1. Technical Field
The present invention relates generally to the playback of digital music, and more specifically relates to a system and method for selecting songs during a physical activity based on a physical characteristic of a person exercising.
2. Related Art
Exercise can often be a tedious and repetitive process. One common method for making exercise more enjoyable and productive is to provide music, either via a personal audio device, such as an MP3 player, or via loud speakers. Not only is the music enjoyable, but the beat of the music provides a tempo that can guide the exercise being performed. Namely, when listening to music while exercising, it is natural and beneficial for a person to match their exercise cadence to the tempo of the music.
Anyone who has tried to create a playlist of music for the purpose of exercising knows that the process is cumbersome and error prone. Finding music that has the correct tempo, i.e., beats per minute (“BPM”), to match the physical activity being performed is tedious. For instance, a runner would ideally like to listen to a song whose tempo matches their running cadence. However, an individual (or group) that is engaged in physical activity often alters their exercise cadence, and thus requires a new song with an altered tempo to match. With today's technology, once a playlist is created, it is static. The songs have already been chosen and placed in a list. Although the playlist can be edited and/or songs can be skipped, substantial user intervention and time are required. Unfortunately, there is no easy method for matching songs with changing cadences of the person exercising.
Furthermore, many exercise routines and machines utilize programs that vary the physical activity over time or distance. For instance, a treadmill may include a program that requires the runner to change pace and/or incline each quarter mile. Since many exercise activities do not involve exercise machines, it would be advantageous to have a music playback system that could be programmed to play songs having different tempos to guide a workout routine. However, in the prior art, there exists no music playback system that can automatically select songs with varying tempos in response to a preprogrammed routine.
Moreover, when training for particular activities, the person performing the activity often tries to adhere to some target involving a parameter of the activity (e.g., speed, position, heart rate, etc.). This requires the person to monitor the parameter from time to time while engaged in the activity and make changes as necessary to stay on target. For instance, if a runner wants to run some distance in a particular target time, they may need to speed up or slow down during their run to meet their target time. In this case, it would be advantageous to have a music playback system that provided feedback by dynamically selecting and changing songs based on tempo as necessary to keep the person on target. For instance, if the runner began falling behind target split times, a song with a faster tempo could be selected to guide the runner to the necessary pace. Unfortunately, no such system exists in the prior art.
Accordingly, a need exists for a music playback system that selects songs based on the actual or required cadence of physical activities being performed.
The present invention addresses the above-mentioned problems, as well as others, by providing a system and method for selecting songs based on the actual or required cadence of physical activities being performed by a user.
In a first aspect, the invention provides a song selection system, comprising: a system for inputting cadence data from a user performing a physical activity; a system for determining a cadence rate associated with the inputted cadence data; a database of songs; and a system for selecting a song from the database of songs, wherein the selected song includes a tempo that matches the cadence rate.
In a second aspect, the invention provides a method of selecting a song for playback in response to a physical activity, comprising: obtaining cadence data from a user performing a physical activity; determining a cadence rate associated with the cadence data; providing a database of songs; and selecting a song from the database of songs, wherein the selected song includes a tempo that matches the cadence rate.
In a third aspect, the invention provides a computer program product stored on a computer usable medium, wherein the computer program product selects a song for playback in response to a physical activity, comprising: program code configured for obtaining cadence data from a user performing a physical activity; program code configured for determining a cadence rate associated with the cadence data; program code configured for accessing a database of songs; and program code configured for selecting a song from the database of songs, wherein the selected song includes a tempo that matches the cadence rate.
In a fourth aspect, the invention provides a method for deploying a song selection application, comprising: providing a computer infrastructure being operable to: access a database of songs; and select a song from the database of songs, wherein the selected song includes a tempo that matches a cadence rate determined from a user performing a physical activity.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
Referring now to drawings,
It should be understood that all elements of
In this illustrative embodiment, song selection system 25 includes three program modes 24 including a cadence matching system 18 a beats per minute system 20, and an activity goal system 22. It is understood that this embodiment is for illustrative purposes only, as song selection system 25 may include any one or more of the three program modes 24 described herein, as well as any variations described herein, or equivalents thereof. Each of the three program modes 24 provides different methods for managing song tempos in relation to a user's activity cadence. Depending on the mode, either the song is selected in response to the cadence of the user 13, or the cadence of the user 13 is guided by the tempo of the selected song.
