Not applicable.
This invention relates to a system and method of selectively repairing roofing shingles.
Asphalt based shingles are the most common roofing material used in the United States on residential and commercial structures. These asphalt shingles are composed of a thin and flat base material made of either paper or fiberglass, which is saturated with asphalt. Granular material is embedded on the upper surface of the asphalt saturated base material. The durability of these shingles is ranked by the warranted life of the materials, and the life span of such shingles can range from 5 to 50 years.
There are a number of ways an asphalt shingle can be damaged, and most of these damaging activities will result in the loss of protection to the underlying structure. These causes of damage include normal ageing of the shingle, mechanical damage from foot traffic, manufacturing defects such as blistering, and storm damage resulting from high winds, heavy rain, or hail.
Hail and similar weather-related damage is estimated to cause more than one billion dollars in roof damage nationwide each year. The type of roofing materials affected the most by hail damage is asphalt-based roofing shingles with embedded granules. Such hail damage to asphalt shingles may include: (1) dislodging the granular material on the top surface of the asphalt base, (2) causing indentions in the asphalt, or (3) puncturing a hole or gash into the asphalt shingle.
For weather-related damage, dislodging of the granular material on the top surface of the asphalt shingle may sound innocuous, but the resulting damage caused by dislodging the granular material is significant. The granules embedded on the top surface of an asphalt shingle have a two-fold purpose. While the granules provide color for the aesthetic appearance of the roof, the granules are essential to providing the durability of the roofing shingle by providing weather resistance and protection from ultra-violet (UV) radiation.
If granules are removed from the top surface of an asphalt shingle, the shingle will be more vulnerable to subsequent weather damage and increased UV radiation. Over time, increased UV radiation and heat applied by the sun against the unprotected shingle will cause the exposed asphalt areas under the top surface of the asphalt shingle to dry and crack. A dry or cracked underlying asphalt shingle will likely lead to leak damage of the roof, and destruction of the roof sheathing residing under the shingles. Eventually, this type of damage will compromise the underlying housing structure.
When a portion of the roofing shingles on a roof become damaged (e.g. by high winds, hail damage, etc.), replacement of the entire roof is usually recommended. This is the normal recommendation even for relatively minor indentions if there is sufficient loss of granules over a pre-determined area of the roof. The pre-determined area to measure roof damage is a square area on the roof, usually a square of 10 ft. by 10 ft. (100 sq. ft.). That 100 foot area has approximately 8 shingles sized approximately 12 inches wide by 36 inches long. An entire roof replacement is recommended if there are 8-12 significant hail strikes or indentations located within any given 10 ft. by 10 ft. square on the roof.
Entire roof replacement for this type of weather-related damage is responsible for the majority of roof-related insurance payouts by homeowner insurance companies in the United States. One of the consequences of this type of roof replacement is that approximately 22 billion pounds of shingles are deposited in landfills each year, even though many or most of those shingles are in a good or undamaged condition. There is an existing need for a method and system that can avoid the replacement of an entire shingled roof when only a portion of roofing shingles on the roof are damaged.
Existing roof and shingle repair options are very limited and such existing options produce unsatisfactory results. For example, sealants, by themselves, provide a short term stop to further damage, but since most sealants do not repair the damage to the shingle adequately. And, sealants, when used alone, do not restore the damaged shingle to its original condition, either functionally or aesthetically. Use of sealants, by themselves, to repair a roof shingle is unsatisfactory because the shingle is not protected against future weather or UV damage. Insurance companies do not accept repairs using only sealants as an acceptable replacement insurable roof. As such, insurance companies will not re-insure a roof that is repaired with only sealants because such repairs do not produce a long-term, satisfactory repair.
There exists a need for a means to repair damaged shingles on an existing roof without having to replace the entire roof, and there is a need for a roof shingle repair method that produces a fully functional shingle or shingles even if the roof previously had hail strikes, wind damage or other weather-related damage. There is also a need to repair selected roofing shingles in an acceptable and fully functional manner, with such repair being qualified and approved by insurance carriers. There is an overall need for an economical means of fully restoring a damaged roof shingle without replacing an entire roof.
The invention is primarily directed to a system and method of selectively repairing asphalt-based shingles having embedded granular material. The claimed system and method produces a roof shingle repair that restores selected portions of a roof or selected shingles to their original, or an improved, functionality while still providing an aesthetic match of the repaired area or the repaired shingle to the original and surrounding roofing material.
