1. Field of the Invention
This invention relates to a system and method for testing loudspeakers, more particularly, to a system and method for testing loudspeakers in a motor vehicle.
2. Related Art
Testing and quality assurance are important aspects of manufacturing. In the field of motor vehicle manufacturing, testing of all of the various components and subsystems that comprise a motor vehicle is essential. In order to insure high quality and to reduce the number of defective products, every single subsystem and component is generally tested.
With the dramatic increase in both the number of subsystems and their growing complexity, it becomes more and more difficult to test each subsystem, much less, test those subsystems quickly.
The audio system in a motor vehicle is one of those systems that have increased in complexity over the years. It is common for current motor vehicle audio systems to include multi-channel amplifiers and multi-function head units that can play a variety of sources and media. Adding additional capabilities to these head units has caused the controls on the head unit to serve many different functions. Because the buttons and dials are assigned many different functions, some functions can be difficult or inconvenient to access.
The audio system in a motor vehicle must be tested to insure that all of the components of the audio system are functioning properly, including all of the loudspeakers associated with the audio system. Typically, a technician has used the fader and balance controls on the head unit to test the loudspeakers. In many cases, this can be a time consuming task.
With the increased complexity of the head unit and multiple assigned functions to each button and each dial, accessing and using the fader and balance controls was difficult and cumbersome. This is especially true if the technician wanted to A/B test two different loudspeakers. Because of these difficulties, the testing of motor vehicle audio systems was slow and the testing procedure would fail to detect defective products.
The present invention provides a system and method for testing loudspeakers associated with a motor vehicle. The term “motor vehicle” as used throughout the specification and claims refers to any moving vehicle that is capable of carrying one or more human occupants and is powered by any form of energy. The term motor vehicle includes, but is not limited to cars, trucks, vans, minivans, SUV's, motorcycles, scooters, boats, personal watercraft, and aircraft.
In one aspect, the invention includes a first loudspeaker and a second loudspeaker both loudspeakers being connected to the audio system, a diagnostic mode where a test signal is sent to the first loudspeaker while the second loudspeaker receives no intended signal, and where the test signal moves to the second loudspeaker and the first loudspeaker receives no intended signal after receiving an input from a user.
In another aspect, entry into the diagnostic mode requires input from a plurality of keys.
In another aspect, the plurality of keys are non-adjacent.
In another aspect, the entry into diagnostic mode requires the plurality of keys to be depressed while the audio system is powered on.
In another aspect, visual feedback is provided when the audio system enters the diagnostic mode.
In another aspect, the audio system includes two additional loudspeakers, a third loudspeaker and a fourth loudspeaker.
In another aspect, the four loudspeakers are placed in a sequential order and the audio system moves the test signal from a currently tested loudspeaker to a next loudspeaker in the sequence in response to a first input.
In another aspect, the audio system moves the test signal from a currently tested loudspeaker to a previous loudspeaker in the sequence in response to a second input.
In another aspect, the audio system exits the diagnostic mode in response to an input from a user.
In another aspect, the invention includes a method for diagnosing an audio system for a motor vehicle comprising the following steps: entering a diagnostic mode, pressing a first button to move a test signal from a first loudspeaker to a second loudspeaker, pressing a first button a second time to move the test signal from the second loudspeaker to a third loudspeaker, and pressing a second button to exit the diagnostic mode.
In another aspect, the diagnostic mode is entered by pressing two non-adjacent buttons.
In another aspect, the diagnostic mode is entered by pressing and holding down two non-adjacent buttons while powering up the audio system.
In another aspect, a total of N loudspeakers are associated with the audio system, and by pressing the first button repeatedly, the test signal is eventually sent to the Nth loudspeaker.
In another aspect, pressing a fourth button exits the diagnostic mode.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
Preferably, motor vehicle 100 includes an audio system 302 (see
As shown schematically in
The term “loudspeaker” is used to refer to any loudspeaker assembly. For example, loudspeaker can refer to a single driver or transducer, a coaxial system including two or more drivers, and/or a component system including two or more physically separate drivers and signal processing devices like crossovers and similar items.
Preferably, left front loudspeaker 202 and right front loudspeaker 206 are component systems with a door mounted midrange driver and a tweeter mounted above the midrange driver. Preferably, subwoofer 212 is mounted outside of passenger cabin 106 and in trunk 114 of motor vehicle 100.