Song manager 26 is utilized to make song selections 32 for the program modes 24 based on tempo. For the purposes of this disclosure, tempo refers to a beat rate, or beats per minute (BPM). (Note that for the purposes of this disclosure, the term beats per minute “BPM” should be interpreted broadly to include all equivalent ways of measuring tempo, e.g., beats per second, etc.) In this illustrative embodiment, song manager 26 includes a BPM table 31 that associates songs in the song database 36 with particular BPMs. BPMs are one illustrative type of metadata that can be utilized to categorize songs to allow for selection. However, it should be understood that other types of metadata, such as genre, song length, etc., could also be utilized. In the example shown, songs 1, 7 and 9 are identified as having a BPM value of 40, songs 4 and 6 are identified as having a BPM value of 50, and songs 2, 3 and 8 are identified as having a BPM value of 60. Thus, when one of the program modes 24 requires a song at a particular BPM, the song manager 26 examines the BPM table 31 and selects one of the songs that matches the required BPM.
If more than one song is available for a required BPM, song manager 26 can utilize any algorithm and/or additional metadata (i.e., selection criteria) to select the song, e.g., randomly, in order, based on favorites, title, artist, genre, theme, user rating, category, album, bit rate, comment, composer, date added, date modified, description, disc number, episode number, equalizer, grouping, kind, last played, my rating, play count, sample rate, season, show, size, time, track number, year, etc.
It should be recognized that while this embodiment uses a BPM table 31 to implement song manager 26, any other architecture could be utilized, e.g., BPM data could be incorporated directly into song database 36. Moreover, a utility, such as a crawler could be provided to crawl through a database of songs and collect metadata information, such as BPM, genre, length, etc. The utility may provide metadata by accessing secondary databases and other network attached sources over a network.
In addition, it is noted that a given BPM value also has harmonic values, which may be used in program modes described here. For example, music that is 120 BPM has harmonics at 60 and 30 BMP. A program mode 24 that calls for a 60 BPM song could select a 120 BPM song since it has a 60 BPM harmonic. Songs with harmonics can be selected using the same tolerance level rules described below. In addition, song manager 26 may allow for some tolerance (e.g., 2-3%) between the tempo that is required by the program mode 24 and the tempo of a given song. Thus, a range of tempos may be used to match an activity cadence. For instance, if the song manager 26 needed a song with a tempo of 59 BPM, songs having a tempo from 57 to 61 BPMs may be considered a match.
The cadence matching system 18 provides a first program mode in which cadence data 38 is captured and inputted from the user performing a physical activity. For instance, for a runner the cadence may comprise a rate at which strides are made, for a cyclist the cadence may comprise a pedaling rate, for a swimmer the cadence may comprise a stroke rate, etc. Cadence data 38 may be captured from the user 13 in any manner, e.g., via a monitoring device attached to the user, a monitoring device attached to an apparatus 15 such as a bicycle, treadmill, etc. In general, cadence data 38 comprises a cadence rate, e.g., strokes/minute, strides/minute, etc. As the cadence data 38 is collected, cadence matching system 18 matches the cadence data 38 to a tempo, or BPM. Once the BMP is determined, song manager 26 can make a song selection 32 for media system 34, which loads the song from the song database 36 for playback. In this manner, a song is played having a tempo that matches the cadence of the user 13. When the user 13 changes his or her cadence, cadence matching system 18 can cause a new song to be played (e.g., using a fade out, fade in technique) or it can alter the tempo of the song being played at the time to match the user's cadence. Alternatively, the playback tempo of the song can be manually adjusted (e.g., within a tempo change tolerance level) via a user interface 27. In addition, in order to avoid overly-rapid changing of songs, cadence data 38 may be examined at spaced time intervals (e.g., every 20 seconds), the cadence data 38 may be averaged over time, etc. The various parameters of the cadence matching system 18 can be implemented within a cadence matching profile 88. Further details of such a profile are described below with an illustrative embodiment utilizing a cadence matching profile (CMP).
Beats per minute system 20 provides a second mode in which a beats per minute profile 90 is provided to guide the activity of the user 13. In this program mode, the user's activity or cadence is guided over time or distance by the different activity characteristic values (e.g., tempos, genres) provided in the beat per minute profile 90. For instance, the beats per minute profile 90 may call for a warm-up phase having a BPM of 50, then a main exercise phase of 60 BPM, and then a cool down phase of 40 BPM. Thus, for a first time period, beat per minute system 20 instructs the song manager 26 to select a song or songs having a BPM of 50, then switch to a song or songs having a BPM of 60 for a second period of time, and then switch to a song or songs having a BPM of 40 for a third period of time. The beats per minute profile 90 may be inputted in any manner, e.g., it may be programmed by the user via an interface, loaded by the user 13 from an external source, selected by the user 13 as one of a plurality of available programs stored within computer system 11, etc.
