System and method for tissue sealing

Abstract
An electrosurgical system is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical generator includes impedance sensing circuitry which measures impedance of tissue, a processor configured to determine whether a tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance, wherein tissue reaction corresponds to a boiling point of tissue fluid, and an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue. A tissue cooling period is provided to enhance operative outcomes.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to an electrosurgical system and method for performing electrosurgical procedures. More particularly, the present disclosure relates to sealing tissue, wherein energy is administered to match measured impedance to a desired impedance, and a tissue cooling time is observed prior to the completion of the seal.


2. Background of Related Art


Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, or coagulate tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode (e.g., a return pad) carries the current back to the generator. In monopolar electrosurgery, the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. The patient return electrode is placed remotely from the active electrode to carry the current back to the generator.


In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes. When the electrodes are sufficiently separated from one another, the electrical circuit is open and thus inadvertent contact of body tissue with either of the separated electrodes does not cause current to flow.


Bipolar electrosurgery generally involves the use of forceps. A forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures. Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to effect hemostasis on the clamped tissue. The forceps include electrosurgical conductive plates which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the conductive plates to the tissue, the surgeon can coagulate, cauterize and/or seal tissue.


Tissue or vessel sealing is a process of liquefying the collagen, elastin and ground substances in the tissue so that they reform into a fused mass with significantly-reduced demarcation between the opposing tissue structures. Cauterization involves the use of heat to destroy tissue and coagulation is a process of desiccating tissue wherein the tissue cells are ruptured and dried.


Tissue sealing procedures involve more than simply cauterizing or coagulating tissue to create an effective seal; the procedures involve precise control of a variety of factors. For example, in order to affect a proper seal in vessels or tissue, it has been determined that two predominant mechanical parameters must be accurately controlled: the pressure applied to the tissue; and the gap distance between the electrodes (i.e., distance between opposing jaw members or opposing sealing plates). In addition, electrosurgical energy must be applied to the tissue under controlled conditions to ensure creation of an effective vessel seal. Techniques have been developed whereby the energy applied to the tissue is varied during the tissue sealing process to achieve a desired tissue impedance trajectory. When a target tissue impedance threshold is reached, the tissue seal is deemed completed and the delivery of electrosurgical energy is halted.


SUMMARY

The present disclosure relates to a vessel or tissue sealing system and method. In particular, the system discloses an electrosurgical instrument, which may be a bipolar forceps having two jaw members configured for grasping tissue. Each of the jaw members may include a sealing plate which communicates electrosurgical energy to the tissue. At the start of the procedure, the system may transmit an initial interrogatory pulse for determining initial tissue impedance. Additionally or alternatively at the start of the procedure, the system may identify characteristics of the electrosurgical instrument. The system determines whether tissue reaction has occurred and calculates the desired impedance trajectory. The system calculates a target impedance value at each time step based on a predefined desired rate of change of impedance. The system then controls measured tissue impedance to match target impedance. The system may sense parameters related to the sealing process. For example without limitation, the system may sense a temperature, a tissue type, and/or a fluid type. Additionally or alternatively, the system may determine an aggregate amount of energy delivered during the sealing process. The delivery of energy may be halted when the measured impedance is above threshold for a predetermined period of time. The threshold is defined as a specified impedance level above the initial measured impedance value.


After the delivery of energy is halted, the system may provide a tissue cooling time. The cooling time may allow reformed collagen within the fused tissue to solidify, or set in place, between the jaw members. The cooling time may promote denaturation of collagen. The cooling time may be any duration of time, such as a fixed period of time, or an adaptive time, which is dependent upon parameters relating to the tissue fusion (sealing) process, for example without limitation, tissue temperature, tissue impedance, tissue mass, energy delivery, and/or instrument characteristics. Upon expiration of a cooling period the sealing process is completed. The system may provide an indication that the end of the sealing process is completed, such as an audible sound (i.e., “endtone”), whereupon the user may release the jaws.


During the cooling time, cooling of tissue may be effectuated by conduction, i.e., residual heat from fused tissue is drawn away from the tissue by, for example without limitation, the instrument jaws, surrounding tissue, or surrounding fluids such as blood or saline. In embodiments, a coolant, such as saline, may be introduced to the surgical site to promote cooling. It is further envisioned that active cooling elements may be included in the disclosed system, for example without limitation, heat pipes, cooling jackets, and thermoelectric (Peltier effect) devices.


In embodiments, it is envisioned that an initial “baseline” cooling time is established. The baseline “cool-down” time may be dependent upon a sealing process parameter that is determined during sealing process initialization, for example without limitation, an initial tissue impedance measurement, an initial temperature, an initial fluid measurement, and/or a property of the forceps or instrument (i.e., jaw size, jaw angle, instrument type, thermal coefficients, and the like).


According to one aspect of the present disclosure, an electrosurgical system is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical generator may include impedance sensing circuitry which measures impedance of tissue, a processor configured to determine whether a tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance, wherein tissue reaction corresponds to a boiling point of tissue fluid, and an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue. The electrosurgical generator may include temperature sensing circuitry and/or fluid sensing circuitry. Additionally or alternatively, the electrosurgical generator may include circuitry for identifying characteristics of an electrosurgical instrument coupled thereto. The electrosurgical instrument may include an identification module to enable the electrosurgical generator to identify the instrument. For example without limitation, the identification module may include at least one resistive element have a resistance value corresponding to a characteristic of the instrument, such as the instrument configuration (i.e., model number), a unique instrument identifier (i.e., serial number) and/or a thermal property of the jaws. In embodiments, the identification module may include computer memory (i.e., read-only memory or flash memory), RFID tag, optical tag (i.e., barcode), or other encoding as will be familiar to the skilled artisan. In embodiments, the instrument includes a sensor in operable communication with the generator that is configured to sense the included angle between the jaws, which angle may be indicative of the size and/or mass of tissue held therebetween. The generator may use an algorithm or a lookup table to determine a desired cool-down time based upon the identification module.


According to another aspect of the present disclosure, an electrosurgical generator is disclosed. The electrosurgical generator includes all RF output stage adapted to supply electrosurgical energy to tissue and impedance sensing circuitry which measures impedance of tissue. The generator also includes a processor configured to determine whether tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance, wherein tissue reaction corresponds to a boiling point of tissue fluid. The processor may be configured to generate a target impedance trajectory as a function of measured impedance and desired rate of change based on the tissue reaction determination, wherein the target impedance trajectory includes a plurality of target impedance values. The generator may include an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue. The processor may be configured to determine the duration of a cooling time in accordance with, for example without limitation, characteristics of the electrosurgical instrument, tissue properties (i.e., impedance, temperature), surgical site properties (i.e., presence of fluid at the site), an amount of energy delivered to tissue (i.e., net energy delivery), jaw angle (i.e., the included angle between the opposing jaw members), and/or operator-entered parameters.


A method for performing an electrosurgical procedure is also contemplated according to the present disclosure. The method includes the steps of grasping tissue between the jaws of an electrosurgical instrument, applying electrosurgical energy at an output level to tissue from an electrosurgical generator, determining whether tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance, wherein tissue reaction corresponds to a boiling point of tissue fluid, generating a target impedance trajectory as a function of measured impedance and desired rate of change based on the tissue reaction determination, the target impedance trajectory including a plurality of target impedance values, discontinuing the application of electrosurgical energy to tissue, allowing tissue to cool down during a cooling period, and releasing tissue from the jaws of the electrosurgical instrument. In embodiments, the method includes the steps of sensing the included angle formed by the jaw members and adjusting energy delivery and/or cooling period time in accordance therewith.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings wherein:



FIG. 1 is a perspective view of one embodiment of an electrosurgical system according to the present disclosure;



FIG. 2 is a schematic block diagram of a generator algorithm according to the present disclosure;



FIG. 3 is a rear, perspective view of the end effector of FIG. 1 shown with tissue grasped therein;



FIG. 4 is a side, partial internal view of an endoscopic forceps according to the present disclosure;



FIG. 5 is a perspective view of an open bipolar forceps according to the present disclosure;



FIGS. 6A and 6B shows a flow chart showing a sealing method using the endoscopic bipolar forceps according to the present disclosure;



FIG. 7 shows a graph illustrating the changes occurring in tissue impedance during sealing utilizing the method shown in FIGS. 6A and 6B; and



FIG. 8 shows a current v. impedance control curve according to the present disclosure.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure will be described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Those skilled in the art will understand that the present disclosure may be adapted for use with either an endoscopic instrument, laparoscopic instrument, or an open instrument. It should also be appreciated that different electrical and mechanical connections and other considerations may apply to each particular type of instrument, however, the novel aspects with respect to vessel and tissue scaling are generally consistent with respect to both the open or endoscopic designs.


In the drawings and in the description which follows, the term “proximal” refers to the end of the forceps 10 which is closer to the user, while the term “distal” refers to the end of the forceps which is further from the user.



