The present invention relates to a technique for producing 18F-Fluoride from 18O gas.
Many medical procedures diagnosing the nature of biological tissues, and the functioning of organs including these tissues, require radiation sources that are introduced into, or ingested by, the tissue. Such radiation sources preferably have a life-time of few hours--neither long enough for the radiation to damage the tissue nor short enough for radiation intensity to decay before completing the diagnosis. Such radiation sources are preferably not chemically poisonous. 18F-Fluoride is such a radiation source.
18F-Fluoride has a lifetime of about 109.8 minutes and chemically poisonous in tracer quantities. It has, therefore, many uses in forming medical and radio-pharmaceutical products. The 18F-Fluoride isotope can be used in labeling compounds via the nucleophilic fluorination route. One important use is the forming of radiation tracer compounds for use in medical Positron Emission Tomography (PET) imaging. Fluorodeoxyglucose (FDG) is an example of a radiation tracer compound incorporating 18F-Fluoride. In addition to FDG, compounds suitable for labeling with 18F-Fluoride include, but are not limited to, Fluorodeoxyglucose (FDG), Fluoro-thymidine (FLT), fluoro analogs of fatty acids, fluoro analogs of hormones, linking agents for labeling peptides, DNA, oligonuclitides, proteins, and amino acids.
Several nuclear reactions, induced through irradiation of nuclear beams (including protons, deuterons, alpha particles, ...etc), produce the isotope 18F-Fluoride. 18F-Fluoride forming nuclear reactions include, but are not limited to, 20Ne(d,a)18F (a notation representing a 20Ne absorbing a deuteron resulting in 18F and an emitted alpha particle), 160(a,pn)18F, 16O (3H,n)18F, 16O (3H,p)18F, and 18O(p,n)18F; with the greatest yield of 18F production being obtained by the 18O(p,n)18F because it has the largest cross-section. Several elements and compounds (including Neon, water, and Oxygen) are used as the initial material in obtaining 18F-Fluoride through nuclear reactions.
Technical and economic considerations are critical factors in choosing an 18F-Fluoride producing system. Because the half-life of 18F-Fluoride is about 109.8 minutes, 18F-Fluoride producers prefer nuclear reactions that have a high cross-section (i.e., having high efficiency of isotope production) to quickly produce large quantities of 18F-Fluoride. Because the half-life of 18F-Fluoride is about 109.8 minutes, moreover, users of 18F-Fluoride prefer to have an 18F-Fluoride producing facility near their facilities so as to avoid losing a significant fraction of the produced isotope during transportation. Progress in accelerator design has made available sources of proton beams having higher energy and currents.
Systems that produce proton beams are less complex, as well as simpler to operate and maintain, than systems that produce other types of beams. Technical and economic considerations, therefore, drive users to prefer 18F-Fluoride producing systems that use proton beams and that use as much of the power output available in the proton beams. Economic considerations also drive users to efficiently use and conserve the expensive startup compounds.
However, inherent characteristics of 18F-Fluoride and the technical difficulties in implementing 18F-Fluoride production systems have hindered reducing the cost of preparing 18F-Fluoride. Existing approaches that use
Neon as the startup material suffer from problems of inherent low nuclear reaction yield and complexity of the irradiation facility. The yield from Neon reactions is about half the yield from 18O(p,n)18F. Moreover, using Neon as the startup material requires facilities that produce deuteron beams, which are more complex than facilities that produce proton beam.
Using Neon as the start-up material, therefore, has resulted in low 18F-Fluoride production yield at a high cost.
Existing approaches that use 18O-enriched water as the startup material suffer from problems of recovery of the unused 18O-enriched water and of the limited beam intensity (energy and current) handling capability of water. Using 18O-enriched water suffers from slower production cycle times as it is necessary to spend relatively long time to collect and dry-up the unused 18O-enriched water before the formed 18F-Fluoride can be collected. Speeding production cycle at the expense of recovering all of the unused18O-enriched water will increase the cost because of the unproductive loss of the start-up material. Recovering the unused 18O-enriched water is problematic, moreover, because of contaminating by-products generated as a result of the irradiation and chemical processing. This problem has led users to distill the water before reuse and, thus, implement complex distilling devices. These recovery problems complicate the system, and the production procedures, used in 18O-enriched water based 18F-Fluoride generation; the recovery problems also lower the product yield due in part to non-productive startup material loss and isotopic dilution.