The various parameters of the beats per minute system 20 may be implemented as a BPM profile 90 that includes a BPM template 84 and various other settings and parameters (e.g., see
Activity goal system 22 provides a third program mode in which the user 13 can set an activity goal for a particular activity over a time or distance. The activity goal may relate to any type of parameter. For instance, the activity goal may relate to a desired time to cover a distance, a distance or position to be achieved over a particular time period, a heart rate, a breathing rate, etc. The activity goal is contained in the user parameter profile (UPP) 900 which may be provided to activity goal system 22 in any manner, e.g., selected from a set of user parameter profiles 900, inputted, programmed via user interface 27, etc. Once the activity goal is provided to activity goal system 22, a plan is assembled for achieving the activity goal. The plan includes activity values that must be met to achieve the activity goal. For instance, if a runner wanted to run 10 miles in 50 minutes, the plan might call for the first two miles to be run in eight minutes, the next six miles to be run in 30 minutes, and the last two miles to be run in 12 minutes. The assembled plan essentially comprises a beats per minute profile 90 described above. The plan may be assembled based on user input via interface 27, be selected from among a number of stored plans, be generated automatically without user intervention, etc.
Based on the assembled plan, songs are selected by activity goal system 22 to provide a tempo that will guide the cadence of the user 13 to meet the activity goal in accordance with the plan. Thus, for the runner described above, a first set of songs will be selected having a tempo to guide the user 13 to running two miles in eight minutes. Activity feedback 44 is collected at regular time intervals (or continuously) to determine if the user 13 is on target. If the user 13 is not on target (e.g., the user is falling behind the goal), then the plan may be altered to change the tempo of the current song or to select a new song with a different tempo that will put the user 13 back on target. Activity feedback 44 may be collected in any manner, e.g., via a device such as a global positioning system (GPS), via a clock, via sensors attached to the user 13, via sensors attached to an apparatus 15 such as an odometer on a bicycle, treadmill, etc.
In an illustrative embodiment described below, the various parameters of the activity goal system 22 are implemented using a user parameter profile 900 (UPP) which is described in further detail below with reference to
Note that for each of the above-mentioned program modes, the user 13 can save the list of songs played during an activity to a saved playlist database 29. Thus, if a user 13 particularly enjoyed a given sequence of songs played during a workout, the user 13 can save the list and replay the songs at a later time.
In general, computer system 11 may comprise any type of computing device, and could be implemented as part of a client and/or a server. Computer system 11 generally includes a processor 12, input/output (I/O) 14, memory 16, and bus 17. The processor 12 may comprise a single processing unit, or be distributed across one or more processing units in one or more locations, e.g., on a client and server. Memory 16 may comprise any known type of data storage and/or transmission media, including magnetic media, optical media, random access memory (RAM), read-only memory (ROM), a data cache, a data object, etc. Moreover, memory 16 may reside at a single physical location, comprising one or more types of data storage, or be distributed across a plurality of physical systems in various forms.
I/O 14 may comprise any system for exchanging information to/from an external resource. External devices/resources may comprise any known type of external device, including a monitor/display, speakers, storage, another computer system, a hand-held device, keyboard, mouse, voice recognition system, speech output system, printer, facsimile, pager, etc. Bus 17 provides a communication link between each of the components in the computer system 11 and likewise may comprise any known type of transmission link, including electrical, optical, wireless, etc. Although not shown, additional components, such as cache memory, communication systems, system software, etc., may be incorporated into computer system 11.
In another illustrative embodiment of the present invention,
In all of the embodiments shown in
Another exemplary embodiment of the digital controller 30 in the form of an enhanced DAMP is shown in
An illustrative method for carrying out the invention first involves creating an AP 139. In the illustrative embodiments described above, the editor 10 is a software component of the digital controller 30, which a user operates to create an AP 139. However, the editor 10 may be optionally located on a personal computer so that the AP 139 can be created remotely and then transferred to the digital controller 30 for execution. The editor 10 may also be used by third parties such as a manufacturer of the digital controller 30 or Internet file sharers to create APs which can be made available for online distribution or for distribution with digital controllers to users.
In accordance with the invention, a user creates an AP that is tailored to a desired activity. The AP is then translated into a specialized playlist of music, either statically or dynamically, which the user can interact with.
In accordance with the different illustrative embodiments described herein, three types of Activity Profiles (APs) are described, including: cadence matching profiles (CMPs), beats per minute profiles (BPMPs), and user parameter profiles (UPPs). A common thread among these profiles is the use of a parameter set that dictates the operational behavior of a media player, such as a digital audio music player. It should be noted that the make-up and size of the described parameter sets can vary without departing from the scope of the invention. Each AP will be described in more detail below.