FIG. 1 is a schematic illustration of an electrosurgical system 1. The system 1 includes an electrosurgical forceps 10 for treating patient tissue. Electrosurgical RF energy is supplied to the forceps 10 by a generator 2 via a cable 18 thus allowing the user to selectively coagulate and/or seal tissue.


As shown in FIG. 1, the forceps 10 is an endoscopic version of a vessel sealing bipolar forceps. The forceps 10 is configured to support an effector assembly 100 and generally includes a housing 20, a handle assembly 30, a rotating assembly 80, and a trigger assembly 70 which mutually cooperate with the end effector assembly 100 to grasp, seal and, if required, divide tissue. Forceps 10 also includes a shaft 12 which has a distal end 14 which mechanically engages the end effector assembly 100 and a proximal end 16 which mechanically engages the housing 20 proximate the rotating assembly 80.


The forceps 10 also includes a plug (not shown) which connects the forceps 10 to a source of electrosurgical energy, e.g., generator 2, via cable 18. Handle assembly 30 includes a fixed handle 50 and a movable handle 40. Handle 40 moves relative to the fixed handle 50 to actuate the end effector assembly 100 and enable a user to selectively grasp and manipulate tissue 400 as shown in FIG. 3. Forceps 10 may also include an identification module (not explicitly shown) such as a resistor or computer memory readable by the generator 2 to identify the forceps.


Referring to FIGS. 1, 3 and 4, end effector assembly 100 includes a pair of opposing jaw members 110 and 120 each having an electrically conductive sealing plate 112 and 122, respectively, attached thereto for conducting electrosurgical energy through tissue 400 held therebetween. More particularly, the jaw members 110 and 120 move in response to movement of handle 40 from an open position to a closed position. In open position the sealing plates 112 and 122 are disposed in spaced relation relative to one another. In a clamping or closed position the sealing plates 112 and 122 cooperate to grasp tissue and apply electrosurgical energy thereto. In embodiments, end effector assembly 100 includes a jaw angle sensor (now explicitly shown) that is adapted to sense the included angle 114 between opposing jaw members 110 and 120 and is configured to operably couple to generator 2.


Jaw members 110 and 120 are activated using a drive assembly (not shown) enclosed within the housing 20. The drive assembly cooperates with the movable handle 40 to impart movement of the jaw members 110 and 120 from the open position to the clamping or closed position. Examples of a handle assemblies are shown and described in commonly-owned U.S. application Ser. No. 10/369,894 entitled “VESSEL SEALER AND DIVIDER AND METHOD MANUFACTURING SAME” and commonly owned U.S. application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” which are both hereby incorporated by reference herein in their entirety.


Jaw members 110 and 120 also include outer housings on insulators 116 and 126 which together with the dimension of the conductive plates of the jaw members 110 and 120 are configured to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation.


In addition, the handle assembly 30 of the present disclosure may include a four-bar mechanical linkage which provides a unique mechanical advantage when sealing tissue between the jaw members 110 and 120. For example, once the desired position for the sealing site is determined and the jaw members 110 and 120 are properly positioned, handle 40 may be compressed fully to lock the electrically conductive sealing plates 112 and 122 in a closed position against the tissue. The details relating to the inter-cooperative relationships of the inner-working components of forceps 10 are disclosed in the above-cited commonly-owned U.S. patent application Ser. No. 10/369,894. Another example of an endoscopic handle assembly which discloses an off-axis, lever-like handle assembly, is disclosed in the above-cited U.S. patent application Ser. No. 10/460,926.


The forceps 10 also includes a rotating assembly 80 mechanically associated with the shaft 12 and the drive assembly (not shown). Movement of the rotating assembly 80 imparts similar rotational movement to the shaft 12 which, in turn, rotates the end effector assembly 100. Various features along with various electrical configurations for the transference of electrosurgical energy through the handle assembly 20 and the rotating assembly 80 are described in more detail in the above-mentioned commonly-owned U.S. patent application Ser. Nos. 10/369,894 and 10/460,926.


As best seen with respect to FIGS. 1 and 4, end effector assembly 100 attaches to the distal end 14 of shaft 12. The jaw members 110 and 120 are pivotable about a pivot 160 from the open to closed positions upon relative reciprocation, i.e., longitudinal movement, of the drive assembly (not shown). Again, mechanical and cooperative relationships with respect to the various moving elements of the end effector assembly 100 are further described by example with respect to the above-mentioned commonly-owned U.S. patent application Ser. Nos. 10/369,894 and 10/460,926.


It is envisioned that the forceps 10 may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result. For example, end effector assembly 100 may be selectively and releasably engageable with the distal end 14 of the shaft 12 and/or the proximal end 16 of the shaft 12 may be selectively and releasably engageable with the housing 20 and handle assembly 30. In either of these two instances, the forceps 10 may be either partially disposable or replaceable, such as where a new or different end effector assembly 100 or end effector assembly 100 and shaft 12 are used to selectively replace the old end effector assembly 100 as needed.


The generator 2 includes input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 2. In addition, the generator 2 includes one or more display screens for providing the surgeon with variety of output information (e.g., intensity settings, treatment complete indicators, etc.). The controls allow the surgeon to adjust power of the RF energy, waveform, and other parameters to achieve the desired waveform suitable for a particular task (e.g., coagulating, tissue sealing, division with hemostatis, etc.). It is also envisioned that the forceps 10 may include a plurality of input controls which may be redundant with certain input controls of the generator 2. Placing the input controls at the forceps 10 allows for easier and faster modification of RF energy parameters during the surgical procedure without requiring interaction with the generator 2.



FIG. 2 shows a schematic block diagram of the generator 2 having a controller 4, a high voltage DC power supply 7 (“HVPS”), an RF output stage 8, and a sensor circuitry 11. The DC power supply 7 provides DC power to an RF output stage 8 which then converts DC power into RF energy and delivers the RF energy to the forceps 10. The controller 4 includes a processor 5 operably connected to a memory 6 which may be volatile type memory (e.g., RAM) and/or non-volatile type memory (e.g., flash media, disk media, etc.). The processor 5 includes an output port which is operably connected to the HVPS 7 and/or RF output stage 8 allowing the processor 5 to control the output of the generator 2 according to either open and/or closed control loop schemes. A closed loop control scheme may be a feedback control loop wherein the sensor circuitry 11 provides feedback to the controller 4 (i.e., information obtained from one or more of sensing mechanisms for sensing various tissue parameters such as tissue impedance, tissue temperature, fluid presence, output current and/or voltage, etc.). The controller 4 then signals the HVPS 7 and/or RF output stage 8 which then adjusts DC and/or RF power supply, respectively. The controller 4 also receives input signals from the input controls of the generator 2 and/or forceps 10. The controller 4 utilizes the input signals to adjust the power output of the generator 2 and/or instructs the generator 2 to perform other control functions.


It is known that sealing of the tissue 400 is accomplished by virtue of a unique combination of gap control, pressure and electrical control. In other words, controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue through the sealing plate 112 and 122 are important electrical considerations for sealing tissue. In addition, two mechanical factors play an important role in determining the resulting thickness of the sealed tissue and the effectiveness of the seal, i.e., the pressure applied between the opposing jaw members 110 and 120 (between about 3 kg/cm2 to about 16 kg/cm2) and the gap distance “G” between the opposing sealing plates 112 and 122 of the jaw members 110 and 120, respectively, during the sealing process (between about 0.001 inches to about 0.006 inches). One or more stop members 90 may be employed on one or both sealing plates to control the gap distance. A third mechanical factor has recently been determined to contribute to the quality and consistency of a tissue seal, namely the closure rate of the electrically conductive surfaces or sealing plates during electrical activation.


Since the forceps 10 applies energy through electrodes, each of the jaw members 110 and 120 includes a pair of electrically sealing plates 112, 122 respectively, disposed on an inner-facing surface thereof. Thus, once the jaw members 110 and 120 are fully compressed about the tissue 400, the forceps 10 is now ready for selective application of electrosurgical energy as shown in FIG. 4. At that point, the electrically sealing plates 112 and 122 cooperate to seal tissue 400 held therebetween upon the application of electrosurgical energy.


The system 1 according to the present disclosure regulates application of energy and pressure to achieve an effective seal capable of withstanding high burst pressures. The generator 2 applies energy to tissue at constant current based on the current control curve of FIG. 8 which is discussed in more detail below. Energy application is regulated by the controller 4 pursuant to an algorithm stored within the memory 6. The algorithm maintains energy supplied to the tissue at constant voltage. The algorithm varies output based on the type of tissue being sealed. For instance, thicker tissue typically requires more power, whereas thinner tissue requires less power. Therefore, the algorithm adjusts the output based on tissue type by modifying specific variables (e.g., voltage being maintained, duration of power application etc.). In embodiments, the algorithm adjusts the output based on jaw angle.