Moreover, although proton beam currents of over 100 microamperes are presently available, 18O-enriched water based systems are not reliable when the proton beam current is greater than about 50 microamperes because water begins to vaporize and cavitate as the proton beam current is increased. The cavitation and vaporization of water interferes with the nuclear reaction, thus limiting the range of useful proton beam currents available to produce 18F-Fluoride from water. See, e.g., Heselius, Schlyer, and Wolf, Appl. Radiat. Isot. Vol. 40, No. 8, pp 663-669 (1989), incorporated herein by reference. Systems implementing approaches using 18O-enriched water to produce 18F-Fluoride are complex and difficult. For example, very recent publications (see, e.g., Helmeke, Harms, and Knapp, Appl. Radiat. Isot. 54, pp 753-759 (2001), incorporated herein by reference, hereinafter “Helmeke”) show that it is necessary to use complicated proton beam sweeping mechanism, accompanied by the need to have bigger target windows, to increase the beam current handling capability a of 18O-enriched water system to 30 microamperes. In spite of the complicated irradiation system and target designs, the Helmeke approach has apparently allowed operation for only 1 hour a day.
Using water as the startup material, therefore, has also resulted in low 18F-Fluoride production yield at high cost.
Accordingly, a better, more efficient, and less costly method of producing 18F-Fluoride is needed.
The invention presents an approach that produces 18F-Fluoride by using a proton beam to irradiate 18Oxygen in gaseous form. The irradiated 18Oxygen is contained in a chamber that includes at least one component to which the produced 18F-Fluoride adheres. A solvent dissolves the produced 18F-Fluoride off of the at least one component while it is in the chamber. The solvent is then processed to obtain the 18F-Fluoride.
The inventive approach has an advantage of obtaining 18F-Fluoride by using a proton beam to irradiate 18Oxygen in gaseous form. The yield from the inventive approach is high because the nuclear reaction producing 18F-Fluoride from 18Oxygen in gaseous form has a relatively high cross section. The inventive approach also has an advantage of allowing the conservation of the unused 18Oxygen and its recycled use. The inventive approach appears not to be limited by the presently available proton beam currents; the inventive approach working at beam currents well over 100 microamperes. The inventive approach, therefore, permits using higher proton beam currents and, thus, further increases the 18F-Fluoride production yield. The inventive approach has a further advantage of producing pure 18F-Fluoride, without the other non-radioactive Fluorine isotopes (e.g., 19F).
Other aspects and advantages of the present invention will become apparent upon reading the detailed description and accompanying drawings given hereinbelow, which are given by way of illustration only, and which are thus not limitative of the present invention, wherein:
The invention presents an approach that produces 18F-Fluoride by using a proton beam to irradiate 18Oxygen in gaseous form. The irradiated 18Oxygen is contained in a chamber that includes at least one component to which the produced 18F-Fluoride adheres. A solvent dissolves the produced 18F-Fluoride off of the at least one component while the at least one component is in the chamber. The solvent is then processed to obtain the 18F-Fluoride.
In the embodiment of
The target chamber 200 includes an irradiation chamber volume 201, chamber walls 202 (that can include cooling device(s), or heating device(s) or both) that preferably are proton beam blocking, at least one chamber window 203 that transmits the proton beam into the chamber volume 201, and at least one chamber component 204. The 18Oxygen is exposed to the proton beam while being in the chamber volume 201. The chamber walls 202 and chamber window 203 retain the 18Oxygen in the chamber volume 201. The chamber window 203 transmits a large portion of the incident proton beams into the chamber volume 201. The produced 18F-Fluoride adheres to the chamber component 204. Preferably Havar (Cobalt-Nickel alloy) is used as the chamber window 203 because of its tensile strength (thus holding the 180 gas at high pressures within the chamber 200) and good proton beam transmission (thus transmitting the proton beam without significant loss). However, other suitable material, instead of Havar, can be used to form the chamber window. Preferably, the chamber volume 201 conically flares out and, thus, permits the efficient use of the scattered protons as they proceed into the chamber volume 201. However, other suitable shapes can be used for the chamber volume 201. The chamber volume 201 in exemplary embodiments used in runs demonstrating the inventive was about 15 milliliters—this excludes the connecting segments of the looping tube 100. The chamber volume 201 can be designed to have other suitable sizes.