The claimed invention provides a system and method for repairing selected shingles on an existing roof so that the repaired roofing shingles are: (1) aesthetically indistinguishable from the remaining and surrounding un-repaired portion of the roof, (2) equal to, or having greater, impact resistant than the original roofing shingles, (3) more economically advantageous for both structure owners and insurance companies that address damaged roofing materials, and (4) not disposed of or deposited in landfills due to disposal of entire replaced roofs, which significantly reduces economic impact by reducing landfill waste.
The system and method of the invention also comprises the use of devices specifically designed and used to template repaired shingles and protect surrounding shingles from adhesives and to frame a shingle for repair to aid in applying, leveling and compressing granules onto the damaged shingle. In addition to the specialized devices, the system and method of the claimed invention comprises the steps of removal of debris from the damaged area, application of a base coat adhesive to the damaged area, embedding color-matched granules in the base coat and application of a top coat sealant that permanently bonds the repaired layers to the original roofing material.
The objects and features of the invention will become more readily understood from the following detailed description and appended claims when read in conjunction with the accompanying drawings in which like numerals represent like elements and in which:
Hail strikes, wind, and foot traffic can cause indention damage to a roof shingle, split damage in the top surface of a roof shingle, and dislocation damage to roofing shingles by dislodging embedded granules from the top surface of the roof shingle. The invention is primarily directed to a system and method of selectively repairing asphalt-based shingles having embedded granular material. The invention can also be used with composition shingles, metal roof systems, and decorative roofing materials such as stone-coated metal.
The claimed invention provides a system and method for repairing selected shingles on an existing roof so that the repaired roofing shingles are: (1) aesthetically indistinguishable from the remaining un-repaired portion of the roof, (2) of equal, or greater, impact resistance than the original un-repaired roofing shingle, (3) more economical because there are significant cost savings achieved by for both structure owners and insurance companies from using the present invention, and (4) reduce environmental damage by reducing the amount of roofing materials that must be deposited in landfills from the disposal of entire replaced roofs. The present invention produces a selective roof repair that restores selected portions of a damaged roof to its original or improved functionality, while still producing an aesthetic match of the repaired area to the original roofing material.
The system and method of the claimed invention comprises the steps of removal of debris from the damaged area, application of a base coat adhesive to the damaged area, embedding color-matched granules in the base coat and application of a top coat sealant that permanently bonds the repaired layers to the original roofing material. The system and method of the invention also uses devices specifically designed and used for the present invention, such as an adjustable shingle template (isolates the damaged shingle and protects surrounding shingles from adhesives), an adjustable shingle frame device, and a compression devise to compress granules into the repaired shingle.
At the bottom of top guard section 8 there is a slotted groove 7, and at the top of bottom guard section 3 there is a slotted groove 9. The slotted grooves 7 and 9 are of sufficient width to accommodate the thickness of left guard section 19 and right guard section 2. The top edges 5 and bottom edges 4 of the left guard section 19 and right guard section 2, respectively, reside in and slide inside the slot 7 in the top guard section 8 and slot 9 in the bottom guard section 3. By sliding the side guard sections 2 and 19 this manner, the size of the internal space 11 in the template shield 10 can be adjusted and modified to accommodate the size of the damaged area on the roof or the size of the damage shingle.
The side, top and bottom guard sections 2, 3, 8 and 19 can be composed of an elastic or flexible thermoplastic, rubber, thermoset or thermoform plastic, or similar flexible material. The side, top and bottom guard sections 2, 3, 8 and 19 can also be composed of a stiff particle board, planking, thermoplastic, rubber, thermoset or thermoform plastic, or similar stiffer material.
In
The slot 7 in the top guard section 8 and slot 9 in the bottom guard section 3 are shown in both
The adjustable shingle shield 20 is situated around the perimeter of the damaged shingle to prevent the base adhesive from contacting the surrounding shingles, and the adjustable shingle shield 20 provides an adjustable opening 51 that exposes only the damaged shingle to adhesive applications while protecting the surrounding surfaces of the damaged shingles from exposure to adhesives or other application elements by having those areas covered and protected from contact.