As mentioned above, various methods and devices are contemplated to automatically regulate the closure of the jaw members 110 and 120 about tissue to keep the pressure constant during the sealing process. For example, the forceps 10 may be configured to include a ratchet mechanism (not explicitly shown) which initially locks the jaw members 110 and 120 against the tissue under a desired tissue pressure and then increases the pressure according to the command from the processor 5 to an optimum tissue pressure. The ratchet mechanism (not explicitly shown) is configured to adjust the pressure based on electrical activation and/or the tissue reaction. It is also envisioned that the pressure may be controlled in a similar manner towards the end of the seal cycle, i.e., release pressure. The pressure may be held constant or varied during a cooling period. A similar or the same ratchet mechanism (not explicitly shown) may be employed for this purpose as well. The ratchet mechanism (not explicitly shown) may be configured to automatically release or unlock at the end of a cooling period. Other controllable closure mechanisms or pressure-applying mechanism are also envisioned which may be associated with the handle assembly 30, the housing 20 and/or the jaw members 110 and 120. Any of these mechanisms may be housed in the housing 20 or form a part of each particular structure. The ratchet, closure, and/or pressure-applying mechanism may include any suitable actuating device, for example without limitation, a solenoid, stepper motor, vacuum actuator, and/or a pressure actuator.


It is also envisioned that one or more stop members 90 may be selectively controllable to regulate the closure pressure and gap distance to affect the seal. Commonly-owned U.S. application Ser. No. 10/846,262 describes one such variable stop system which may be used for this purpose, the entire contents being incorporated by reference herein.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example and as mentioned above, it is contemplated that any of the various jaw arrangements disclosed herein may be employed on an open forceps such as the open forceps 700 shown in FIG. 5. The forceps 700 includes an end effector assembly 600 which is attached to the distal ends 516a and 516b of shafts 512a and 512b, respectively. The end effector assembly 600 includes a pair of opposing jaw members 610 and 620 which are pivotally connected about a pivot pin 665 and which are movable relative to one another to grasp vessels and/or tissue. Each of the opposing jaw members 610, 620 includes electrically sealing plates 112, 122 which allow the open forceps 700 to be used for clamping tissue for sealing.


Each shaft 512a and 512b includes a handle 515 and 517, respectively, disposed at the proximal end 514a and 514b thereof which each define a finger hole 515a and 517a, respectively, therethrough for receiving a finger of the user. Finger holes 515a and 517a facilitate movement of the shafts 512a and 512b relative to one another which, in turn, pivot the jaw members 610 and 620 from an open position wherein the jaw members 610 and 620 are disposed in spaced relation relative to one another to a clamping or closed position wherein the jaw members 610 and 620 cooperate to grasp tissue or vessels therebetween. Further details relating to one particular open forceps are disclosed in commonly-owned U.S. application Ser. No. 10/962,116 filed Oct. 8, 2004 entitled “OPEN VESSEL SEALING INSTRUMENT WITH CUTTING MECHANISM AND DISTAL LOCKOUT”, the entire contents of which being incorporated by reference herein.


The method of scaling tissue according to the present disclosure is discussed below with reference to FIGS. 6A-B. In addition, FIG. 7 shows a graph illustrating the changes to tissue impedance when tissue is seated utilizing the method of FIGS. 6A-B. The method is embodied in a software-based algorithm which is stored in memory 6 and is executed by processor 5.


In step 302, the vessel sealing procedure is activated (e.g., by pressing of a foot pedal or handswitch) and a host processor (e.g., processor 5) activates a vessel sealing algorithm and loads a configuration file. The configuration file may include a variety of variables which control the algorithm, e.g., end impedance threshold (EndZ), baseline cooling time (Base_Cool_T), and forceps/instrument identification (ForcepsID). Certain variables of the configuration file may be adjusted based on the instrument being used and the bar settings selected by a surgeon. A configuration file may be loaded from a data store included within controller 4. Additionally or alternatively, a configuration file may be loaded from a data store included within forceps 10. In embodiments a plurality of configuration files may be included within controller 4. A configuration file may be selected and loaded by the algorithm in accordance with the type of forceps being utilized, e.g., the ForcepsID. In embodiments, forceps 10 are interrogated by controller 4 to ascertain ForcepsID, whereupon a configuration file corresponding to ForcepsID is loaded. Base_Cool_T may be determined in accordance with ForcepsID.


In step 304, the algorithm begins with an impedance sense phase, shown as phase I in FIG. 7, during which the algorithm senses the tissue impedance with an interrogatory impedance sensing pulse of approximately 100 ms duration. The measured value of tissue impedance is stored as a variable DZDT_Start_Z. Tissue impedance is determined without appreciably changing the tissue. An adaptive cooling time (Adaptive_Cool_T) may be determined by adjusting the value indicated by Base_Cool_T in accordance with tissue impedance (DZDT_Start_Z). The cool-down time may be adjusted in accordance with additional or alternative factors as will be further described herein. During this interrogation or error-checking phase the generator 2 provides constant power to check for a short or an open circuit, in order to determine if tissue is being grasped. The cumulative (i.e., net amount) of energy delivered to the tissue during the sealing procedure may be stored in a variable (E_Total). E_Total may be determined in any suitable manner, for example without limitation, by integrating the output power over the power delivery time. In embodiments, the output power is sampled and totalized on a periodic basis to yield an approximation of total energy delivery. Processor 5 may be configured to execute an interrupt service routine (ISR) that is programmed to periodically sense and totalize cumulative output power (E_Total). Variables corresponding to the maximum energy delivery rate (E_Max), minimum energy delivery rate (E_Min), and an average energy delivery rate (E_Avg) may additionally or alternatively sensed and/or computed and stored.


Thermal properties related to the tissue may be sensed, recorded and/or computed during the sealing process. Such properties may include, without limitation, total thermal energy sensed, which may be expressed as the sensed temperature integrated over the time of the procedure (T_total), maximum tissue temperature (T_Max), minimum tissue temperature (T_Min), and average tissue temperature (T_Avg). Fluid properties, i.e., a total quantity of fluid, which may be expressed as the sensed quantity of fluid integrated over the time of the procedure (F_Total), a maximum fluid quantity (F_Max), a minimum fluid quantity (F_Min), and an average fluid quantity of fluid (F_Avg), may additionally or alternatively be sensed, recorded and/or computed.


In step 306, a determination is made whether the measured impedance is greater than a pre-programmed high impedance threshold, represented by the variable ImpSense_HiLimit, or less than a pre-programmed low impedance threshold, represented by the variable ImpSense_LowLimit. If in step 306 a short circuit is detected, e.g., impedance is below a low impedance threshold or if a an open circuit is detected, e.g., impedance is above a high impedance threshold, the algorithm in step 364 issues a regrasp alarm, and the algorithm exits in step 308. If, otherwise, no fault is detected in step 306 (i.e., no short and no open circuit detected), the algorithm starts the cook phase in step 310. The generator 2 then generates the pre-programmed ramping of current in its outer-loop and constant current per current curve within its inner-loop according to the current control curve shown in FIG. 8.


The curve of FIG. 8 may be modified by intensity settings. In particular, selecting a specific intensity setting (e.g., low, medium, high, etc.) selects a corresponding value, represented by a variable, Cook_AmpMult, which then multiplies the curve. The Cook_AmpMult variable is specified in the configuration file and may range from about 2 Amps to about 5.5 Amps in some embodiments. In other embodiments, the Cook_AmpMult variable may range from about 2 Amps to about 8 Amps.


The control curve for this algorithm is designed as a current curve which decreases rapidly from low impedances to high, although it could also be represented as a power or voltage curve. The control curve is designed ideally to reduce power with increasing impedances higher than approximately 24 ohms. This shape provides several advantages: 1) this curve allows high power with low impedance tissues, which allows the tissue to heat rapidly at the start of the seal cycle; 2) this shape tames the positive feedback caused by increase in delivered power as a result of increasing impedance 3) the curve allows a slower control system for Z control as the output power is reduced as the impedance rises, thus keeping the tissue impedance from rising too quickly.


After the error checking phase, in step 310 the algorithm initiates application of the RF energy by delivering current linearly over time to heat the tissue. It is envisioned RE energy may be delivered in a non-linear or in a time-independent step manner from zero to an “on” state. Delivery may be controlled through other parameters such as voltage and/or power and/or energy. Once initiated, the ramping of energy continues until one of two events occurs: 1) the maximum allowable value is reached or 2) the tissue “reacts.” The term “tissue reaction” is a point at which intracellular and/or extra-cellular fluid begins to boil and/or vaporize, resulting in an increase in tissue impedance. In the case when the maximum allowable value is reached, the maximum value is maintained until the tissue “reacts.” In the event that the tissue reacts prior to reaching the maximum value, the energy required to initiate a tissue “reaction” has been attained and the algorithm moves to an impedance control state.