In different non-limiting implementations, a cooling jacket (as a nonlimiting example of cooling device) can form part of the chamber wall 202 (not shown in
On one side, the chamber 200 is connected to the looping tube 100 and a pressure transducer 301. This side of the looping tube has a valve 505 interrupting the continuation of the looping tube 100. On the other side, the chamber 200 is also connected to the looping tube 100. This other side of the looping tube has a valve 506 interrupting the continuation of the looping tube 100. After valve 505, the looping tube 100 has a vacuum pump outlet 701 allowing an access to vacuum pump 400 through valve 504 (with a pressure transducer 302 placed between the valve 504 and the vacuum pump 400). After valve 505, the looping tube 100 also has an 18Oxygen inlet 601 allowing access to 18Oxygen through valve 503. The continuation of the looping tube 100, after inlet 601 and outlet 701, is interrupted by valve 512, after which the looping tube has a Helium inlet 603 allowing access to Helium gas. The continuation of looping tube 100 after inlet 603 is interrupted by valve 511, after which the looping tube has an Eluent inlet 604. After the Eluent inlet 604, the continuation of the looping tube 100 is interrupted by valve 510, after which separator outlet 702 allows access from the looping tube 100 to a separator 1000. Separator 1000 leads to a bi-directional valve 513, which allows access either to waste outlet 703 or to product outlet 704. After outlet 702, the continuation of the looping tube 100 is interrupted by valve 509. Following valve 509, the looping tube 100 has both a vent outlet 705 leading to valve 508 and a solvent inlet 602 allowing a solvent into looping tube 100 through valve 507. After solvent inlet 602, the looping tube 100 connects to the valve 506.
The 18Oxygen inlet 601 connects (first through valve valves 503 and then through valve 501) to a container 800 for storing unused 18Oxygen. A pressure gauge 303 monitors the pressure at a region between valves 501 and 503. A valve 502 separates this region from a container of 18Oxygen to be used to top-off the 18Oxygen in the system whenever it is deemed necessary. Container 800 can be placed in a cryogenic cooler implemented as a liquid Nitrogen dewar 900 connected to a supply of liquid Nitrogen to selectively cool the container 800 to below the boiling point of 18Oxygen. The selective cooling can be achieved, for example, by moving the dewar up so as to have the container 800 be in the liquid Nitrogen. Instead of the liquid Nitrogen dewar 900 selectively cooling the container 800, in other implementations the container 800 can be enclosed in a refrigerator that can selectively lower the temperature of container 800 to below the boiling point of 81Oxygen, for example.
A method of implementing the inventive concept is described hereinafter, by reference to
At the very beginning, valves 501-513 are closed. At the beginning of a very first run or after long-term storage and when it is unclear whether contaminant level has increased, it is desirable to pump out container 800 to reduce the number of contaminants that might exist otherwise. This can be achieved, for example, by opening valves 501-503-504 and exposing the container 800 to the vacuum pump 400. In step S1000 of
In step S1010, the chamber volume 201 is evacuated. This can be accomplished, for example, by opening valves 504 and 505 and exposing the chamber volume 201 and the connecting looping tube 100 to the vacuum pump 400. The vacuum pump can be implemented, for example, as a mechanical pump, diffusion pump, or both. The pressure gauge 302 can be used to keep track of the vacuum level in the chamber volume 201. During step S1010, valves 503-506-512 can be closed to efficiently pump on chamber volume 201. When the desired level of vacuum in chamber 201 is achieved, valve 504 can be closed thus isolating the vacuum pump 400 from the chamber volume 201. The desired level of vacuum in chamber volume 201 is preferably high enough so that the amount of contaminants is low compared to the amount of 18F-Fluoride formed per run. Step S1010 can be augmented by heating chamber 200 so as to speed up its pumping.
In step S1020, the chamber volume 201 is filled with 180xygen gas to a desired pressure. This can be accomplished, for example, by opening valves 501-503-505 and allowing the 18Oxygen gas to go from the container 800 to the chamber volume 201. Pressure gauges 301 or 303, or both, can be used to keep track of the pressure and, thus, the amount of 18Oxygen gas in chamber volume 201.
