul 2006 A1
20060173688 Whitham Aug 2006 A1
20060184638 Chua et al. Aug 2006 A1
20060204035 Guo et al. Sep 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242139 Butterfield et al. Oct 2006 A1
20060242554 Gerace et al. Oct 2006 A1
20060247983 Dalli Nov 2006 A1
20060248558 Barton et al. Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20070009159 Fan Jan 2007 A1
20070011151 Hagar et al. Jan 2007 A1
20070019864 Koyama et al. Jan 2007 A1
20070022374 Huang et al. Jan 2007 A1
20070027844 Toub et al. Feb 2007 A1
20070033163 Epstein et al. Feb 2007 A1
20070038608 Chen Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070067682 Fang Mar 2007 A1
20070071330 Oostveen et al. Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130112 Lin Jun 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070156720 Maren Jul 2007 A1
20070168413 Barletta et al. Jul 2007 A1
20070174320 Chou Jul 2007 A1
20070195987 Rhoads Aug 2007 A1
20070220573 Chiussi et al. Sep 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070255785 Hayashi et al. Nov 2007 A1
20070268309 Tanigawa et al. Nov 2007 A1
20070282826 Hoeber et al. Dec 2007 A1
20070294295 Finkelstein et al. Dec 2007 A1
20070298152 Baets Dec 2007 A1
20080046406 Seide et al. Feb 2008 A1
20080049629 Morrill Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080091527 Silverbrook et al. Apr 2008 A1
20080152231 Gokturk et al. Jun 2008 A1
20080163288 Ghosal et al. Jul 2008 A1
20080165861 Wen et al. Jul 2008 A1
20080172413 Chiu Jul 2008 A1
20080172615 Igelman et al. Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080204706 Magne et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080253737 Kimura et al. Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080313140 Pereira Dec 2008 A1
20080313146 Wong et al. Dec 2008 A1
20090013414 Washington et al. Jan 2009 A1
20090022472 Bronstein et al. Jan 2009 A1
20090024641 Quigley et al. Jan 2009 A1
20090245603 Koruga et al. Jan 2009 A1
20090037408 Rodgers Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090043818 Raichelgauz et al. Feb 2009 A1
20090089587 Brunk et al. Apr 2009 A1
20090119157 Dulepet May 2009 A1
20090125544 Brindley May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090175538 Bronstein et al. Jul 2009 A1
20090220138 Zhang et al. Sep 2009 A1
20090226930 Roep et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090253583 Yoganathan Oct 2009 A1
20090259687 Do et al. Oct 2009 A1
20090277322 Cai et al. Nov 2009 A1
20090282218 Raichelgauz et al. Nov 2009 A1
20100042646 Raichelgauz et al. Feb 2010 A1
20100082684 Churchill et al. Apr 2010 A1
20100104184 Bronstein et al. Apr 2010 A1
20100125569 Nair et al. May 2010 A1
20100162405 Cook et al. Jun 2010 A1
20100173269 Puri et al. Jul 2010 A1
20100198626 Cho et al. Aug 2010 A1
20100211565 Lotito Aug 2010 A1
20100268524 Nath et al. Oct 2010 A1
20100306193 Pereira et al. Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100322522 Wang et al. Dec 2010 A1
20110052063 McAuley et al. Mar 2011 A1
20110055585 Lee Mar 2011 A1
20110145068 King et al. Jun 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110202848 Ismalon Aug 2011 A1
20110246566 Kashef et al. Oct 2011 A1
20110251896 Impollonia et al. Oct 2011 A1
20110296315 Lin et al. Dec 2011 A1
20110313856 Cohen et al. Dec 2011 A1
20120082362 Diem et al. Apr 2012 A1
20120131454 Shah May 2012 A1
20120150890 Jeong et al. Jun 2012 A1
20120167133 Carroll et al. Jun 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120197857 Huang et al. Aug 2012 A1
20120239690 Asikainen et al. Sep 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120301105 Rehg et al. Nov 2012 A1
20120315009 Evans et al. Dec 2012 A1
20120330869 Durham Dec 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130031489 Gubin et al. Jan 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067035 Amanat et al. Mar 2013 A1
20130067364 Berntson et al. Mar 2013 A1
20130080433 Raichelgauz et al. Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130173635 Sanjeev Jul 2013 A1
20130226930 Arngren et al. Aug 2013 A1
20130311924 Denker et al. Nov 2013 A1
20130325550 Varghese et al. Dec 2013 A1
20130332951 Gharaat et al. Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140147829 Jerauld May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140188786 Raichelgauz et al. Jul 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140310825 Raichelgauz et al. Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140341476 Kulick et al. Nov 2014 A1
20150154189 Raichelgauz et al. Jun 2015 A1
20150286742 Zhang et al. Oct 2015 A1
20150289022 Gross Oct 2015 A1
20160026707 Ong et al. Jan 2016 A1
20160239566 Raichelgauz et al. Aug 2016 A1
Foreign Referenced Citations (8)
Number Date Country
0231764 Apr 2002 WO
2003005242 Jan 2003 WO
2003067467 Aug 2003 WO
2004019527 Mar 2004 WO
2005027457 Mar 2005 WO
20070049282 May 2007 WO
2014137337 Sep 2014 WO
2016040376 Mar 2016 WO
Non-Patent Literature Citations (104)
Entry
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available Jul. 14, 2005.