To identify that a tissue reaction has occurred, there are two elements which are considered. The first consideration is the minimum tissue impedance obtained during the heating period. In step 312, the algorithm continuously monitors the tissue impedance after the onset of energy to identify the lowest value reached and then in step 314 stores this value as the variable ZLow. As time progresses throughout the entire energy activation cycle, the stored value is updated anytime a new value is read that is lower than the previous Zlow, represented by phase II in FIG. 7. In other words, during steps 312, 314 and 316, the generator 2 waits for the tissue impedance to drop. The generator 2 also captures EndZ_Offset impedance, which corresponds to the initial measured tissue impedance. The EndZ_Offset impedance is used to determine the threshold for terminating the procedure. In step 314, EndZ_Offset impedance is measured approximately 100 ms after initial application of electrosurgical energy, which occurs approximately during phase I.


The second consideration in identifying tissue reaction is a predetermined rise in impedance. This is represented by the variable Z_Rise, which is loaded from the configuration file and can range from about 1 ohm to about 750 ohms. In step 316 the algorithm waits for a predetermined period of time to identify whether a rise in impedance has occurred, represented by phases IIIa and IIIb in FIG. 7. In step 318, the algorithm repeatedly attempts to identify a tissue reaction by determining if Z(t)>ZLow+Z_Rise where Z(t) is the impedance at any time during sampling. In step 320, the algorithm verifies whether the timer for waiting for impedance to rise has expired.


If the tissue does not rise within the predetermined period of time (e.g., in step 320 the timer has expired) then, the generator 2 issues a regrasp alarm due to the tissue not responding. In particular, in step 324 the generator 2 verifies whether the procedure is complete by comparing measured impedance to the impedance threshold. If the measured impedance is greater than the impedance threshold, the tissue is sealed and the electrosurgical energy (e.g., RF power) is shut off and the algorithm proceeds to step 360 wherein the cooling timer is activated.


In the step 360 the actual cooling time (Adaptive_Cool_T) is determined in accordance with the initial impedance (DZDT_Start_Z), final impdance (DZDT_End_Z), the instrument type (Forceps_ID), energy delivered to the tissue (i.e., E_total, E_Max, E_Min and/or E_Avg), thermal properties (i.e., T_total, T_Max, T_Min and/or T_Avg), and/or fluid properties (i.e., F_total, F_Max, F_Min and/or F_Avg). It is envisioned the actual cooling time may range from about zero seconds to about ten seconds. In embodiments, the actual cooling time may range from about a half a second to about two seconds. In embodiments, Adaptive_Cool_T is initially set to Base_Cool_T. Adaptive_Cool_T may then be increased or decreased in accordance with biologic or operational parameters. For example without limitation, Adaptive_Cool_T may be increased by an amount correlated to the extent by which a parameter exceeds a parameter threshold, and, conversely, Adaptive_Cool_T may be decreased by an amount correlated to the extent by which a parameter falls short of a parameter threshold. In embodiments, Adaptive_Cool_T may only be increased, or only decreased. In yet other embodiments, a parameter may cause an increase in Adaptive_Cool_T, a parameters may cause a decrease in Adaptive_Cool_T, and a parameter may cause both and increase and a decrease in Adaptive_Cool_T.


After the cooling period has expired and the endtone signaled, the sealing procedure ends with step 328, which prevents sealing tissue that has already been sealed.


If the tissue is not sealed, then in step 326 the generator determines whether the measured impedance is below the impedance threshold, and if so then the generator 2 issues a regrasp alarm in step 364 and exits in step 308.


To check for the reaction stability, the algorithm has a hysteresis identifier (Z_HIST) defined by a specified drop in impedance occurring in under a specified duration in time. This is used to filter out the noise which may be mistaken by the algorithm for the actual rise in impedance. In step 325, the algorithm determines whether the measured impedance is less than the rise in impedance above the lowest impedance minus the hysteresis identifier (i.e., Z(t)<Zlow+Z_Rise−Z_Hist). Step 325 is repeated for a specified period of time by determining whether a timer has expired in step 322 (Z_Hist tmr), the repetition of the loop is determined in step 327.


After the tissue reacts and tissue impedance begins to rise, if the impedance drops below a hysteresis value within an allotted time, the system identifies the event “not stable” as shown in phase IIIa. The algorithm also begins looking for the next rise in impedance by determining if the measured impedance is greater than the specified level of impedance, defined by the equation Z(t)<Zlow+Z_Rise−Z_Hist. If the timer expires and the impedance has not dropped below the hysteresis value, the reaction is considered stable and the impedance control state is implemented.


Once it is established that the tissue has reacted as shown in phase IIIb, the algorithm calculates the desired impedance trajectory based on the actual impedance and the desired rate of change in step 330. In step 332, the algorithm calculates a target impedance value for the control system at each time-step, based on a predefined desired rate of change of impedance (dZ/dt), represented as phase IV in FIG. 7. The desired rate of change may be stored as a variable and be loaded during the step 302. The control system then attempts to adjust the tissue impedance to match the target impedance. The target impedance takes the form of a target trajectory with the initial impedance value and time taken when the tissue reaction is considered real and stable. It is envisioned that the trajectory could take a non-linear and/or quasi-linear form. Thus, when the measured impedance is greater than the rise in impedance above lowest impedance (i.e., Z(t)>ZLow+ZRise), the algorithm calculates a Z trajectory based on the actual impedance and desired dZ/dt, i.e., a rate of rise of impedance over time, selected manually or automatically based on tissue type determined by the selected instrument.


The target impedance trajectory includes a plurality of a target impedance values at each time step. The algorithm drives tissue impedance along the target impedance trajectory by adjusting the power output level to substantially match tissue impedance to a corresponding target impedance value. While the algorithm continues to direct the RF energy to drive the tissue impedance to match the specified trajectory, the algorithm monitors the impedance to make the appropriate corrections. The algorithm determines whether tissue fusion is complete and the system should cease RF energy in phase V as shown in FIG. 7. This is determined by monitoring the actual measured impedance rising above a predetermined threshold and staying above the threshold for a predetermined period of time. The threshold is defined as a specified level, EndZ, above the initial impedance value, EndZ_Offset. This determination minimizes the likelihood of terminating electrosurgical energy early when the tissue is not properly or completely sealed.


In step 334, it is determined if the measured impedance is greater than as the specified level of impedance above the initial impedance value (i.e., Z(t)>EndZ+EndZ_Offset), if yes, the algorithm verifies whether this state is maintained for the given time. In step 336, the algorithm initializes the timer, DZDT_ENDZ_TIMER. In step 338, the algorithm performs the determination of step 334 for the duration of the timer DZDT_ENDZ_TIMER, which may be about 400 ms, the expiration of which is verified in step 340. If the seating portion of the vessel seating process (i.e., not including cool-down time) has exceeded a predetermined time period (e.g., maximum seal timer) which may be about 12 seconds, the algorithm exits with an alarm. This alerts the user to a possible unfused tissue condition.


It is envisioned that the EndZ value ranges from about 10 ohms to about 1000 ohms above the minimum impedance reached and EndZ_Offset is the tissue impedance approximately about 100 ms after the onset of RF energy. Further, the time duration for a cycle shut-off condition to verify tissue fusion has occurred, (i.e., the value of DZDT_ENDZ_TIMER) may range from 0 seconds to 2 seconds. It is also envisioned that the value of the EndZ_Offset could be calculated from a variety of different methods and utilizing a variety of different parameters such as the starting tissue impedance, the minimum impedance, the impedance at maximum current or minimum voltage, the impedance at either a positive or negative slope change of impedance, and/or a constant value specified within the programming or by the end user.


Once the timer expires and if the measured impedance is still above EndZ+EndZ_Offset the RF is shut off. However, it must be verified whether tissue reaction has not occurred too quickly (e.g., the control system failed to maintain control). This event is identified if the final measured impedance value deviated from the end target value by greater than a predetermined value, ENDZ_TRAJ_LIMIT. The ENDZ_TRAJ_LIMIT ranges from about 1 ohm to about 500 ohms. In step 342, the algorithm determines whether the measured impedance is below ENDZ_TRAJ_LIMIT. This event aids in mitigating the occurrences of the algorithm exiting while the tissue is not fused. If in step 342, the measured impedance is determined to be below ENDZ_TRAJ_LIMIT, then in step 360 the algorithm goes into a wait state having a duration in accordance with Adaptive_Cool_T to enable the fused tissue to set. After the expiration of the wait state, the algorithm in step 362 issues a seal complete signal, which may be an audio indication (i.e., an “endtone”) and/or a visual indication, and in the step 328 the algorithm exits.