The dimensions of bottom guard section 22 and top guard section 24 are between three inches to three feet in length laterally from side to side and six to sixteen inches in width from top to bottom, with mid-sections of each panel shown in 22A and 24A, respectively. The dimension of left guard section 23 and the right guard section 21 are six to sixteen inches in length laterally side to side and four inches to two feet in width from top to bottom.
As shown in
The peg apertures 27, 28, 25, and 26 have diameters that receive pegs 31, 34, 32, and 33, respectively from left guard section 23 and right guard section 21. The positioning of the left, right, top and bottom sections, 23, 21, 24 and 22 can be adjusted based on the placement of peg 31, 34, 33, and 32 through the peg apertures 27, 28, 26 and 25 in left, right, top and bottom sections, 23, 21, 24 and 22. That is, the size and shape of the opening 51 can be adjusted based on the placement and positioning of left, right, top and bottom sections, 23, 21, 24 and 22. The size of opening 51 can be minimized by using the peg apertures 31, 34, 33, and 32 on the peripheral outside border of the left, right, top and bottom sections, 23, 21, 24 and 22, whereas the size of opening 51 can be increased by using the peg apertures 31, 34, 33, and 32 located toward the inside border of the left, right, top and bottom sections, 23, 21, 24 and 22.
In
As shown in
The peg apertures 25 and 26 shown in
As shown in
The side, bottom right, bottom left, left, and top guard sections 40, 42, 43, 47, and 49 are composed of flat panels having a thickness of approximately ⅛ inch to ½ inches, and the flat panels in sections 40, 42, 43, 47, and 49 can all be composed of the same type of materials or differing types of materials. Moreover, the side, top and bottom guard sections 40, 42, 43, 47, and 49 can be composed of an elastic or flexible thermoplastic, rubber, thermoset or thermoform plastic, or similar flexible material. The side, bottom right, bottom left, left, and top guard sections 40, 42, 43, 47, and 49 can also be composed of a stiff particle board, planking, thermoplastic, rubber, thermoset or thermoform plastic, or similar stiffer material.
The dimensions of bottom left and bottom right guard sections 43 and 42, as well as the top guard section 49 are between three inches to three feet in length laterally from side to side and six to sixteen inches in width from top to bottom. The dimension of left guard section 47 and the right guard section 40 are six to sixteen inches in length laterally side to side and four inches to two feet in width from top to bottom.
The size and shape of the opening 52 can be adjusted based on the placement and positioning of bottom left and bottom right sections 43 and 42. The size of opening 52 can be minimized laterally by moving bottom left and bottom right sections 43 and 42 closer together using the slotted groove 44 and groove guide post 46. The size of opening 52 can be increased laterally by moving bottom left and bottom right sections 43 and 42 further apart using the slotted groove 44 and groove guide post 46.
In
Alternatively, as shown in
The internal space 115 defines an area where the damaged area of the roof or damaged roofing shingle is located, and where the repair processing steps are performed on the shingle being repaired. The shingle frame 100 shown in
The adjustable granule leveling slide 107 is positioned in the highest vertical position along the slide support bars 103 and 108. The horizontal adjustment blade 102 is positioned with the adjustment blade arms 136 and 135 held securely by the horizontal adjustment blade locks 104 and 105, each having a slide lock area 104e. When the frame is properly situated around the perimeter of the shingle, the entire surface of the shingle to be repaired is exposed vertically between the bottom edge of the U-shaped opening 121 of base plate 106 and the adjustable granule leveling slide 107, and horizontally between the left edge 120 and the right edge 121 of the shield body 106.
As shown in
As shown in
The shingle shield 100 has an overflow catch 113 that has a spout 114, an outer edge 112, and a closed catch end 111. Granules are custom prepared by mixing appropriate sized particles with the desired colored coating in a rotating cement-type mixer until granules are fully coated and dry. Custom prepared granules are applied to the damaged area in the same manner as those prepared in advance. Granules are distributed evenly over the base adhesive to replicate the granule density on the surrounding shingles. Slightly more granular material than desired in the final repair may be added to indentions at this point in the process since excess granular material that has not adhered to base adhesive will be removed prior to sealing the repair. Granular material is also lightly dispersed over the entire surface of the shingle to blend the repaired indention with the surrounding shingle.