The song selection tolerance level 141 defines a range of BPM for songs that are close enough to a specified BPM value to be sufficient as a match. The song selection tolerance level 141 may be expressed as an absolute number of BPM, or as a percentage of a BPM. The two examples below will illustrate this point:
At a specified time, a song is needed that has a value of 80 BPM. The tolerance level is specified at 3 BPM. Therefore, songs that are in the range of 80 BPM +/−3 BPM are acceptable. That means all songs in the range of 77 to 83 BPM are within the tolerance range.
At a specified time, a song is needed that has a value of 80 BPM. The tolerance level is specified at 10%. Therefore, songs that are in the range of 80 BPM +/−10% are acceptable. That means all songs in the range of 72 to 88 BPM are within the tolerance range.
Music criteria 142 is used for selecting songs based on attributes of the music other than the BPM. Digital music, such as songs in mp3 format, can be selected by a predetermined music criteria via metadata. Descriptive metadata typically includes identification of title, artist, date, genre, theme, etc. The metadata can also include lyrics, titles and other verbal comments. The metadata is maintained in an SQL database associated with the music library 360. If a user sets music criteria in an AP, the music criteria parameter will be used when selecting songs.
Music source 143 defines the location of a particular music library. The tempo change flag 144 parameter defines whether songs are always to be played at their original tempo or whether the tempo may be modified to match the specified BPM, and the tempo change tolerance level 147 parameter defines the extent to which the tempo of songs can be changed. The tempo change smoothing parameters 148 are used by the tempo change smoothing function to control how changes of tempo are handled, preventing wild fluctuations in changes of tempo. The automatic song switching flag 149 controls whether the playing of a song can be interrupted and replaced by a new song when a tempo change request exceeds the tempo change tolerance level 147.
These parameters, when associated with a CMP 88, will provide a basis for managing the tempo of music to make it adhere to a user activity.
The second type of activity profile, referred to herein as a beats per minute profile (BPMP), is utilized to control an application that selects music of different tempos to guide a user's activity. Such a system is described above as a BPM system 20 in
The same activity template may be described in a table as follows:
and the same activity template may be described as a logical expression as follows:
Then BPM=50
Then BPM=70
Then BPM=60
The beats per minute data is determined by the creator of the BPM template 84 which can be either the user, or a third party such as a manufacturer. The editor 10 allows the creator to assign the beats per minute over various time segments of the activity and create a BPM template 84. The determination and assignment of the music's beats per minute for a particular time segment may be made based on experience or may involve empirical research into different types of activities and the beats per minute that is determined to be most suitable for the activities. Such research knowledge can be presented to the user in the User profile.
A detailed example of how the beats per minute may be assigned for different time segments of an activity in a BPM template is shown in
BPM templates may be designed with any combination of fixed time length segments, automatically adjustable time length segments, or time segments that are allocated percentages of the overall profile length. For example, a user may construct a template with four time segments, where the first time segment is 20% of the template's overall time length, the second time segment is 40%, the third time segment is 25%, and the fourth time segment is 15%. Alternatively, a BPM template may be defined as a continuous function of BPM over time, where no time segments are defined.
Also, BPM templates may be constructed and changed based on research in the medical, sports medicine, and human physiology areas. For example, a user may assign 80 beats per minute to jogging or running and 50 BPM to walking because walking is much slower. However, a manufacturer or third party provider of a BPM template may assign 70 BPM to jogging or running and 45 BPM to walking based on research studies of the activities and human physiology.
As shown in
The third type of activity profile, referred to herein as a user parameter profile (UPP), is utilized to control an application that utilizes feedback to select music of different tempos to guide a user's activity. Such as system is described above as an activity goal system 22 in
As shown in
UP templates are converted into BPM templates prior to user execution the UPP. The algorithm for performing the conversion depends on the type of UP template. We provide two examples of how such conversions are performed.
The first example is of a distance UP template. In this example, assume the template calls for a constant speed, i.e. the distance template is linear and has a constant slope. Further, assume the UP template calls for a speed of six miles per hour for the duration of the activity profile. In order to convert the UP template to a BPM template, we make the simplifying assumption that the user's stride length is constant, e.g., 3 ft. Hence the user's cadence can be calculated as follows:
(6 miles/hour)*(5280 ft/mile)*(1 step/3 ft)*(1 hour/60 minutes)=175 steps/minute
The BPM template is set to match the cadence. Thus, a distance UP template with a slope of six miles per hour results in a constant BPM template of 175 BPM. The mathematics for handling distance UP templates with a series of constant speed segments (such as illustrated in
The sports specific translation function (personalized) 630 in
The second example is of a heart rate UP template for running. In this example, we illustrate a different approach to translating the heart rate UP template to a BPM template. In this method, research is performed prior to the manufacture of the device that relates heart rate templates to BPM templates. Heart rate templates, categorized by gender, age, weight, height, activity type (e.g. running), etc., and associated BPM templates are stored as pairs in the sports specific translation function (personalized) 630. A user selects a heart rate UP template and function 630 looks up and returns the associated BPM template, which is used to set the tempo of the music. It is recognized that other factors may be useful to maintain (such as duration) for organizing the pairs of templates. Alternatively, duration can be handled by scaling the templates in the time dimension.
