The field of the disclosure relates generally to tomographic imaging. More particularly, the present disclosure relates to systems and methods for improved tomographic image reconstruction.
In the fields of medical imaging and security screening, non-invasive imaging techniques have gained importance due to benefits that include unobtrusiveness, ease, and speed. In medical and research contexts, these imaging systems are used to image organs or tissues beneath the surface of the skin. A number of non-invasive imaging modalities exist today. A particular modality may be selected based upon the organ or tissue to be imaged, upon the spatial and/or temporal resolution desired, or upon whether structural or functional characteristics are of interest. Examples of these imaging modalities include positron emission tomography (PET) imaging, single photon emission computed tomography (SPECT) imaging, x-ray computed tomography (CT) imaging, magnetic resonance imaging (MRI), and others.
Typically, tomographic imaging systems measure photon counts of X-ray or Gamma rays from multiple projections, or angles relative to an imaged subject, and use the acquired tomographic data to generate cross-sectional views of the subject. As such, a wide variety of algorithms have been developed to generate, or reconstruct, tomographic images from the acquired data. Depending upon the imaging modality and clinical application, these algorithms exhibit various strengths and weakness. For instance, tomographic image reconstruction using statistical methods can achieve better contrast and signal-to-noise ratio (SNR) compared to more conventional filtered backprojection (FBP) techniques due to an ill-posed reconstruction problem.
Therefore, there is a continuous need for improved systems and methods for tomographic image reconstruction.
The present disclosure provides a novel approach for tomographic image reconstruction that overcomes the drawbacks of previous technologies, as will become apparent from descriptions below. The systems and methods provided herein can be used in a variety of imaging applications, including medical, security, and others.
In one aspect of the present disclosure, a method for generating an image using a tomographic imaging system is provided. The method includes receiving an initial image acquired from a subject using the tomographic imaging system, and performing, using the initial image and a cost function model, a penalty calculation based on a spatially variant hyper-parameter. The method also includes generating an updated image using the penalty calculation, and generating a finalized image by iteratively updating the updated image until a stopping criterion is met.
In another aspect of the present disclosure, a system for reconstructing a tomographic image of a subject is provided. The system includes an input configured to receive a plurality of images acquired from a subject using a tomographic imaging system, and at least one processor. The processor is configured to receive an initial image acquired from a subject, and perform, using the initial image and a cost function model, a penalty calculation based on a spatially variant hyper-parameter. The processor is also configured to generate an updated image using the penalty calculation, and generate a finalized image by iteratively repeating the calculation until a stopping criterion is met. The system further includes an output for at least displaying the finalized image.
The foregoing and other aspects and advantages of the invention will appear from the following description. In the description, reference is made to the accompanying drawings that form a part hereof, and in which there is shown by way of illustration a preferred embodiment of the invention. Such embodiment does not necessarily represent the full scope of the invention, however, and reference is made therefore to the claims and herein for interpreting the scope of the invention.
The present disclosure is directed to a system and method for tomographic image reconstruction using imaging data. Such data may be acquired as part of a medical imaging process, a security screening process, an industrial analysis process, or other application. Currently, in many reconstruction algorithms, a cost function is minimized in order to generate an unknown image from projection measurements. Since a direct model rarely provides satisfactory solutions, a penalty term, controlled by a fixed parameter, is often introduced. However, such parameter is often chosen manually, and can be very difficult to optimize for real-world variations. This is because the penalty term parameter is highly dependent on the noise level of the measurement, which may not be known a priori. As a result, many scanner vendors provide a parameter table for many noise level cases, and parameter selection is done by visually checking the resulting image. However, the noise level of different voxels in the reconstructed image can be irregular, potentially degrading the image quality and prohibiting uniform convergence.
Therefore, the present disclosure provides systems and methods for tomographic image reconstruction that overcome these problems. In particular, a spatially variant hyper-parameter approach is described herein, whereby a hyper-parameter controlling between the data fidelity and penalty terms is auto-estimated, and tuned in an iterative reconstruction process. This allows for acquiring desirable or even optimal results without relying on post-acquisition analysis by humans, as well as ensuring convergence. In some aspects, performance may be improved by combining a local impulse response function with Fisher information, providing a spatially variant hyper-parameter method.