Granular material should be added to the base adhesive within 30 minutes of application of the base adhesive to the damaged shingle. Granules may be applied to the base adhesive by hand broadcasting, by a shaker apparatus or other means to evenly distribute the granules across the surface of the shingle. After distribution of the granules over the adhesive-coated shingle surface, the granule leveling slide 107 is moved downwardly along the slide support bars 103 and 108 of the shingle frame 100 with excess granules being swept downwardly and collected in granule catch pan 113. Granule leveling slide 107 may be actuated 2-3 additional times in order to achieve a level distribution of granules over the shingle surface. Granule leveling slide 107 is then left in the down position below the bottom of U-shaped shingle opening 115 and above granule catch pan 113.
In
The shingle frame 100 shown in
The adjustable granule leveling slide 107 is positioned in the highest vertical position along the slide support bars 103 and 108. The horizontal adjustment blade 102 is positioned with the adjustment blade arms 136 and 135 held securely by the horizontal adjustment blade locks 104 and 105, each having a slide lock area 104e. When the frame is properly situated around the perimeter of the shingle, the entire surface of the shingle to be repaired is exposed vertically between the bottom edge of the U-shaped opening 121 of base plate 106 and the adjustable granule leveling slide 107, and horizontally between the left edge 120 and the right edge 121 of the shield body 106. The shingle shield 100 has an overflow catch 113 that has a spout 114, an outer edge 112, and a closed catch end 111.
As shown in
In
The shingle frame 100 shown in
In
The adjustment blade 102 has an upper lateral extension 136 and a lower lateral extension 135 that positions shingle frame 100 in the correct placement for processing the repair, and the adjustment blade 102 can be moved laterally left to right (or vice-versa) by virtue of the placement of upper extension 136 and the lower extension 135 through the slots 104e placed in the blade slotted block 104 shown in
In
When the frame is properly situated around the perimeter of the shingle, the entire surface of the shingle to be repaired is exposed vertically between the bottom edge of the U-shaped opening 121 of base plate 106 and the adjustable granule leveling slide 107, and horizontally between the left edge 120 and the right edge 121 of the shield body 106. Granular material should be added to the base adhesive within 30 minutes of application of the base adhesive to the damaged shingle. Granules may be applied to the base adhesive by hand broadcasting, by a shaker apparatus or other means to evenly distribute the granules across the surface of the shingle.
Granules are distributed evenly over the base adhesive to replicate the granule density on the surrounding shingles. Granular material is also lightly dispersed over the entire surface of the shingle to blend the repaired indention with the surrounding shingle. The adjustable granule leveling slide 107 is positioned in the highest vertical position along the slide support bars 103 and 108.
Slightly more granular material than desired in the final repair may be added to indentions at this point in the process since excess granular material that has not adhered to base adhesive will be removed prior to sealing the repair. Granule leveling slide 107 may be actuated 2-3 additional times in order to achieve a level distribution of granules over the shingle surface. Granule leveling slide 107 is then left in the down position below the bottom of U-shaped shingle opening 115 and above granule catch pan 113. The shingle shield 100 has an overflow catch 113 that has a spout 114, an outer edge 112, and a closed catch end 111.
As used, the compression plates at
The compression plate can span the entire width of U-shaped opening 115 using a rectangular compression plate, such as shown in
The method of invention repairs the damaged shingle and replaces dislodged granules through the steps of: (1) removing debris from the damaged area of the shingle, (2) situating the shingle shield around the shingle perimeter, (3) filling the indention and coating shingle surface with a base adhesive, (4) removing the shingle shield, (5) situating the shingle frame around the shingle perimeter, (6) applying color-matched granules to the base adhesive, (7) leveling the granules with the granule leveling slide of the shingle frame, (8) compressing the granules into the base adhesive with the shingle frame compression plate, (9) removing shingle frame from shingle, (10) removing loose granules from repair site, (11) re-situating shingle shield around shingle perimeter, and (12) applying a topcoat sealant that permanently bonds the repair to the original shingle. The repaired shingle will be restored to full functionality with greater impact resistance than the original shingle and be an aesthetic match to the surrounding roofing materials.
In Step 1, the damaged area is cleared of debris and loose granules. The damaged shingle area is first cleared of debris which may interfere with the bonding process. Clearing may be by means of brushing or blowing debris from the area. It is not necessary to remove all loose granules, but it is preferable to remove accumulated organic debris such as leaves or dirt.