Each time a user executes a heart rate UP profile, representative parameters, such as maximum heart rate for a particular tempo, are stored. This information is used to personalize the translation from the heart rate UP template to BPM template on subsequent executions of the profile.
It should be noted that the conversion of a heart rate UP template into a BPM template is only one means of selecting music, based on the tempo, to guide a user to an inputted target activity goal. There are numerous other means including rule-based approaches and other computer algorithms such as neural nets and Baysian nets.
As shown in
As shown in
The generated Profiled Playlist 270 is stored in step 295 and later executed in step 300. A digital controller 30 can be used to execute the Profiled Playlist 270 in conjunction with the specific activity to which the songs have been tailored. The use of a Profiled Playlist 270 is a static method for tailoring music to an activity.
On the other hand, the automatic assignment or selection of songs by the digital controller 30 during execution in step 310, without a pre-set playlist, is a dynamic method for tailoring music to an activity. In the dynamic method, songs are selected on the fly. The dynamic method does not require a profiled playlist, or any other type of playlist. The dynamic method only requires an Activity Profile, such as a BPMP, for selecting music. A combination of software and hardware which is referred to as the Run Time Control Logic 45 (RTCL) (see
Music criteria may be used as a parameter for assisting in the generation of a profiled playlist in the following manner. In an illustrative embodiment, the Music and Playlist Library 360 is kept in a relational database and is accessible using standard SQL (structured query language) queries. Other types of database technologies such as XML can also be used. The Music and Playlist Library 360 relational database contains records of songs. The fields of the records will include a wide variety of information including the BPM of the song, the song title, artist, genre, album, user rating, etc. The editor 10 opens the music criteria parameters and is instructed to execute an SQL query on the music and playlist library 360, based on the criteria in the Music Criteria parameter 142. Thus, the editor 10 is able to select songs from the music and playlist library 360 based not only on the BPM of a song within a particular tolerance level, but also on other features of the songs which are detailed in the BPMP 90. In another embodiment, this is done using standard search and natural language query capabilities.
In one specific example, the user creates a BPMP with the editor 10 in which only top-rated classical music is chosen as the Music Criteria 142 parameter (
The system can be used to create a playlist that has a musical theme, such as “riding”. The user specifies the theme in the Music Criteria 142 parameter which is used by the editor 10 to query the SQL database of the music library to identify music that relates to the theme. Once a subset of the library is identified as relating to the theme, it is mapped to the BPMP. The resulting Profiled Playlist 270 may be stored in the music and playlist library 360.
The following sections describe how Activity Profiles and Profiled Playlists may be used to manage the tempo of music to support a user in an activity. In its simplest application, a user may save a Profiled Playlist 270 as a standard playlist, and then engage it on a standard DAMP (step 290 in
An illustrative embodiment of this application could be implemented as an extension of the popular APPLE™ “iTunes” program (or any other such program) that manages a library of music. For instance, iTunes could be extended to include a set of features that (1) automatically calculates the BPM of every song in the library and (2) allows the user to create a playlist based on BPM. The process of creating a playlist based on BPM could be done in any manner. For example, the user could select an activity profile from a library of activity profiles or construct/modify an activity profile using editor 10. Based on the activity profile, a BPM template could then be generated. Then, based on the BPM template, songs could be automatically/randomly selected from the library that match the BPM template, or using an interface such as that shown in
Of course, there are many variations on the implementation of this set of features, which could be added to any music library program. These features could be implemented on a PC or other digital device to construct the standard playlist, which is then used or downloaded. In this manner, the creation of playlists, with specific control of music tempo as it varies over time or distance, is enabled and can be used with any MP3 or DAMP player that supports playlists.
The more robust applications of the invention allow for user interaction. As such, when starting an activity, a user may either execute a Profiled Playlist or execute an AP dynamically. Either method will provide music that is tailored to support a user in adhering to an activity or goal. A Profiled Playlist is engaged by a user selecting a Profiled Playlist on an Enhanced DAMP. An AP is executed dynamically by a user selecting an AP on an Enhanced DAMP. The Profiled Playlist already has songs selected, whereas the Dynamic AP will have songs matched to the profile on the fly during the activity. In either case, the music is played via the Run Time Control Logic 45 and modifiable by editor 10 on the Enhanced DAMP.