In step S1030, the 18Oxygen gas in chamber volume 201 is irradiated with a proton beam. This can be accomplished, for example, by closing valve 505 and directing the proton beam onto the chamber window 203. The chamber window 203 can be made of a thin foil material that transmits the proton beam while containing the 18Oxygen gas and the formed 18F-Fluoride. As the 18Oxygen gas is being irradiated by the proton beam, some of the 18Oxygen nuclei undergo a nuclear reaction and are converted into 18FFluoride. The nuclear reaction that occurs is:
18Oxygen+p→18F+n.
The irradiation time can be calculated based on well-known equations relating the desired amount of 18F-Fluoride, the initial amount of 18Oxygen gas present, the proton beam current, the proton beam energy, the reaction cross-section, and the half-life of 18F-Fluoride. TABLE 1 shows the predicted yields for a proton beam current of 100 microamperes at different proton energies and for different irradiation times. TTY is an abbreviation for the yield when the target is thick enough to completely absorb the proton beam.
TTY is an abbreviation for thick target yield, wherein the 18Oxygen gas being irradiated is thick enough-i.e., is at enough pressure—so that the entire 5 transmitted proton beam is absorbed by the 18Oxygen. The yields are in curie. TTY at sat is the yield when the irradiation time is long enough for the yield to saturate-about 12 Hours for 18Oxygen gas.
Preferably the 18Oxygen gas is at high pressures: The higher the pressure the shorter the necessary length for the chamber volume 201 to have the 18Oxygen gas present a thick target to the proton beam. TABLE 2 shows the stopping power (in units of gm/cm2) of Oxygen for various incident proton energies. The length of 18Oxygen gas (the gas being at a specific temperature and pressure) that is necessary to completely absorb a proton beam at a specific energy is given by the stopping power of Oxygen divided by the density of 18Oxygen gas (the density being at the specific temperature and pressure). Using this formula, a length of about 155 centimeters of 18Oxygen gas at STP (300K temperature and 1 atm pressure) is necessary to completely absorb a proton beam having energy of 12.5 MeV. By increasing the pressure to 20 atm, the necessary length at 300K becomes about 7.75 centimeters.
Consequently in one preferred implementation, the chamber 200 (along with its parts) is designed to withstand high pressures, especially since higher pressures become necessary as the chamber 200 and gas heat up due to the irradiation by the proton beam. In one exemplary implementation of the inventive concept to produce 18F-Fluoride from 18Oxygen gas, we have demonstrated the success of using Havar with thickness of 40 microns to contain 18Oxygen at fill pressure of 20 atm irradiated with 13 MeV proton beam (protons with 12.5 MeV transmitting into the chamber volume, 0.5 MeV being absorbed by the Havar chamber window) at a beam current of 20 microamperes. The exemplary implementation successfully contained the 18Oxygen gas during irradiation with the proton beam and, therefore, with the 18Oxygen gas having much higher temperatures (well over 100° C.) and pressures than the fill temperature and pressure before the irradiation. In another exemplary implementation, cooling jackets (lines) were used to remove heat from the chamber volume during irradiation. A preferred implementation would run the inventive concept at high pressures to have relatively short chamber length and thus simplify the requirements on the intensity of the incident proton beam. In alternative implementations, other suitable designs can be used to contain the 18Oxygen gas at desired pressures.
The 18F-Fluoride adheres to the chamber component 204 as it is formed. The material chosen for the at least one chamber component 204 preferably is one of which 18F-Fluoride adheres well. The material chosen for the chamber component 204 preferably is one off of which the adhered 18F-Fluoride dissolves easily when exposed to the appropriate solvent. Such materials include, but are not limited to, stainless steel, glassy Carbon, Titanium, Silver, Gold-Plated metals (such as Nickel), Niobium, Havar, Aluminum, and Nickel-plated Aluminum. Periodic pre-fill treatment of the chamber component 204 can be used to enhance the adherence (and/or subsequent dissolving, see later step S 1050) of 18F-Fluoride.
In step 1040, the unused portion of 18Oxygen is removed from the chamber volume 201. This can be accomplished, for example, by opening valves 501-503-505, with the container 800 cooled to below the boiling point of 18Oxygen. In this case, the unused portion of 18Oxygen is drawn into the container 800 and, thus, is available for use in the next run. This step allows for the efficient use of the starting material 18Oxygen. It is to be noted that the cooling of container 800 to below the boiling point of 18Oxygen can be performed as the chamber volume 201 is being irradiated during step S1030. Such an implementation of the inventive concept reduces the run time as different steps are performed, for example, in parallel with the different segments of the looping tube 100 being isolated from each other by the various valves. The pressure of the 18oxygen gas can be monitored by pressure gauges 303 or 301, or both.