In Step 2, the Shingle Shield 100 shown in
In step 3, a base adhesive is applied to damaged shingle positioned in the opening 11, 51 and 52 of Shingle Shield 100 shown in
The base adhesive may be applied by brushing, rolling, spraying, notched spreader, or other means to distribute an even coat of adhesive to the shingle. Indentions are filled with adhesive to the level of the base shingle followed by a thin even distribution of the base adhesive across the entire surface of the shingle. The base adhesive coat should preferably be applied approximately 1/16″ to ⅛″ thick to provide an adequate base to adhere the granules to the shingle. The type of base adhesive used will determine the preferred means of application. For example, epoxies are best applied by brush or roller.
Preferred base adhesives are contact cement type adhesives, neoprene-modified asphalt based adhesives, and epoxy based adhesives. The base adhesive must be compatible with the underlying asphalt surface of the shingle. An accelerant may be added to the base adhesive to speed up the cure time between steps.
One preferred type of base adhesive is contact cement. Contact cement is an adhesive, which, when coated on surfaces and allowed to dry, provides an instant permanent bond when surfaces are brought into firm contact. Contact cements are composed of a solids portion that is the bonding agent of the adhesive, and carrier portion of either aqueous or chemical solvents which act as carriers of the bonding agent during application to a surface.
The solid portions of the adhesives may contain natural rubber, neoprene (synthetic rubber) or other bonding agents. Neoprene-based contact adhesives in non-aqueous solvents are preferred for use in the method of the invention. Preferred non-aqueous solvents for a neoprene-based adhesive are toluene, methyl ethyl ketone, naphtha, heptanes and combination thereof. Specific adhesives components can be selected to meet the needs of a particular application.
Contact cement is applied to the damaged area of the shingle and allowed to dry for 1-30 minutes during which the solvent evaporates. After the drying time, the adhesive will have formed a flexible bond to the underlying shingle with no residual moisture and the granules will adhere on contact to the adhesive. Contact adhesives should be allowed to cure for around 30 to 90 minutes before application of the topcoat.
Another preferred type of base adhesive is neoprene-modified asphalt adhesive, also known as polymer modified (rubberized) bitumen. Unmodified asphalt is sensitive to extremes in temperature, becoming brittle in cold conditions and softening at higher temperatures. Modification of asphalt by addition of an elastomeric polymer results in a more elastic and durable adhesive with greater temperature stability. Elastomers are high molecular weight polymers produced by the polymerization of chlorophene. Neoprene is an elastomer (a synthetic type rubber), which resist oils and aging, has a high resistance to water, and is flexible over a wide temperature range.
The neoprene-modified asphalt bonding agent is generally supplied in a solvent, such as a mineral spirits or other petroleum-based solvent, which must be compatible with the asphalt base material in the shingles. Not all neoprene containing adhesives are operational in the method of the invention. Some neoprene-containing adhesives will react with the asphalt in the shingles causing holes to form further weakening the shingle, so an adhesive that is compatible with the shingle base must be used for the method of the invention.
Neoprene-modified asphalt adhesives may contain additional components, such as reinforcing fibers or modifiers such as accelerants, which may improve the use for certain applications. Reinforcing fibers and accelerants may be useful in adhesives for shingle repair to speed drying time. Neoprene-modified asphalt adhesive is applied to the damaged area and allowed to dry for 1-30 minutes during which any solvent evaporates. After the drying time, the adhesive will have formed a flexible bond to the underlying shingle with no residual moisture and the granules will adhere to the adhesive. Neoprene-modified asphalt adhesives should be allowed to cure for around 30 to 90 minutes before application of the topcoat.
Another preferred type of base adhesive is an epoxy adhesive. Epoxy adhesives have high bond strength with good heat and chemical resistance, negligible shrinkage, and the ability to bond to non-porous surfaces. Epoxies are a class of reactive polymer and co-polymers characterized by the presence of the epoxide group, most commonly in epichlorohydrin, which crosslink to themselves or to various classes of co-reactants or hardeners to achieve the desired end characteristics. Epoxies generally are supplied with two components, which when mixed chemically react to form a strong bond.
