This application is related to concurrently filed and commonly assigned U.S. patent application Ser. No. 11/230,878 entitled “SYSTEM AND METHOD FOR OPPORTUNISTIC TRANSMISSION OF TEST PROBE METADATA”, and concurrently filed and commonly assigned U.S. patent application Ser. No. 11/230,895 entitled “SYSTEM AND METHOD FOR SELECTIVE DISTRIBUTION OF MEASUREMENT DEVICE CONFIGURATION IN A LOOSELY COUPLED AUTONOMOUS SYSTEM”, the disclosures of which are hereby incorporated herein by reference.
This invention relates to test probe management and more particularly to a system and method for managing and differentiating test probe information in a high capacity measurement system.
It is customary for measurement systems to use a number of individual measurement devices (probes) to obtain data at particular locations within a system being monitored. It is also customary for the measurement system to keep track of each probe by knowing, for example, its identity, its type, what units it measures in, etc. The information pertaining to each probe (called metadata) is stored in a measurement system database for interpretation of data from the various probes and for probe configuration purposes.
In a system with a large number of such probes the management and distribution of configuration information for each probe can become a burden for servers and databases which must manage the individual configuration state for each probe. Thus, when a probe changes its behavior, for example, by going offline, reducing its data transfer rate, etc., the system must deal with the new condition and often must deliver this new information to other probes in the system under test or to other measurement systems.
Individual probe management is accomplished in a measurement system by “pushing” configuration data to each probe based on that probe's received metadata. In one embodiment, the configuration data is sent from a server and the server does not keep track of the probe's configuration. The configuration data can be, for example, parameters used to directly configure the probe or parameters for configuring the probe's software.
In situations where the data received from the probe contains a probe identifier, the measurement system can track data on a probe-by-probe basis. In such situations, the measurement system can perform probe specific or probe aggregated analysis even though each probe is anonymous from a system configuration perspective. In other situations, the data received can be anonymous.
In one embodiment, probes can configure other probes by point-to point, or point-to-multipoint, communication.
In the embodiment of
Control units 201-206 allow various opportunistic metadata transfers, with each such metadata transfer usually being less than all of the metadata necessary for a data collected in a device, such as device 11
If the probe must be configured or reconfigured, process 304 determines if enough configuration information (such as, for example, metadata) is available.
If metadata (or other information that allows for a proper determination of probe configuration) is available, processes 305, 306 and 307 obtains the metadata and forms the configuration data that is be sent to the probe. Process 308 sends the configuration data to the proper probe. This communication can be over one or more links, such as, for example, network 12,
In the system discussed herein, the assumption can be made, if desired, that the probes require zero state tracking from the configuration point. In addition, it is assumed that probes may come and go from time to time and may or may not participate in a measurement (or set of measurements) at any particular time. Based on these assumptions, each probe must manage its own state by obtaining its state data (configuration data) from the server or data collection point.
The server, as discussed above only delivers configuration information upon request and makes no attempt to track the configuration of any particular probe. The probes then must ‘pull’ configuration information rather than having it pushed out by the server.
The configuration information supplied by the server to the probes in one embodiment is determined by the metadata supplied by the probe. Examples of the metadata may be probe type, probe owner, probe capabilities, probe power level, current location, timestamp, etc.
The configuration can manifest itself in the form of parameters used to configure the probe software. Alternatively, the configuration can manifest itself in the form of executable code modules and associated configuration parameters to allow new capabilities in the probe at configuration time.
Even though the probes are managed anonymously the system is still able to track data on a probe-by-probe basis if data produced by each probe contain an identifier that can be used to uniquely identify data produced by an individual probe.
Consider one example having 24 phones with an embedded measurement agent (probe) in each phone. The phones contact a server and provide their current location as a piece of metadata. The server then looks for measurement configurations that cover the region around that location and communicates that data to the phone. The phone then begins making measurements based on this configuration and sends the measured data to the server with each data point tagged with its unique identifier. The server does not need to know anything about the probe other than its location and the fact that it is requesting configuration in order to generate reports based on data reported by that phone. Thus, the management of each probe is anonymous while the data reported from each probe is not.
In another embodiment, in cases where the probes can communicate with each other via peer to peer protocols such as Wifi or Bluetooth, the probes can retrieve configuration information from nearby probes.
Note that it is possible for the data from the devices to be anonymous as well. Consider a temperature sensor that reports only temperature, a timestamp, and a location. A server can utilize this data in analysis without knowing anything about the probe that generated the data.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
5335186 | Tarrant | Aug 1994 | A |
5874903 | Shuey et al. | Feb 1999 | A |
6002996 | Burks et al. | Dec 1999 | A |
6854055 | Stinus et al. | Feb 2005 | B1 |
7312721 | Mason et al. | Dec 2007 | B2 |
20030171111 | Clark | Sep 2003 | A1 |
20040015618 | Risi et al. | Jan 2004 | A1 |
20040196182 | Unnold | Oct 2004 | A1 |
20040203437 | Burch et al. | Oct 2004 | A1 |
20050181781 | Starks | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
10101805 | Jul 2002 | DE |
2408344 | May 2005 | GB |
2410554 | Aug 2005 | GB |
2000074707 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20070063871 A1 | Mar 2007 | US |