In step S1050, the formed 18F-Fluoride adhered to the chamber component 204 is preferably dissolved using a solvent without taking the chamber component 204 out of the chamber 200. This can be accomplished, for example, by opening valves 506-507, while valve 505 is closed, and allowing the solvent to be introduced to the chamber volume 201. The adhered 18F-Fluoride is preferably dissolved by and into the introduced solvent. Step S1050 can be augmented by heating chamber 200 so as to speed up the dissolving of the produced 18F-Fluoride. This procedure allows the solvent to be sucked into the vacuum existing in the chamber volume 201, thus aiding both in introducing the solvent and physically washing the chamber component 204. Alternatively, the solvent can also be introduced due to its own flow pressure.
The material used as a solvent preferably should easily remove (physically and/or chemically) the 18F-Fluoride adhered to the chamber component 204, yet preferably easily allow the uncontaminated separation of the dissolved 18F-Fluoride. It also preferably should not be corrosive to the system elements with which it comes into contact. Examples of such solv ents include, but are not limited to, water in liquid and steam form, acids, and alcohols. 19Fluorine is preferably not the solvent—the resulting mixture would have 18F-19F molecules that are not easily separated and would reduce, therefore, the yield of the produced ultimate 18F-Fluoride based compound.
TABLE 3 shows the various percentages of the produced 18F-Fluoride extracted using water at various temperatures. It is seen that a chamber component made from Stainless Steel yields 93.2% of the formed 18F-Fluoride in two washes using water at 80° C. Glassy Carbon, on the other hand, yields 98.3% of the formed 18F-Fluoride in a single wash with water at 80° C. the wash time was on the order of ten seconds. Using water at higher temperatures is expected to improve the yield per wash. Steam is expected to perform at least as well as water, if not better, in dissolving the formed 18F-Fluoride. Other solvents may be used instead of water, keeping in mind the objective of rapidly dissolving the formed 18F-Fluoride and the objective of not diluting the Fluorine based ultimate compound.
In step 1060, the formed 18F-Fluoride is separated from the solvent. This can be accomplished, for example, by closing valve 507 and opening valves 512-505-506-509 and having bi-directional valve 513 point to waste outlet 703. This allows the Helium to push the solvent along with the dissolved 18F-Fluoride out of the chamber volume 201 and towards the separator 1000. The separator 1000 separates the formed 18F-Fluoride from the solvent, retains the formed 18F-Fluoride, and allows the solvent to proceed to waste outlet 703.
The separator 1000 can be implemented using various approaches. One preferred implementation for the separator 1000 is to use an Ion Exchange Column that is anion attractive (the formed 18F-Fluoride being an anion) and that separates the 18F-Fluoride from the solvent. For example, Dowex IX-10, 200-400 mesh commercial resin, or Toray TIN-200 commercial resin, can be used as the separator. Yet another implementation is to use a separator having specific strong affinity to the formed 18F-Fluoride such as a QMA Sep-Pak, for example. Such implementations for the separator 1000 preferentially separate and retain 18F-Fluoride but do not retain the radioactive metallic byproducts (which are cations) from the solvent, thus retaining a high purity for the formed radioactive 18F-Fluoride. Another preferred implementation for the separator 1000 is to use a filter retaining the formed 18F-Fluoride.
In step 1070, the separated 18F-Fluoride is processed from the separator 1000. This can be accomplished, for example, by closing valves 509-512 and opening valves 510-511 and having valve 513 point to the product outlet 704. The Helium then directs the Eluent towards the separator 1000; with the Eluent processing the separated 18F-Fluoride out of the separator 1000 and carrying it to the product outlet 704. The Eluent used must have an affinity to the separated 18F-Fluoride that is stronger than the affinity of the separator 1000. Various chemicals may be used as the Eluent including, but not limited to various kinds of bicarbonates. Non-limiting examples of bicarbonates that can be used as the Eluent are Sodium-Bicarbonate, Potassium-Bicarbonate, and Tetrabutyl-Ammonium Bicarbonate. Other anionic Eluents can be used in addition to, or instead of, Bicarbonates. A user then obtains the processed 18F-Fluoride through product outlet 704 and can use it in nucleophilic reactions, for example.