Epoxide resins suitable for epoxy adhesives include bisphenol-A epoxy resins, bisphenol-F epoxy resins, phenolic novalac epoxy resins, aliphatic epoxy resins and glycidylamine epoxy resins. Bisphenol-A epoxy resins are most preferred for the use in the method of the invention. Co-reactants useful for epoxy adhesives include amines, such as aliphatic primary amines, aromatic primary amines, amine adducts, and tertiary amines, amides, thiols (mercaptans), acids, anhydrides, and combinations thereof. Selection of co-reactants will affect cure rates and final properties of the adhesive, as well as exothermic properties associated with the curing. Heat released from highly exothermic curing reactions can lead to damage of the shingle base, and exothermic properties must be considered when selecting a co-reactant. Amine co-reactants are preferred for the method of the invention. Epoxy adhesives should be allowed to cure for around 30 to 120 minutes before application of the topcoat. Heat or accelerants can be used to speed up the drying time.
The choice of base adhesive is made based on the following considerations: the underlying material of the shingle, the color of the underlying shingle, the size of the damaged shingle area, the pitch of the damaged roof area, the ambient air/roof surface temperature at the time of the repair, and the general climate of the geographic location. The underlying material of the damaged shingle is generally paper or fiberglass that has been saturated with asphalt. Base adhesives must be compatible with asphalt. Some types of adhesives will chemically react with the asphalt causing holes or blistering in the shingle. Some adhesives will generate heat through the exothermic curing process that can cause damage to the asphalt base layer.
The base color of the shingle will generally be gray to black because of the asphalt saturated into the shingle base, and gray to black adhesives can be used. Areas with deep indentions may have color variations due to displacement of the base asphalt and an asphalt based adhesive is preferable for this type of repair to even out the coloration. Clear adhesives may be used where the damage is primarily dislodgement of the granules and the underlying asphalt has not been displaced.
The size of the damaged area will range from a few centimeters within a shingle encompassing the area of a hail strike up to widespread damage over the majority of the shingle surface. Depth of the damage is assessed in addition to surface area damage. Clear fast-curing base adhesives are preferred when the damaged areas are small and the primary repair is replacing granules in small area. Asphalt based adhesives are preferred to repair larger or deeper areas of damage.
The pitch of the roof will determine the preferred base adhesive for shingle repair. A steep pitch would require the use of a faster curing base adhesive to prevent drift of the adhesive within the repair and to allow the granules to adhere in the damaged area with a minimum of movement. A flatter roof section would need a self-leveling adhesive to prevent surface irregularities.
Temperatures should be above freezing (32° F./0° C.) for application of the base coat. Surface temperature of roof should not exceed 150° F. (65.6° C.) for best results. Base adhesives will vary in ideal operational temperature ranges and the adhesive may be selected based on the ambient air/roof surface temperature at the time of the repair.
The general climate of geographic location of the structure being repaired is also considered when selecting a base adhesive. More northern climates require the use of adhesive with good resistance to extended periods of below-freezing temperatures. More southern climates require the use of adhesives with good resistance to extended periods of temperatures in excess of 100° F.
In step 4, the shingle shield is removed from the shingle to be repaired after the base adhesive is applied to shingle surface taking care not to disturb the base adhesive.
In Step 5, the shingle frame 100 shown in
As shown in
The shingle frame 100 shown in
The horizontal adjustment blade 102 is positioned with the adjustment blade arms 135 and 136 held securely by the horizontal adjustment blade locks 104 and 105 When the frame is properly situated around the perimeter of the shingle, the entire surface of the shingle is exposed vertically between the bottom edge of the U-shaped opening 115 of base plate 100 and the adjustable granule leveling slide 127, and horizontally between the edge of the horizontal adjustment blade 102 and the inside of the U-shaped opening 115 on the opposing side of the shingle frame base 110.
In step 6, granular material is applied on top of the base adhesive. Granules for roofing materials are mineral-based particles (for example, granite) with a ceramic coating. Granules are prepared by crushing stone into small particles and separating the particles by size based on the particular application. Sized particles are coated in ceramic to give color to the granules, along with any other desired properties such as reflectivity and algaecidal properties.
Granules may be prepared in advance to meet commonly used size and color specifications. An appropriate color match may then be selected from the prepared granules for application to the damaged area. Granules may be color-matched by comparing the granules on the existing shingles to prepared sample boards displaying known granule color combinations or by comparing to loose granule samples if custom blending of granule colors is required.