Prior to proceeding to step 334 to determine if the seal process is complete, the algorithm performs a plurality of error checks. In particular, the algorithm determines whether excessive fluid has entered the field or an object has been encountered that causes the impedance to drop unexpectedly to affect the ongoing tissue reaction. This event is identified by a negative deviation between the target impedance and tissue impedance (i.e. tissue impedance is less than target impedance) as represented by phase VI in FIG. 7. Therefore, to identify that this event has occurred and is real (e.g., not an arcing event) several conditions are verified. In step 344, the algorithm determines whether the impedance dropped below a reset threshold value, RstLim, above the lowest impedance reached, ZLow and whether the impedance deviated sufficiently from the target request. Therefore, this event is identified as: Z(t)<=RstLim+ZLow & Z(t)<target−RstLim. It is recognized that the RstLim ranges from about 1 ohm to about 750 ohms. If no drop in impedance or deviation has occurred then the sealing process was successful and the algorithm proceeds to step 334 as discussed above. If a deviation has been detected, then in step 346 the algorithm performs a subsequent verification.


In step 346, at the onset of successfully meeting both of these conditions, the algorithm begins a timer, DZDT_ZTRAJ_RST_TMR, to define if the deviation event is true and stable or false and transient. In step 348, the algorithm determines whether the measured impedance is above the reset threshold value, RstLim, above the lowest impedance reached, ZLow plus a hysteresis value, ZIlist. If this condition is satisfied before the timer DZDT_ZTRAJ_RST_TMR expires in step 350, the event is considered transient and the algorithm continues to direct the electrosurgical energy to cause the tissue impedance to follow the previous trajectory by returning to step 332.


If the condition described above in step 348 occurs and the timer expires in step 350, the event is deemed real and the algorithm proceeds to step 352 where the algorithm adjusts to look for tissue reaction as described earlier with respect to step 318. Specifically, in step 354, the impedance is monitored to identify a rise above the minimum value, Zlow, and once this occurs as represented by phase VII in FIG. 7, the trajectory is recalculated to begin at the new reaction impedance and the trajectory time is reset by returning to step 332 as represented by phase VIII in FIG. 7. The algorithm then continues with the same series of events described previously until tissue fusion is identified. If a rise in impedance is not detected in step 354 within a predetermined period of time then the algorithm proceeds to step 364 in which the algorithm issues a regrasp alarm, and in the step 308 the process concludes.


In normal operation, the algorithm directs the RF energy to maintain a match between the tissue impedance and the target value throughout time. Independent of the actual tissue impedance the target trajectory is incremented in a normal fashion during all events unless a reset trajectory is requested. However, it is also envisioned that the trajectory could enter a holding pattern with respect to the last value at any event when the actual tissue impedance deviates significantly from the target impedance until either a reset condition is requested or the tissue impedance realigns with the target value.


It is recognized that a number of methods not described here are possible to identify the condition described. The logic intent is to identify an event that results in notable and significant deviation from the impedance target by the tissue and thereby justifying a new target trajectory. Initializing a new trajectory results in mitigating excessive energy delivery to the tissue as the impedance deviates from the target and therefore prevents an uncontrollable tissue effect once the tissue re-reacts.


If during the initial RF energy ramp or during a negative deviation of tissue impedance from the target impedance, the tissue does not rise above the lowest measured impedance by a pre-defined amount within a pre-defined time then the algorithm will exit with an alarm. This alerts the user to a possible attempt to seal tissue which is already desiccated or sealed, an attempt to seal tissue which is so large that the tissue is not sufficiently affected by the RF energy delivered, an attempt to seal non-tissue, or a persistent short circuit during the sealing process.


The algorithm according to the present disclosure allows for the slow desiccation of tissue and for collagen to denature in a slow controllable fashion. As desiccation progresses, the resulting seal gains plastic-like qualities, becoming hard and clear, which makes the seal capable of withstanding higher burst pressures.


While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A method for performing electrosurgical tissue fusion comprising the steps of: closing a pair of jaw members of an electrosurgical instrument about tissue;applying electrosurgical energy at an output level to tissue from an electrosurgical generator;determining whether tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance, wherein tissue reaction corresponds to a boiling point of tissue fluid;generating a target impedance trajectory as a function of measured impedance and desired rate of change based on the tissue reaction determination, the target impedance trajectory including a plurality of target impedance values;determining whether a negative deviation between the measured tissue impedance and a corresponding target impedance value associated with an unexpected drop in tissue impedance has occurred for more than a predetermined amount of time, wherein if the negative deviation is detected for more than the predetermined amount of time the processor recalculates and generates a subsequent target impedance trajectory to compensate for the negative deviation;interrupting the application of electrosurgical energy to tissue;cooling the tissue; andreleasing the jaw members of the electrosurgical instrument from tissue.
  • 2. A method according to claim 1, further comprising the step of: generating a threshold impedance value as a function of an offset impedance value and an ending impedance value, wherein the offset impedance value is obtained after an initial impedance measurement.
  • 3. A method according to claim 2, further comprising the step of: determining whether tissue impedance is at least equal to the threshold impedance for a predetermined shutoff period.
  • 4. A method according to claim 3, further comprising the step of: adjusting output of the electrosurgical generator in response to the determination whether tissue impedance is at least equal to the threshold impedance for a predetermined shutoff period.
  • 5. A method according to claim 1, further including the steps of sensing at least one property relating to the tissue fusion; and determining the duration for the cooling step in response to the at least one sensed tissue fusion property.
  • 6. A method according to claim 5, wherein the at least one sensed tissue fusion property is selected from the group consisting of tissue temperature, tissue impedance, tissue mass, electrosurgical energy delivery, fluid presence, jaw angle, and electrode characteristics.
  • 7. A method according to claim 1, further including the step of indicating the completion of the cooling step.
  • 8. A method according to claim 7, wherein the indication is selected from the group consisting of an audible indication and a visual indication.
  • 9. A method according to claim 1, further comprising the step of identifying at least one property of the electrosurgical instrument.
  • 10. A method according to claim 9, wherein the duration of the cooling step is adjusted in accordance with the at least one identified property of the electrosurgical instrument.
  • 11. A method according to claim 1, wherein the duration of the cooling step is about zero seconds to about ten seconds.
  • 12. A method according to claim 1, further comprising the step of: driving tissue impedance along the target impedance trajectory by adjusting the output level to substantially match tissue impedance to a corresponding target impedance value.
  • 13. A method according to claim 1, detecting a hysteresis artifact identifier to determine whether the tissue reaction is stable.
  • 14. A method for fusing biologic tissue comprising the steps of: providing an electrosurgical instrument including: at least one active electrode adapted to apply electrosurgical energy to tissue; anda pair of jaw members configured to grasp tissue;providing an electrosurgical instrument adapted to supply electrosurgical energy to the at least one active electrode, the electrosurgical generator including: impedance sensing circuitry configured to measure impedance of tissue;providing a processor in operable communication with the electrosurgical instrument;closing a pair of jaw members of an electrosurgical instrument about tissue;applying electrosurgical energy to tissue from an electrosurgical generator;determining whether tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance;generating a target impedance trajectory as a function of measured impedance and desired rate of change based on the tissue reaction determination, the target impedance trajectory including a plurality of target impedance values;determining whether a final tissue impedance value was reached;responding to a determination that a final tissue impedance value was reached by: determining a cooling period in response to the tissue reaction;interrupting the application of electrosurgical energy to tissue to effectuate a cooling period;cooling the tissue during a cooling period; andindicating tissue fusing was successful;responding to a determination that a final tissue impedance value was not reached by: interrupting the application of electrosurgical energy to tissue;indicating tissue fusing was unsuccessful; andreleasing the jaw members from tissue.
  • 15. A method according to claim 14, wherein the provided electrosurgical instrument further includes an identification module configured to identify a characteristic of the electrosurgical instrument.
  • 16. A method according to claim 15, wherein the duration of the cooling period is determined in accordance with an identified characteristic of the electrosurgical instrument.
  • 17. A method according to claim 14, wherein the duration of the cooling period is determined in accordance with a sensed tissue impedance.
  • 18. A method according to claim 14, wherein the closing step is initiated by the processor.
  • 19. A method according to claim 14, wherein the releasing step is initiated by the processor.
  • 20. A method according to claim 14, wherein the duration of the cooling period ranges from about zero seconds to about ten seconds.
  • 21. A method according to claim 14, further comprising the steps of: sensing the jaw angle of the instrument; and adjusting at least one of the impedance trajectory and the cooling period in response to the sensed jaw angle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of commonly-owned U.S. patent application Ser. No. 11/657,170, filed Jan. 24, 2007, now U.S. Pat. No. 7,972,328 which claims priority to U.S. Provisional Application Ser. No. 60/761,443, filed Jan. 24, 2006, the entirety of each being hereby incorporated by reference for all purposes.