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003.
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005.
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44.
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Received Nov. 16, 2001, Available online Mar. 12, 2002.
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475.
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000.
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) 1-48 Submitted Nov. 2004; published Jul. 2005.
Lin, C.; Chang, S.: “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Mutlimedia '98; Bristol, U.K., Sep. 1998; pp. 49-54.
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046.
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003.
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4.
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251. German National Research Center for Information Technology.
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine: a case study”, Information Processing Letters, Amsterdam, NL, vol. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190.
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252.
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254.
Burgsteiner et al.: “Movement Prediction From Real-World Images Using a Liquid State Machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated Sep. 12, 2011.
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008.
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) including International Search Report for International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009.
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009.
Foote, Jonathan, et al. “Content-Based Retrieval of Music and Audio”, 1997 Institute of Systems Science, National University of Singapore, Singapore (Abstract).
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591.
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995.
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009.
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012.
Mahdhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009.
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996.
Scheper, et al. “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96.
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009.
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008.
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007.
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352.
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines.
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications.
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications.
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234.
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications.
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France.
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong.
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia.
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26.
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona.
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system.
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic.
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523.
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346.
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK.
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176.
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003.
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357.
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10.
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388.
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4.
Hua, et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004. 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004.
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3.
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19.
Johnson, John L. “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications.
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications.
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292.
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017.
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications.
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230.
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2.
Stewart, et al., “Independent Component Representations for Face Recognition”, Proceedings of the SPIE Symposium on Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12.
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU.
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017.
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11.
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications.
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University ADVENT technical report, 2007, pp. 222-2006-8.
Zou, et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216.
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15.
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts institute of Technology, 2004, pp. 1-106.
Marian Stewart Bet al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging ,iii Jose, California, Jan., 1998, pp. 1-12.
Vallet et al., “Personalized Content Retrieval in Context Using Ontological Knowledge”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, March 2007. pp. 336-346.
Li et al., “Matching Commercial Clips from TV Streams Using a Unigue, Robust and Compact Signature”, IEEE 2005, pp. 1-8.
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: <https://bigbangtrans.wordpress.com/series-4-episode-12-the-bus-pants-utilization/>].
Wang et al., “Classifying Objectionable Websites Based onlmage Content”, Stanford University, pp. 1-12.
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144.
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of ArtificialIntelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12.
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol.: 9, pp. 41-44.
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp 1-14.
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4.
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16 1996, vol.: 3 Pages 1472-1475, vol. 3.
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314.
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281.
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528.
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300.
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China Received Nov. 2001, Available online Mar. 12, 2002, pp. 239-263.
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol.: 7, Issue: 1, Mar. 2003, pp. 37-42.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, International Conference on Image Proceesing (ICIP), 2004 IEEE, pp. 685-688.
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University Advent Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17.
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173.
Related Publications (1)
Number Date Country
20140040232 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61860261 Jul 2013 US
Continuations (1)
Number Date Country
Parent 12603123 Oct 2009 US
Child 13602858 US
Continuation in Parts (11)
Number Date Country
Parent 13602858 Sep 2012 US
Child 14050991 US
Parent 12084150 US
Child 12603123 US
Parent 12195863 Aug 2008 US
Child 12084150 US
Parent 12084150 Apr 2009 US
Child 12195863 US
Parent 12348888 Jan 2009 US
Child 12603123 US
Parent 12084150 Apr 2009 US
Child 12348888 US
Parent 12195863 Aug 2008 US
Child 12084150 US
Parent 12538495 Aug 2009 US
Child 12603123 US
Parent 12084150 Apr 2009 US
Child 12538495 US
Parent 12195863 Aug 2008 US
Child 12084150 US
Parent 12348888 Jan 2009 US
Child 12195863 US