Granules may also be custom prepared by mixing appropriate sized particles with the desired colored coating in a rotating cement-type mixer until granules are fully coated and dry. Custom prepared granules are applied to the damaged area in the same manner as those prepared in advance.
Granules are distributed evenly over the base adhesive to replicate the granule density on the surrounding shingles. Slightly more granular material than desired in the final repair may be added to indentions at this point in the process since excess granular material that has not adhered to base adhesive will be removed prior to sealing the repair. Granular material is also lightly dispersed over the entire surface of the shingle to blend the repaired indention with the surrounding shingle.
Granular material should be added to the base adhesive within 30 minutes of application of the base adhesive to the damaged shingle. Granules may be applied to the base adhesive by hand broadcasting, by a shaker apparatus or other means to evenly distribute the granules across the surface of the shingle.
In Step 7, the applied granules are leveled over the shingle surface using the leveling slide 107 on the shingle frame 100 shown in
The right slide bar guide 130 has an aperture 130a where slide rod 103 is position to allow the leveling slide bar 107 to be slid up and down thereupon. The left slide rod 108 is affixed to the right extension 109 and right slide rod 103 is affixed to the left extension 109, respectively.
Granules are custom prepared by mixing appropriate sized particles with the desired colored coating in a rotating cement-type mixer until granules are fully coated and dry. Custom prepared granules are applied to the damaged area in the same manner as those prepared in advance. Granules are distributed evenly over the base adhesive to replicate the granule density on the surrounding shingles. Slightly more granular material than desired in the final repair may be added to indentions at this point in the process since excess granular material that has not adhered to base adhesive will be removed prior to sealing the repair. Granular material is also lightly dispersed over the entire surface of the shingle to blend the repaired indention with the surrounding shingle.
Granular material should be added to the base adhesive within 30 minutes of application of the base adhesive to the damaged shingle. Granules may be applied to the base adhesive by hand broadcasting, by a shaker apparatus or other means to evenly distribute the granules across the surface of the shingle. After distribution of the granules over the adhesive-coated shingle surface, the granule leveling slide 107 is moved downwardly along the slide support bars 103 and 108 of the shingle frame 100 with excess granules being swept downwardly and collected in granule catch pan 113. Granule leveling slide 107 may be actuated 2-3 additional times in order to achieve a level distribution of granules over the shingle surface. Granule leveling slide 107 is then left in the down position below the bottom of U-shaped shingle opening 115 and above granule catch pan 113.
In Step 8, excess granules are removed off the repaired shingle using the overflow catch 113 on the shingle shield 100 shown in
In Step 9, the applied and leveled granules are compressed into base adhesive. Granules are then compressed into the base adhesive by means of the compression plates 170, 190 and 192 in
As used, the compression plates at
The compression plate can span the entire width of U-shaped opening 115 using a rectangular compression plate, such as shown in
In step 10, the shingle frame 100 is removed. After the granules have been compressed into the base adhesive, the shingle frame is carefully removed to prevent dislodging the newly applied granules. The base adhesive is allowed to dry for approximately 30-90 minutes before proceeding to the next step. A heat gun may be used to speed the drying time.
In step 11, any remaining loose granules are removed from the repaired shingle. After the base adhesive is dry, excess granules are removed by blower or by brush. The final granule density should replicate the granule density on the surrounding shingles.
In step 12, the Shingle Shield 100 shown in
In Step 13, a topcoat sealer is applied to the repaired portion of the roof or repaired roofing shingle. After granules have been compressed into the base adhesive, the base adhesive has sufficiently dried, and the excess granules have been removed from the repair area, a topcoat sealant is applied over the granules. The topcoat sealant will permanently bond the granules and the base adhesive to the underlying shingle.
The topcoat sealant is applied by spraying a light mist of the sealant over the granules. The Shingle Shield 100 shown in
The topcoat sealant is preferably an organic or inorganic acrylic polymer or copolymer that is compatible with the base adhesive, and will dry to form a clear coat over the shingle. The topcoat sealant will permanently bond the granules and the base adhesive to the underlying shingle and will create a barrier over the repair that provides the repaired shingle with increased impact resistance, increased weather resistance, and improved UV resistance.