US Referenced Citations (786)
Number Name Date Kind
1787709 Wappler Jan 1931 A
1813902 Bovie Jul 1931 A
1841968 Lowry Jan 1932 A
1863118 Liebel Jun 1932 A
1945867 Rawls Feb 1934 A
2827056 Degelman Mar 1958 A
2849611 Adams Aug 1958 A
3058470 Seeliger et al. Oct 1962 A
3089496 Degelman May 1963 A
3154365 Crimmins Oct 1964 A
3163165 Islikawa Dec 1964 A
3252052 Nash May 1966 A
3391351 Trent Jul 1968 A
3413480 Biard et al. Nov 1968 A
3436563 Regitz Apr 1969 A
3439253 Piteo Apr 1969 A
3439680 Thomas, Jr. Apr 1969 A
3461874 Martinez Aug 1969 A
3471770 Haire Oct 1969 A
3478744 Leiter Nov 1969 A
3486115 Anderson Dec 1969 A
3495584 Schwalm Feb 1970 A
3513353 Lansch May 1970 A
3514689 Giannamore May 1970 A
3515943 Warrington Jun 1970 A
3551786 Van Gulik Dec 1970 A
3562623 Farnsworth Feb 1971 A
3571644 Jakoubovitch Mar 1971 A
3589363 Banko Jun 1971 A
3595221 Blackett Jul 1971 A
3601126 Estes Aug 1971 A
3611053 Rowell Oct 1971 A
3641422 Farnsworth et al. Feb 1972 A
3642008 Bolduc Feb 1972 A
3662151 Haffey May 1972 A
3675655 Sittner Jul 1972 A
3683923 Anderson Aug 1972 A
3693613 Kelman Sep 1972 A
3697808 Lee Oct 1972 A
3699967 Anderson Oct 1972 A
3720896 Bierlein Mar 1973 A
3743918 Maitre Jul 1973 A
3766434 Sherman Oct 1973 A
3768482 Shaw Oct 1973 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3812858 Oringer May 1974 A
3815015 Swin et al. Jun 1974 A
3826263 Cage et al. Jul 1974 A
3848600 Patrick, Jr. et al. Nov 1974 A
3870047 Gonser Mar 1975 A
3875945 Friedman Apr 1975 A
3885569 Judson May 1975 A
3897787 Ikuno et al. Aug 1975 A
3897788 Newton Aug 1975 A
3898554 Knudsen Aug 1975 A
3905373 Gonser Sep 1975 A
3913583 Bross Oct 1975 A
3923063 Andrews et al. Dec 1975 A
3933157 Bjurwill et al. Jan 1976 A
3946738 Newton et al. Mar 1976 A
3952748 Kaliher et al. Apr 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3971365 Smith Jul 1976 A
3978393 Wisner et al. Aug 1976 A
3980085 Ikuno Sep 1976 A
4005714 Hilebrandt Feb 1977 A
4024467 Andrews et al. May 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4051855 Schneiderman Oct 1977 A
4074719 Semm Feb 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4097773 Lindmark Jun 1978 A
4102341 Ikuno et al. Jul 1978 A
4114623 Meinke et al. Sep 1978 A
4121590 Gonser Oct 1978 A
4123673 Gonser Oct 1978 A
4126137 Archibald Nov 1978 A
4171700 Farin Oct 1979 A
4188927 Harris Feb 1980 A
4191188 Belt et al. Mar 1980 A
4196734 Harris Apr 1980 A
4200104 Harris Apr 1980 A
4200105 Gosner Apr 1980 A
4209018 Meinke et al. Jun 1980 A
4231372 Newton Nov 1980 A
4232676 Herczog Nov 1980 A
4237887 Gosner Dec 1980 A
4281373 Mabille Jul 1981 A
4287557 Brehse Sep 1981 A
4296413 Milkovic Oct 1981 A
4303073 Archibald Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4314559 Allen Feb 1982 A
4321926 Roge Mar 1982 A
4334539 Childs et al. Jun 1982 A
4343308 Gross Aug 1982 A
4372315 Shapiro et al. Feb 1983 A
4376263 Pittroff et al. Mar 1983 A
4378801 Oosten Apr 1983 A
4384582 Watt May 1983 A
4397314 Vaguine Aug 1983 A
4411266 Cosman Oct 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4429694 McGreevy Feb 1984 A
4436091 Banko Mar 1984 A
4437464 Crow Mar 1984 A
4438766 Bowers Mar 1984 A
4463759 Garito et al. Aug 1984 A
4472661 Culver Sep 1984 A
4474179 Koch Oct 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494541 Archibald Jan 1985 A
4514619 Kugelman Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4559496 Harnden, Jr. et al. Dec 1985 A
4559943 Bowers Dec 1985 A
4565200 Cosman Jan 1986 A
4566454 Mehl et al. Jan 1986 A
4569345 Manes Feb 1986 A
4582057 Auth et al. Apr 1986 A
4586120 Malik et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4595248 Brown Jun 1986 A
4608977 Brown Sep 1986 A
4615330 Nagasaki et al. Oct 1986 A
4630218 Hurley Dec 1986 A
4632109 Patterson Dec 1986 A
4644955 Mioduski Feb 1987 A
4651264 Shiao-Chung Hu Mar 1987 A
4651280 Chang et al. Mar 1987 A
4657015 Irnich Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4662383 Sogawa et al. May 1987 A
4691703 Auth et al. Sep 1987 A
4727874 Bowers et al. Mar 1988 A
4735204 Sussman et al. Apr 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4754757 Feucht Jul 1988 A
4767999 VerPlanck Aug 1988 A
4768969 Bauer et al. Sep 1988 A
4788634 Schlecht et al. Nov 1988 A
4805621 Heinze et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827927 Newton May 1989 A
4848335 Manes Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4887199 Whittle Dec 1989 A
4890610 Kirwan et al. Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4922210 Flachenecker et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4931717 Gray et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4959606 Forge Sep 1990 A
4961047 Carder Oct 1990 A
4961435 Kitagawa et al. Oct 1990 A
4966597 Cosman Oct 1990 A
4969885 Farin Nov 1990 A
4992719 Harvey Feb 1991 A
4993430 Shimoyama et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5015227 Broadwin et al. May 1991 A
5024668 Peters et al. Jun 1991 A
5044977 Vindigni Sep 1991 A
5067953 Feucht Nov 1991 A
5075839 Fisher et al. Dec 1991 A
5087257 Farin Feb 1992 A
5099840 Goble et al. Mar 1992 A
5103804 Abele et al. Apr 1992 A
5108389 Cosmescu Apr 1992 A
5108391 Flachenecker Apr 1992 A
5119284 Fisher et al. Jun 1992 A
5122137 Lennox Jun 1992 A
5133711 Hagen Jul 1992 A
5151102 Kamiyama et al. Sep 1992 A
5152762 McElhenney Oct 1992 A
5157603 Scheller et al. Oct 1992 A
5160334 Billings et al. Nov 1992 A
5161893 Shigezawa et al. Nov 1992 A
5167658 Ensslin Dec 1992 A
5167659 Ohtomo et al. Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5196008 Kuenecke Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5230623 Guthrie et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5234427 Ohtomo et al. Aug 1993 A
5249121 Baum et al. Sep 1993 A
5249585 Turner et al. Oct 1993 A
5254117 Rigby et al. Oct 1993 A
RE34432 Bertrand Nov 1993 E
5267994 Gentelia et al. Dec 1993 A
5267997 Farin Dec 1993 A
5281213 Milder et al. Jan 1994 A
5282840 Hudrlik Feb 1994 A
5290283 Suda Mar 1994 A
5295857 Toly Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5300070 Gentelia et al. Apr 1994 A
5304917 Somerville Apr 1994 A
5318563 Malis et al. Jun 1994 A
5323778 Kandarpa et al. Jun 1994 A
5324283 Heckele Jun 1994 A
5330518 Neilson et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342356 Ellman Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5346406 Hoffman et al. Sep 1994 A
5346491 Oertli Sep 1994 A
5348554 Imran et al. Sep 1994 A
5370645 Klicek et al. Dec 1994 A
5370672 Fowler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5383874 Jackson Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5400267 Denen et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5409000 Imran Apr 1995 A
5409485 Suda Apr 1995 A
5413573 Koivukangas May 1995 A
5414238 Steigerwald et al. May 1995 A
5417719 Hull et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5422926 Smith et al. Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423810 Goble et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425704 Sakurai et al. Jun 1995 A
5429596 Arias et al. Jul 1995 A
5430434 Lederer et al. Jul 1995 A
5432459 Thompson Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5436566 Thompson Jul 1995 A
5438302 Goble Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445635 Denen Aug 1995 A
5451224 Goble et al. Sep 1995 A
5452725 Martenson Sep 1995 A
5454809 Janssen Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5474464 Drewnicki Dec 1995 A
5480399 Hebborn Jan 1996 A
5483952 Aranyi Jan 1996 A
5496312 Klicek Mar 1996 A
5496313 Gentelia et al. Mar 1996 A
5496314 Eggers Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5500616 Ochi Mar 1996 A
5511993 Yamada et al. Apr 1996 A
5514129 Smith May 1996 A
5520684 Imran May 1996 A
5531774 Schulman et al. Jul 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540677 Sinofsky Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540682 Gardner et al. Jul 1996 A
5540683 Ichikawa et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5545161 Imran Aug 1996 A
5556396 Cohen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562720 Stern et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5596466 Ochi Jan 1997 A
5599344 Paterson Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5599348 Gentelia et al. Feb 1997 A
5605150 Radons et al. Feb 1997 A
5609560 Ichikawa et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5620481 Desai et al. Apr 1997 A