As shown in
A user can have direct interaction with both a Profiled Playlist or a dynamically executed AP by operating the editor 10 through the Digital Controller 30. As described earlier, the Profiled Playlist 270 is a sequence of songs that is associated with a profile—either a BPMP or a UPP. Hence, executing a Profiled Playlist or an AP gives access to the parameters defined therein. As the user begins the activity, the RTCL 45 selects and plays songs based on the parameters in the associated profile.
It is generally known in the art to use a combination of hardware and software to determine the status of a particular feature and make modifications if the current status meets or does not meet a particular expectation or requirement. The hardware and software of the run-time control logic 45 perform the same type of function of determining the status of certain features like the progression of a song, or the BPM of an active time segment in an AP, or changing the tempo of a song based on the status information received. This complicated process is described in greater detail below.
This alteration could potentially distort the selected songs in an unfavorable manner if the alteration is too great as a result of a very broad song selection tolerance level 141. Although a smaller song tolerance level would prevent such extreme distortion, it would also narrow or reduce the pool of songs that would be available for BPM matching. As described earlier, the tempo change tolerance level 147 defines a range of BPM modification that will be tolerated. Tempo change tolerance level 147 can be expressed as a percentage of the BPM, as an absolute BPM, or some other possibly non-linear function. The RTCL will look at the tempo change tolerance level 147 parameter when playing songs, and determine whether a tempo change is out of the tolerance level.
To illustrate, one active segment of a BPM Template may be assigned with 60 BPM. If the song selection tolerance level 141 is designated as +/−3 in the profile, one of the songs chosen may be 57 BPM. If the tempo change flag 144 is enabled (ie: tempo alteration is allowed), then the RTCL 45 would play this song at 60 BPM, not 57. This may obviously distort the song in an unfavorable manner. The RTCL 45 will check the tempo change tolerance level 147, and determine whether this change is allowed. If the tempo change tolerance level 147 parameter is set at +/−7 BPM, this change of 3 BPM would be tolerated.
If the requested tempo change complies with the tempo change tolerance level 147, the tempo of the song is changed. If the change does not comply with the tempo change tolerance level 147, and automatic song switching is allowed, the song selection module selects a new song which has a BPM that matches the requested tempo—step 510.
As an option, when a tempo change is requested, a tempo change smoothing function 148 can be applied. This parameter is selected when creating or editing an AP. The tempo change smoothing function 148 controls how changes of tempo are handled. Some examples of these smoothing functions are:
1. Rule based smoothing. An example rule is “the tempo can not change more than 2 BPM over a 10 second interval”. If the BPMP calls for a shift from 50 BPM to 60 BPM, the enhanced DAMP will increase the tempo of the music in 10 second intervals at 50, 52, 54, 56, 58, 60 BPM.
2. Linear smoothing: If the BPMP calls for a BPM of 50 at time t1, and 60 at time t2, the smoothing function will linearly interpolate the BPM between t1 and t2 and adjust the playback of the music to match the interpolated BPM.
3. Non-linear smoothing. As in example 2, the BPMP calls for a BPM of 50 at time t1, and 60 at time t2. In this case, we apply a non-linear smoothing function. An example function that is second degree differentiable is:
It is well known in the art that DAMPs are capable of altering the tempo of music without changing the pitch or timbre.
One skilled in the art will understand that there are endless variations of computerized means containing software and hardware which can be combined in different ways to accomplish the described functions. This is only one example of a configuration that can be used to carry out the functions described. The present invention is not limited in any way to this configuration.
The use of the RTCL 45 together with a CMP 88 is described as follows. When executing a CMP 88, a pedometer and timer may be used to measure cadence or rhythm. RTCL 45 software is used to analyze the pedometer and timer output to calculate the cadence of the user. Alternatively, an accelerometer and timer may be connected to the Digital Controller 30. The output of these is used by the RTCL 45, and a Fourier transform is performed to place the pedometer signal in the frequency domain so that the frequency can be analyzed. As part of the analysis, a search is performed to find the dominant frequency in the signal. The dominant frequency, or a harmonic thereof, is used to determine a cadence. The RTCL 45 selects songs with BPMs that match the derived cadence frequency or harmonic.