The topcoat sealant can be sprayed, brushed or rolled over the repaired shingle. The preferred method of topcoat application is spraying. The topcoat sealant needs to cure for approximately 2-4 hours prior to foot traffic in the area. Once the topcoat sealant has sufficiently cured, the repaired shingles will be visually indistinguishable from the surrounding shingles. After the topcoat sealant is applied to the shingle surface the shingle frame is removed.
The process for full coat resurfacing of a roof is similar in methodology to repairing a section of roofing, and varies primarily in the magnitude of the application of materials. When applied to the entire existing roof, the application of base adhesive, color-matched granules, granule compression and topcoat sealant will achieve a Class 4 Impact Resistance Rating for entire treated surface along with increased weather and UV resistance.
Roof pitch as adhesive selection criterion. Roof pitch describes the angle of the roof as compared to the structure underneath. The primary reason for pitching a roof to redirect water or snow off the roof. Roof pitch is usually expressed as a rational fraction, such as 5/12, with each number representing the coordinates of an angle, or as a ratio 5:12. The angle is based on a roofs rise (height) and run (width). A pitch number of 5/12 means for every 12 feet, the roof rises 5 feet, and corresponds to a pitch angle of about 22.62 degrees, and a pitch of 12/12 corresponds to a pitch angle of 45 degrees.
The higher the pitch (angle) of the roof, the faster drying the base adhesive should be. A roof pitch greater than 6/12 may be considered a high pitch roof and will benefit from using a faster drying adhesive, such as a fast set epoxy, in the method of the invention. A faster drying adhesive will allow better adhesion of the granules with less likelihood of downward drift of the granules.
Climate as adhesive selection criterion. The general climate of the geographical location of the roof should be considered when selecting the base adhesive for the method of the invention. Within the United States, there are areas that experience prolonged periods of extreme cold with sub-zero temperatures persisting for weeks, and there are also areas that experience prolonged periods of extreme heat with daytime high temperatures exceeding 100° F. for extended periods of time.
Contact type cements have a service range down to −40° F. making these types of adhesives suitable adhesive for roofing repairs in areas likely to experience extremely cold winters.
Neoprene-modified asphalt adhesives have an application temperature range up to 120° F. making these types of adhesives suitable for roofing repairs in areas needing repairs during hot summer months.
Size of damaged area as adhesive selection criterion. If the damage to an individual shingle involves a number of hail strikes, large areas of de-granulation or deep indentions with accompanying granule loss, a dark colored base adhesive will aid in restoring the shingle to aesthetically match the surrounding shingles. Neoprene-modified asphalt adhesives will more readily color blend with the asphalt of the shingle for repairing such larger areas of damage.
Economic Benefit of Repair Method. In 2013, a roofing repair following the method of the invention was made to the damaged roof of a commercial property in Oklahoma. The replacement estimate for the roof was $122,000. The repair method of the invention was used to fully restore the roof for a cost of $48,800 representing a cost savings of 60%.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby, and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved, especially as they fall within the breadth and scope of the claims here appended.
This is a Continuation application related to prior Utility application Ser. No. 14/486,989, issued on Sep. 15, 2014 as U.S. Pat. No. 9,222,272, which claims priority based on a Provisional Patent Application Ser. No. 61/878,143 filed on Sep. 16, 2013, and priority is claimed for this earlier filing under 35 U.S.C. §§119 and 120.
Number | Name | Date | Kind |
---|---|---|---|
2847318 | Dowlen | Aug 1958 | A |
3617329 | Goff | Nov 1971 | A |
4146672 | Jasperson | Mar 1979 | A |
4256804 | Jasperson | Mar 1981 | A |
4745032 | Morrison | May 1988 | A |
4859723 | Kyminas et al. | Aug 1989 | A |
5230738 | Wheeler | Jul 1993 | A |
5622023 | Crispino | Apr 1997 | A |
6122891 | Carpenter | Sep 2000 | A |
8104575 | Bancroft | Jan 2012 | B1 |
8277881 | Khan et al. | Oct 2012 | B2 |
20070260011 | Woods | Nov 2007 | A1 |
20080066420 | May | Mar 2008 | A1 |
20100192509 | Sieling et al. | Aug 2010 | A1 |
20110083391 | Thomas | Apr 2011 | A1 |
20110097485 | Breeden | Apr 2011 | A1 |
20120258282 | Hammond | Oct 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20160076264 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61878143 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14486989 | Sep 2014 | US |
Child | 14951246 | US |