Passenger cabin 106 includes an interior 300, a preferred embodiment of which is shown in
In a preferred embodiment, steering wheel 302 includes a control pad 312 mounted onto a lower portion of steering wheel 302. In addition, some embodiments include a multi-function display 326 disposed on dashboard 308. Multi-function display 326 can show audio system information and status. In some embodiments, multi-function display 326 is disposed within instrument cluster 328 on dashboard 308.
Audio system 332 also includes a power and volume knob 406, a tune and sound adjust knob 408, and a series of smaller buttons 410. Audio system 332 also includes the following multifunction buttons. Preferably, these buttons provide different functions depending on which source is being played or the current mode of operation of audio system 332.
Button 412 is used to rewind or reverse the audio program. If audio system 332 is playing a cassette tape, button 412 is used to rewind the tape. If audio system 332 is playing a CD, button 412 is used to review the CD and/or move back one track. Also, if audio system 332 is in tuner mode, button 412 is used to tune to a first preset radio station. The remaining buttons 414-422 are similarly multifunctional and operate as conventionally known in the art. In some cases, a button will perform no function in a certain mode. For example, button 418 selects Dolby noise reduction in cassette mode, but performs no function in CD playback mode.
In addition to the buttons and controls provided on audio system 332, some embodiments include audio controls mounted on a control pod 312 on steering wheel 302.
In a preferred embodiment, the diagnostic mode is commenced when multiple keys are held down and the system is powered on. Referring to
In some embodiments, audio system 332 provides some kind of feedback to let the technician know that audio system 332 has entered a diagnostic mode. In a preferred embodiment, visual feedback is used.
After audio system 332 has entered the diagnostic mode, audio system 332 selects a first loudspeaker as the test speaker in step 604. Any desired loudspeaker can be selected as the first loudspeaker to be tested. Preferably, the right front loudspeaker 206 (see
After the first loudspeaker is selected, a signal is output to that speaker in step 606. Any signal can be used. In some embodiments, audio system 332 generates a test tone, for example white noise or pink noise. In other embodiments, the tuner is used to generate a test signal. Preferably, a strong FM station is used to generate the test signal. Of course, any FM station can be used to provide the test signal. This FM station frequency can be pre-programmed as the test signal or the FM frequency can be selected by the technician. In an exemplary embodiment, FM frequency 97.9 MHz is used.
Preferably, the test signal is output to only the loudspeaker being tested and other loudspeakers are not intentionally provided with a signal. Some small about of signal may be sent to the other loudspeakers due to channel cross talk, but this is an inevitable phenomenon of most multi-channel systems and this cross talk is not considered an intentional signal.
Preferably, audio system 332 (see
In step 608, audio system 332 awaits an input from the technician. Preferably, audio system 332 is providing an output to the loudspeaker being testing while waiting for an input from the technician. If a power off command is received at step 608, then the diagnostic mode ends and audio system 332 powers down. Preferably, if a power off command is received at any time audio system 332 is in the diagnostic mode, then the diagnostic mode ends and audio system 332 powers down. Although the power down command is the preferred method of exiting the diagnostic mode, other commands or buttons or button combinations can be used to exit the diagnostic mode.
In addition to the power down command, audio system 332 also responds to other commands as well. The technician can select the next loudspeaker in step 612. Any method, key stroke or key combination can be used to instruct audio system 332 to proceed to the next loudspeaker. However, the use of the channel up and down buttons is preferred.
The loudspeakers associated with audio system 332 can be placed in any desired sequence or logical order. The sequence shown in
Buttons associated with audio system 332 can be used to progress through sequence 900. In some embodiments, different buttons can be used to progress through sequence 900 in different directions. In some embodiments, redundant controls can also be provided where two different buttons perform the same function. In a preferred embodiment, the channel up and down buttons and the seek left and seek right buttons are used to progress through sequence 900 in two directions.
Referring to
Preferably, redundant buttons are also provided. In an exemplary embodiment, seek (+) button 430 (see
Using the features described above, a technician can easily test each loudspeaker independently and determine its operating capabilities. In this way, each loudspeaker is tested individually and also together as a set. At the end of a testing session or at any time during the test, a technician can exit diagnostic mode by pressing the power button. Audio system 332 (see
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that may more embodiments and implementations are possible that are within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.