As shown in
The use of the RTCL 45 together with a BPMP 90 is as follows. The profile may be executed dynamically or statically. In the static method, a user selects the Profiled Playlist corresponding to the profile. When executed, the RTCL 45 will play the songs in the Profiled Playlist. In the dynamic method, the songs are selected by the RTCL 45 on the fly. The user may operate the editor 10 through the Digital Controller 30 to change parameters or create new parameters corresponding to the base Profile. The response of the RTCL 45 to any user input via the Digital Controller 30 is the same whether engaged in a Profiled Playlist or a BPMP. Examples of user input and how the RTCL 45 responds is detailed below.
The user may operate the editor 10 to change the BPM in a particular time segment of the BPM Template, or he may revise the Tolerance Level parameters. The BPMP and the Profiled Playlist are both updated in accordance with the changes to the parameters. The changes can optionally be saved. If saved, the user may overwrite the current BPMP or create a new instance of a BPMP.
A user may want to dynamically (i.e., while exercising) boost or dampen the BPM values. For example, a “hill climbing” BPMP might contain beats-per-minute values that range from 60-80. The user could increase the intensity of the workout while exercising so that the basic shape of the hill climbing BPMP is retained, but the values are uniformly boosted to range from 65 to 85. Both linear and non-linear boosting and damping functions can be applied. One possible embodiment of this feature is for the user to specify a workout “level” or “intensity level” where the device has a set number of preprogrammed profiles as shown in
As shown in
The BPMP may also be changed during song playback by changing the BPM for a fixed time duration, changing the BPM for the time segment corresponding to the remainder of the current song, or changing the BPM for the time segments corresponding to the remainder of the profile. The action of the RTCL 45 is as described earlier.
The user may desire to lengthen or shorten a workout while exercising. A BPMP may be changed during song playback by changing the duration of the template. For example, assume a user has selected to enlist a BPMP that is 30 minutes in duration. The user may change the duration of this BPMP to 40 minutes. Assume the original BPMP was 3 minutes for warm up, 24 minutes of full exertion and 3 minutes for cool down. If the segments of the BPMP were defined as percentages, the BPMP would be modified so that the overall shape is maintained. This would result in a 4 minute warm up, 32 minutes of full exertion, and a 4 minute cool down.
Alternatively, if the segments of the BPM Template were defined as a combination of fixed and automatically adjustable time lengths (for example, a runner may desire a 3 minute warm up and cool down, regardless of the length of the BPM Template), the first and last segments are “fixed” in duration. Changing the overall duration of the BPM Template results in the middle segment, the “automatically adjustable” segment, to be shortened or lengthened in accordance with the fixed segments and overall length of the BPM Template. The result, for this example, is a BPM Template that has 3 minutes each for warm up and cool down, and 34 minutes of full exertion. The RTCL 45 will select additional songs to match this modified BPMP. Again, when the workout is completed, the invention will query the user as to whether they would like to keep the modified BPMP and/or Profiled Playlist.
The operation of the dynamic method is illustrated in more detail in one embodiment shown in
1) It checks the BPM template to see if a tempo change is required, i.e., based on how much time has elapsed since the exercise routine started (which is determined by timer 410), the BPM Template is checked in step 575 to see if there is a new BPM value as a result of the active time segment changing. For example, referring back to
2) The song progression module 953 (
3) The tempo change module 955 checks to see if the user has requested a tempo change via user tempo control 150.
If the RTCL 45 determines that a new BPM is required, based on the current time from the timer and the BPM Template, the RTCL 45 determines the new BPM in step 580. The tempo of the song currently being played can be adjusted, as described above in 1, or a new song can be selected. The song selection module 951 selects a new song with a BPM that matches the BPM of the active time segment, within the song selection tolerance levels.
If the RTCL 45 determines that a song has ended, then it determines the BPM of the active time segment and chooses a new song with a BPM that matches the BPM of the active time segment and is within the song selection tolerance levels.
Parameters can also be modified directly during song playback using editor 10 through the Digital Controller 30 to dynamically change song selection. That is, when a parameter is changed, the song selection module 951 will automatically refer to the changed AP for selecting songs after the change is made. The user may also use editor 10 to change the current song if desired.
The RTCL 45 together with a UPP 900 will help a user adhere to a desired goal in an activity. As in a BPMP, a user may execute a Profiled Playlist that was derived from a UPP 900, or may execute a UPP 900 dynamically, without a playlist assigned. The actions of the RTCL 45 are the same here as for the use of a BPMP, as described above. However, a UPP has the additional task of helping a user adhere to a UP Template 911. Depending on the type of activity involved, a specific Real Time Monitoring Device 60 (
During the activity, speed is measured via a GPS subsystem 220 in step 650. If the speed of the user does not match the desired speed as laid out in the UP Template, the RTCL 45 generates a tempo change request, step 460. If the measured speed is less than the desired speed value in the template, then the user has fallen behind. If the measured speed is greater than the desired speed, then the user is ahead. If the user has fallen behind, the tempo change request will cause an increase in the tempo of the music until the measured speed becomes equal to the desired speed of the active time segment. If the tempo change exceeds a tempo change tolerance level, a song selection module will select a new song with an increased tempo. Thus, in step 460, the RTCL 45 works automatically to maintain the UPP 900. The process is repeated beginning at step 640 until the end of the template.