5626575 Crenner May 1997 A
5628745 Bek May 1997 A
5628771 Mizukawa et al. May 1997 A
5643330 Holsheimer et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658322 Fleming Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5664953 Reylek Sep 1997 A
5674217 Wahlstrom et al. Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5681307 McMahan Oct 1997 A
5685840 Schechter et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5693078 Desai et al. Dec 1997 A
5694304 Telefus et al. Dec 1997 A
5695494 Becker Dec 1997 A
5696441 Mak et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702429 King Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5712772 Telefus et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5718246 Vona Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5729448 Haynie et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5738683 Osypka Apr 1998 A
5743900 Hara Apr 1998 A
5743903 Stern et al. Apr 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5755715 Stern et al. May 1998 A
5766153 Eggers et al. Jun 1998 A
5766165 Gentelia et al. Jun 1998 A
5769847 Panescu Jun 1998 A
5772659 Becker et al. Jun 1998 A
5788688 Bauer et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5797902 Netherly Aug 1998 A
5807253 Dumoulin et al. Sep 1998 A
5810804 Gough et al. Sep 1998 A
5814092 King Sep 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820568 Willis Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5830212 Cartmell Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843075 Taylor Dec 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5849010 Wurzer et al. Dec 1998 A
5853409 Swanson et al. Dec 1998 A
5860832 Wayt et al. Jan 1999 A
5865788 Edwards et al. Feb 1999 A
5868737 Taylor et al. Feb 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5891142 Eggers et al. Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5906614 Stern et al. May 1999 A
5908444 Azure Jun 1999 A
5913882 King Jun 1999 A
5921982 Lesh et al. Jul 1999 A
5925070 King et al. Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5938690 Law et al. Aug 1999 A
5944553 Yasui et al. Aug 1999 A
5948007 Starkenbaum et al. Sep 1999 A
5951545 Schilling et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954686 Garito et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5959253 Shinchi Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5964746 McCary Oct 1999 A
5971980 Sherman Oct 1999 A
5971981 Hill et al. Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
6007532 Netherly Dec 1999 A
6010499 Cobb Jan 2000 A
6013074 Taylor Jan 2000 A
6014581 Whayne et al. Jan 2000 A
6017338 Brucker et al. Jan 2000 A
6022346 Panescu et al. Feb 2000 A
6022347 Lindenmeier et al. Feb 2000 A
6033399 Gines Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6039732 Ichikawa et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6053910 Fleenor Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6055458 Cochran et al. Apr 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble et al. May 2000 A
6059781 Yamanashi et al. May 2000 A
6063075 Mihori May 2000 A
6063078 Wittkampf May 2000 A
6066137 Greep May 2000 A
6068627 Orszulak et al. May 2000 A
6074089 Hollander et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074388 Tockweiler et al. Jun 2000 A
6080149 Huang et al. Jun 2000 A
6088614 Swanson Jul 2000 A
6093186 Goble Jul 2000 A
6102497 Ehr et al. Aug 2000 A
6102907 Smethers et al. Aug 2000 A
6113591 Whayne et al. Sep 2000 A
6113592 Taylor Sep 2000 A
6113593 Tu et al. Sep 2000 A
6113596 Hooven Sep 2000 A
6123701 Nezhat Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6132429 Baker Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6155975 Urich et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6162217 Kannenberg et al. Dec 2000 A
6165169 Panescu et al. Dec 2000 A
6171304 Netherly et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6186147 Cobb Feb 2001 B1
6188211 Rincon-Mora et al. Feb 2001 B1
6193713 Geistert et al. Feb 2001 B1
6197023 Muntermann Mar 2001 B1
6203541 Keppel Mar 2001 B1
6210403 Klicek Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6222356 Taghizadeh-Kaschani Apr 2001 B1
6228078 Eggers et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6231569 Bek et al. May 2001 B1
6232556 Daugherty et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6235022 Hallock et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238388 Ellman May 2001 B1
6241723 Heim et al. Jun 2001 B1
6241725 Cosman Jun 2001 B1
6243654 Johnson et al. Jun 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245063 Uphoff Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6254422 Feye-Hohmann Jul 2001 B1
6258085 Eggleston Jul 2001 B1
6261285 Novak Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6267760 Swanson Jul 2001 B1
6273886 Edwards Aug 2001 B1
6275786 Daners Aug 2001 B1
6293941 Strul Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309386 Bek Oct 2001 B1
6322558 Taylor et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6337998 Behl et al. Jan 2002 B1
6338657 Harper et al. Jan 2002 B1
6350262 Ashley Feb 2002 B1
6358245 Edwards et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6371963 Nishtala et al. Apr 2002 B1
6383183 Sekino et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402742 Blewett et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6413256 Truckai et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6422896 Aoki et al. Jul 2002 B2
6423057 He et al. Jul 2002 B1
6426886 Goder Jul 2002 B1
6428537 Swanson et al. Aug 2002 B1
6436096 Hareyama Aug 2002 B1
6440157 Shigezawa et al. Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6454594 Sawayanagi Sep 2002 B2
6458121 Rosenstock Oct 2002 B1
6458122 Pozzato Oct 2002 B1
6464689 Qin Oct 2002 B1
6464696 Oyama Oct 2002 B1
6468270 Hovda et al. Oct 2002 B1
6468273 Leveen et al. Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6494880 Swanson et al. Dec 2002 B1
6497659 Rafert Dec 2002 B1
6498466 Edwards Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul Jan 2003 B1
6511476 Hareyama Jan 2003 B2
6511478 Burnside Jan 2003 B1
6517538 Jacob et al. Feb 2003 B1
6522931 Manker et al. Feb 2003 B2
6524308 Muller et al. Feb 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6544260 Markel et al. Apr 2003 B1
6546270 Goldin et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6557559 Eggers et al. May 2003 B1
6558376 Bishop May 2003 B2
6558377 Lee et al. May 2003 B2
6560470 Pologe May 2003 B1
6562037 Paton May 2003 B2
6565559 Eggleston May 2003 B2
6565562 Shah et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6578579 Burnside et al. Jun 2003 B2
6579288 Swanson et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6602243 Noda Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6620157 Dabney et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623423 Sakurai et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6629973 Wardell et al. Oct 2003 B1
6632193 Davison et al. Oct 2003 B1
6635056 Kadhiresan et al. Oct 2003 B2
6635057 Harano Oct 2003 B2
6645198 Bommannan et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652514 Ellman Nov 2003 B2
6653569 Sung Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663624 Edwards et al. Dec 2003 B2
6663627 Francischelli et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6672151 Schultz et al. Jan 2004 B1
6679875 Honda et al. Jan 2004 B2
6682527 Strul Jan 2004 B2
6685700 Behl Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689131 McClurken Feb 2004 B2
6692489 Heim Feb 2004 B1
6693782 Lash Feb 2004 B1
6695837 Howell Feb 2004 B2
6696844 Wong et al. Feb 2004 B2
6712813 Ellman Mar 2004 B2
6730078 Simpson et al. May 2004 B2
6730079 Lovewell May 2004 B2
6730080 Harano May 2004 B2
6733495 Bek May 2004 B1
6733498 Paton May 2004 B2
6740079 Eggers May 2004 B1
6740085 Hareyama May 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6749624 Knowlton Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761716 Kadhiresan et al. Jul 2004 B2
6783523 Qin Aug 2004 B2
6784405 Flugstad et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6792390 Burnside et al. Sep 2004 B1
6796980 Hall Sep 2004 B2
6796981 Wham Sep 2004 B2
6809508 Donofrio Oct 2004 B2
6818000 Muller et al. Nov 2004 B2
6824539 Novak Nov 2004 B2
6830569 Thompson Dec 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6843682 Matsuda et al. Jan 2005 B2
6843789 Goble Jan 2005 B2