In step 1080, the chamber volume 201 is dried in preparation for another run of forming 18F-Fluoride. This can be accomplished, for example, by closing valve 511 and opening valves 512-505-506-508. The Helium then is allowed to flow through the chamber volume 201 towards and out of the vent outlet 705. Pressure gauge 301 can be used to monitor the drying of the chamber volume 201. Alternatively, a humidity monitor integrated with the pressure gauge 301 can be used to track the drying of the chamber volume 201. Step S1080 can be augmented by heating chamber 200 so as to speed up its drying.
It is to be noted that steps S1070 and S1080 can be overlapped in time. This can be accomplished, for example, by having valves 512-505-506-508 open while valves 511-510 are open and while valve 509 is closed. This allows the Helium to dry the chamber volume 201 while the Eluent is being directed through and out of the separator 1000 and product outlet 704, without pushing humidity towards the separator 702 or pushing the Eluent towards the vent outlet 705. It is also to be noted that although Helium has been described as the gas used in directing the solvents and Eluents and drying the chamber volume 201, the inventive concept can be practiced using any other gas that does not react with the formed 18F-Fluoride, the solvent , the Eluent, or with materials forming the system (including the pressure gauges, the valves, the chamber, and the tubing). For example, Nitrogen or Argon can be used instead of Helium.
After drying the chamber volume 201 from solvent remnants, the system is ready for another run for producing a new batch of 18F-Fluoride. The amount of 18Oxygen in container 800 can be monitored to determine whether topping-off is necessary. The overall process can then be repeated starting with step S 1010.
Demonstration runs of the inventive concept have consistently yielded at least about 70% of the theoretically obtainable 18F-Fluoride from 18O gas. The setup had a chamber volume of about 15 milliliters, the 18Oxygen gas was filled to about pressure of 20 atmospheres, the proton beam was 13 MeV having beam current of 20 microamperes, the solvent was de-ionized with volume of 100 milliliters and a QMA separator was eluted with 2×2 milliliters of Bicarbonate solution. Such a result is especially important because 18Oxygen in gaseous form has 14-18% better yield than 18O-enriched water because the Hydrogen ions in the 18O-enriched water reduce the exposure of the 18Oxygen to the proton beam. This yield difference increases with decreasing proton energy; the yield difference being 16%, 15.2%, 14.75%, and 14.3% at 15, 30, 50, and 100 MeV, respectively.
Consequently, the inventive concept produces significantly greater overall yield of 18F-Fluoride than can be produced by 18O-enriched water based systems. For example, running a simple (non-sweeping beam) system implementing the inventive concept at a proton current beam of 100 microamperes and energy of 15 MeV will produce about 53% greater overall yield than the complicated (sweeping beam and bigger target window) system of Helmeke running at its apparent maximum of 30 microamperes. The inventive concept can be implemented with a modification using separate chemically inert gas inlets, instead of one inlet, to perform various steps in parallel. The inventive concept can also be implemented using a valve to separate the Eluent inlet from the looping tube 100. The looping tube 100 can be formed in different shapes including, but not limited to, circular and folding to reduce the size of the system. Cooling and/or heating devices can be used to control the temperature of the material transmitted by the looping tube 100, for example by surrounding at least a portion of the looping tube 100 with cooling and/or heating jackets. The temperature of the looping tube 100 can be monitored by thermocouples, for example, to better control the temperature of the transmitted material. Instead of one looping tube, parallel looping tubes can be used to increase the surface area and thus better enable heating and/or cooling the transmitted different material (gas/Eluent/solvent) by cooling and/or heating devices surrounding the looping tube. The chamber, and its different parts, can be formed from various different suitable designs and materials: This can be done to permit increasing the incident proton beam currents, for example. Although the present invention has been described in considerable detail with reference to certain exemplary embodiments, it should be apparent that various modifications and applications of the present invention may be realized without departing from the scope and spirit of the invention. All such variations and modifications as would be obvious to one skilled in the art are intended to be included within the scope of the claims presented herein.
This is a continuation application of U.S. Application No. 09/790,572, filed Feb. 23, 2001, which claims priority under 35 U.S.C. §119 (e) of U.S. Provisional Application No. 60/184,352, filed Feb. 23rd, 2000, the entire contents of which are specifically incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60184352 | Feb 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09790572 | Feb 2001 | US |
Child | 10991552 | Nov 2004 | US |