During the activity, heart rate is measured via a heart rate monitor 230 in step 740. The measured heart rate is compared to the desired heart rate as specified in the active time segment of the UP Template. If the measured heart rate value does not match the desired BPM value assigned to the active time segment, then the user is not maintaining the heart rate of the UP Template, and the RTCL 45 submits a tempo change request (step 460). If the measured heart rate value is less than the desired value, then the user has fallen behind. If the measured heart rate value is greater than the desired value, then the user is ahead. If the user has fallen behind, the tempo change request will cause an increase in the tempo of the music until the measured heart rate becomes equal to the desired heart rate of the active time segment. If a tempo change exceeds a tempo change tolerance level, the song selection module 951 will select a new song with an increased tempo, until the measured heart rate becomes equal to the desired rate in the active time segment. Thus, in step 460, the RTCL 45 works automatically to help the user adhere to the UPP 900. The process is repeated beginning at step 710 until the end of the template.
As shown in
The invention also allows for personal attribute information 145 to be saved. This information is used by both the editor 10 and the RTCL 45. The editor 10 may use the personal attribute information 145 to help a user select an AP based on personal information such as age, gender, weight, or height. The RTCL 45 may use the personal attribute information 145 when engaged in a UPP, so that personal information may be used in converting a UP Template into a BPM Template. Adaptive learning algorithms 146 are another feature of the invention, and are used to select songs based on the recorded personal attributes of the user.
An example of the use of the personal attribute parameter 145 for creating a Profiled Playlist is described as follows. Adaptive learning algorithms programmed into the editor 10, or executed separately by the editor 10 are used to select songs based on recorded personal attributes of the user. For example, assume an individual selects a specific heart rate profile for a run. The editor 10 calculates a likely BPM profile and selects music to match the BPM Template. The user then begins the activity using the playlist. The user's heart rate is recorded and compared to the original, desired profile. If the user is in great (or poor) shape, it is likely the actual heart rate will not be an appropriate match for the desired profile. The editor 10 will store the individual's data in Personal Attributes 145 and recalculate an appropriate BPM Template for the next time the same activity is initiated. The recalculation may be based on an algorithm. An appropriate BPMP Template may also be reconstructed from a chart of predefined data based on research in which a variety of appropriate BPM have already been determined for different heart rate conditions.
APs 139 (
The invention allows for great flexibility in managing the tempo of music for various activities. The invention is designed such that a user can ‘mix and match’ templates with other profile parameters in order to generate a multitude of diverse activity profiles.
It should be appreciated that the teachings of the present invention could be offered as a business method on a subscription or fee basis. For example, a computer system 11 comprising song selection system 25 could be created, maintained and/or deployed by a service provider that offers the functions described herein for customers. That is, a service provider could offer to provide a song database 36, some or all of a song selection system 25, and activities programs 40 as described above.
In addition, although the embodiments described herein relates generally to the playback of audio information, other types of media data, such as video data, could likewise be played back for the user.
It is understood that the systems, functions, mechanisms, methods, engines and modules described herein can be implemented in hardware, software, or a combination of hardware and software. They may be implemented by any type of computer system or other apparatus adapted for carrying out the methods described herein. A typical combination of hardware and software could be a general-purpose computer system with a computer program that, when loaded and executed, controls the computer system such that it carries out the methods described herein. Alternatively, a specific use computer, containing specialized hardware for carrying out one or more of the functional tasks of the invention could be utilized. In a further embodiment, part of all of the invention could be implemented in a distributed manner, e.g., over a network such as the Internet.
The present invention can also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods and functions described herein, and which—when loaded in a computer system—is able to carry out these methods and functions. Terms such as computer program, software program, program, program product, software, etc., in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form.
The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of this invention as defined by the accompanying claims.
The present invention claims priority to co-pending U.S. Provisional Application Ser. No. 60/723,408, filed on Oct. 4, 2005, entitled “ACTIVITY PROFILES FOR TAILORING MUSIC TO AN ACTIVITY.”
Number | Date | Country | |
---|---|---|---|
60723408 | Oct 2005 | US |