6849073 Hoey Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6855142 Harano Feb 2005 B2
6860881 Sturm Mar 2005 B2
6864686 Novak Mar 2005 B2
6875210 Refior Apr 2005 B2
6890331 Kristensen May 2005 B2
6893435 Goble May 2005 B2
6899538 Matoba May 2005 B2
6923804 Eggers et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6939344 Kreindel Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6939347 Thompson Sep 2005 B2
6942660 Pantera et al. Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6958064 Rioux et al. Oct 2005 B2
6962587 Johnson et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6974463 Magers et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6994704 Qin et al. Feb 2006 B2
6994707 Ellman et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7008369 Cuppen Mar 2006 B2
7008417 Eick Mar 2006 B2
7008421 Daniel et al. Mar 2006 B2
7025764 Paton et al. Apr 2006 B2
7033351 Howell Apr 2006 B2
7041096 Malis et al. May 2006 B2
7044948 Keppel May 2006 B2
7044949 Orszulak et al. May 2006 B2
7060063 Marion et al. Jun 2006 B2
7062331 Zarinetchi et al. Jun 2006 B2
7063692 Sakurai et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7074217 Strul et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7094231 Ellman et al. Aug 2006 B1
7104834 Robinson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7115121 Novak Oct 2006 B2
7115124 Xiao Oct 2006 B1
7118564 Ritchie et al. Oct 2006 B2
7122031 Edwards et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7131860 Sartor et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7146210 Palti Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7151964 Desai et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7156844 Reschke et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160293 Sturm et al. Jan 2007 B2
7163536 Godara Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172591 Harano et al. Feb 2007 B2
7175618 Dabney et al. Feb 2007 B2
7175621 Heim et al. Feb 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7203556 Daners Apr 2007 B2
7211081 Goble May 2007 B2
7214224 Goble May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7223264 Daniel et al. May 2007 B2
7226447 Uchida et al. Jun 2007 B2
7229469 Witzel et al. Jun 2007 B1
7232437 Berman et al. Jun 2007 B2
7238181 Daners et al. Jul 2007 B2
7238183 Kreindel Jul 2007 B2
7244255 Daners et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7250048 Francischelli et al. Jul 2007 B2
7250746 Oswald et al. Jul 2007 B2
7255694 Keppel Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7282048 Goble et al. Oct 2007 B2
7282049 Orszulak et al. Oct 2007 B2
7285117 Krueger et al. Oct 2007 B2
7294127 Leung et al. Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300437 Pozzato Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7305311 Van Zyl Dec 2007 B2
7317954 McGreevy Jan 2008 B2
7317955 McGreevy Jan 2008 B2
7324357 Miura et al. Jan 2008 B2
7333859 Rinaldi et al. Feb 2008 B2
7341586 Daniel et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354436 Rioux et al. Apr 2008 B2
7357800 Swanson Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7364578 Francischelli et al. Apr 2008 B2
7364972 Ono et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
RE40388 Gines Jun 2008 E
7396336 Orszulak et al. Jul 2008 B2
7402754 Kirwan, Jr. et al. Jul 2008 B2
D574323 Waaler Aug 2008 S
7407502 Strul et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
7416549 Young et al. Aug 2008 B2
7422582 Malackowski et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7425835 Eisele Sep 2008 B2
7465302 Odell et al. Dec 2008 B2
7470272 Mulier et al. Dec 2008 B2
7479140 Ellman et al. Jan 2009 B2
7491199 Goble Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7513896 Orszulak Apr 2009 B2
7525398 Nishimura et al. Apr 2009 B2
20020183734 Bommannan et al. Dec 2002 A1
20030181898 Bowers Sep 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20040015159 Slater et al. Jan 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040068304 Paton et al. Apr 2004 A1
20040097912 Gonnering May 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040172016 Bek et al. Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004634 Ricart et al. Jan 2005 A1
20050021020 Blaha et al. Jan 2005 A1
20050101949 Harano et al. May 2005 A1
20050109111 Manlove et al. May 2005 A1
20050182398 Paterson Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20060025760 Podhajsky Feb 2006 A1
20060079871 Plaven et al. Apr 2006 A1
20060111711 Goble May 2006 A1
20060161148 Behnke Jul 2006 A1
20060178664 Keppel Aug 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060281360 Sartor et al. Dec 2006 A1
20060291178 Shih Dec 2006 A1
20070038209 Buysse et al. Feb 2007 A1
20070066969 McGreevy et al. Mar 2007 A1
20070093800 Wham et al. Apr 2007 A1
20070093801 Behnke Apr 2007 A1
20070135812 Sartor Jun 2007 A1
20070173802 Keppel Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173804 Wham et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173810 Orszulak Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070208339 Arts et al. Sep 2007 A1
20070225698 Orszulak et al. Sep 2007 A1
20070250052 Wham Oct 2007 A1
20070265612 Behnke et al. Nov 2007 A1
20070282320 Buysse et al. Dec 2007 A1
20080015563 Hoey et al. Jan 2008 A1
20080015564 Wham et al. Jan 2008 A1
20080039831 Odom et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080082094 McPherson et al. Apr 2008 A1
20080125767 Blaha May 2008 A1
20080177199 Podhajsky Jul 2008 A1
20080248685 Sartor et al. Oct 2008 A1
20080281315 Gines Nov 2008 A1
20080281316 Carlton et al. Nov 2008 A1
20080287791 Orszulak et al. Nov 2008 A1
20080287838 Orszulak et al. Nov 2008 A1
20090018536 Behnke Jan 2009 A1
20090024120 Sartor Jan 2009 A1
20090036883 Behnke Feb 2009 A1
20090069801 Jensen et al. Mar 2009 A1
20090082765 Collins et al. Mar 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090157072 Wham et al. Jun 2009 A1
20090157073 Orszulak Jun 2009 A1
20090157075 Wham et al. Jun 2009 A1
Foreign Referenced Citations (118)
Number Date Country
179607 Mar 1905 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
390937 Apr 1989 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4339049 May 1995 DE
19717411 Nov 1998 DE
19848540 May 2000 DE
246350 Nov 1987 EP
310431 Apr 1989 EP
325456 Jul 1989 EP
336742 Oct 1989 EP
390937 Oct 1990 EP
556705 Aug 1993 EP
569130 Nov 1993 EP
608609 Aug 1994 EP
694291 Jan 1996 EP
836868 Apr 1998 EP
878169 Nov 1998 EP
1051948 Nov 2000 EP
1053720 Nov 2000 EP
1151725 Nov 2001 EP
1293171 Mar 2003 EP
1472984 Nov 2004 EP
1495712 Jan 2005 EP
1500378 Jan 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1707144 Mar 2006 EP
1645235 Apr 2006 EP
880220 Jun 2006 EP
1707143 Oct 2006 EP
1744354 Jan 2007 EP
1810628 Jul 2007 EP
1810630 Jul 2007 EP
1810633 Jul 2007 EP
1810634 Jul 2007 EP
1854423 Nov 2007 EP
1862137 Dec 2007 EP
1275415 Oct 1961 FR
1347865 Nov 1963 FR
2313708 Dec 1976 FR
2364461 Jul 1978 FR
2502935 Oct 1982 FR
2517953 Jun 1983 FR
2573301 May 1986 FR
607850 Sep 1948 GB
702510 Jan 1954 GB
855459 Nov 1960 GB
902775 Aug 1962 GB
2164473 Mar 1986 GB
2214430 Sep 1989 GB
2358934 Aug 2001 GB
166452 Jan 1965 SU
727201 Apr 1980 SU
WO9206642 Apr 1992 WO
WO9324066 Dec 1993 WO
WO9424949 Nov 1994 WO
WO9428809 Dec 1994 WO
WO9509577 Apr 1995 WO
WO9519148 Jul 1995 WO
WO9525471 Sep 1995 WO
WO9602180 Feb 1996 WO
WO9604860 Feb 1996 WO
WO9608794 Mar 1996 WO
WO9618349 Jun 1996 WO
WO9629946 Oct 1996 WO
WO9639086 Dec 1996 WO
WO9639914 Dec 1996 WO
WO9706739 Feb 1997 WO
WO9706740 Feb 1997 WO
WO9706855 Feb 1997 WO
WO9710763 Mar 1997 WO
WO9711648 Apr 1997 WO
WO9717029 May 1997 WO
WO9807378 Feb 1998 WO
WO9818395 May 1998 WO
WO9827880 Jul 1998 WO
WO9912607 Mar 1999 WO
WO0200129 Jan 2002 WO
WO0211634 Feb 2002 WO
WO0245589 Jun 2002 WO
WO0247565 Jun 2002 WO
WO02053048 Jul 2002 WO
WO02088128 Jul 2002 WO
WO03090630 Nov 2003 WO
WO03090635 Nov 2003 WO
WO03092520 Nov 2003 WO
WO2004028385 Apr 2004 WO
WO2004098385 Apr 2004 WO
WO2004043240 May 2004 WO
WO2004052182 Jun 2004 WO
WO2004103156 Dec 2004 WO
WO2005046496 May 2005 WO
WO2005048809 Jun 2005 WO
WO2005050151 Jun 2005 WO
WO2005060365 Jul 2005 WO
WO2005060849 Jul 2005 WO
WO2006050888 May 2006 WO
WO2006105121 Oct 2006 WO
Related Publications (1)
Number Date Country
20090157075 A1 Jun 2009 US
Provisional Applications (1)
Number Date Country
60761443 Jan 2006 US
Continuation in Parts (1)
Number Date Country
Parent 11657170 Jan 2007 US
Child 12391036 US