In many tomographic imaging modalities, such as CT, SPECT, PET, digital tomosynthesis, optical imaging, and others, photon counts of X-ray or Gamma ray are measured. Such photon counts follow Poisson noise distributions. Therefore, to reduce the noise level, a penalty term is often introduced in the cost function used for reconstructing an image, with the general form:
In Eqn. 1, L(x; y) is the log-likelihood function of image x by given measurement y, and Ψ(x) is the penalty function. L(x;y) follows the Poisson noise model. β represents the hyper-parameter utilized to control the noise level between the L(x; y) and Ψ(x). Conventionally, β is a constant that is manually selected.
Most imaging system manufacturers provide a β-table for many noise cases and allow approximate selection of β. For instance, noise level can be determined by radiation dose, such as kVp and mAs for CT, or an amount of radiopharmaceutical for PET. However, this may not enough to define the noise level because the patient body size is also a critical factor. Specifically, if a patient's body is bigger, the noise level may be higher under the same scanning condition. Therefore, the exact noise level for each patient may not be a priori measured.
By contrast, in the present approach, a desirable or even an optimal β may be decided by the noise level, in an automated fashion by way of an iterative process. For instance, if the noise is high, the optimal β is high. More specifically, a spatially variant hyper-parameter may be obtained, and calculated in each iteration of reconstruction. In some aspects, the present method may use Fisher information of the Poisson distribution. The Fisher information of the raw measurement (y) and the re-projection image (
The hyper-parameter β may then be obtained as follows:
In Eqn. 2, ⊙ represents the hadamard product operator (point-wise multiplication), A represents the projection operator, and AT represents the back-projection operator. Additionally,
For a speed up in calculation, Eqn. 2 may be approximated as follows:
where, ATA can be pre-computed by calculating (Σi=1Mαij(Σj′=1Nαij′). As appreciated from the above, an additional back-projection execution may be performed in the β calculation as compared to conventional reconstruction techniques.
The original update term is as follows:
where {dot over (D)}(x) and {umlaut over (D)}(x) denote the first and second derivatives.
Herein, the update equation may be modified using this property:
This means the gradient becomes higher and convergence speed becomes faster. Then, the update term is as follows:
As appreciated from the above, the hyper-parameter β may be estimated in an iterative reconstruction process, for example, by comparing two images from data fidelity term and penalty term, or comparing the fisher information of re-projection and original measurement in each iteration. Therefore, the hyper-parameter is changed in each iteration. To improve performance, a local impulse response function (noise property) may be used, providing a spatially variant hyper-parameter.
In some aspects, the hyper-parameter can be obtained using a normalized back-projection of difference images between Fisher information functions of the original measurement and re-projection data. In another approach, for each iteration, two images of data fidelity term and penalty term can be separately calculated. A hyper-parameter satisfying the condition that the image not to diverge may be selected. The main idea is to update the hyper-parameter in each iteration to keep the distance between the data fidelity term and the penalty term within the convergent range.
Turning to
Then, at process block 106, a hyper-parameter calculation may be performed, as described above. In some aspects, a hyper-parameter image, or β image, may be generated at process block 106. Then, at process block 108, the image may be updated, using the following update equation:
where
can be various update types: (a) EM, (b) SQS, (c) SART and (d) weighted least square, as follows:
Here, Σj′=1Nαij′ is the projection and Σi=1NMαij is the back-projection. N is the number of image voxels and M is the number of measurement. Also, n is the number of iterations. In some aspects, subsets of measurements can be used.
Then, at decision block 110, a stopping criterion is evaluated. For instance, a condition of convergence may be to determine whether to continue or determine the final image, as indicated by process block 112. In particular, a condition of convergence may be met if |xn−xn−1|2<ϵ, where ϵ is a small constant.
Turning now to
As shown in
In addition to being configured to carry out steps for operating the system 200 using instructions stored in the memory 204, the processor 202 may also be configured to receive, access and process imaging data, and other data, as described. In some aspects, the processor 202 may also be configured to control the imaging system 210 to acquire imaging data, and images. To this end, the processor 202 may execute non-transitory instructions 220, stored in memory 204 in the form of non-transitory computer-readable media, as shown in
In some implementations, the system 200 may also be in communication with an external data storage 212 that may include a database 214, a server 216, or a cloud 218, and so forth, as shown in
To elucidate features of the present method, a comparison with a conventional fixed beta was performed, as described with reference to Eqn. (1). In this experiment, a quadratic penalty that did not have additional tuning hyper-parameter was used. As appreciated from
The present invention has been described in terms of one or more preferred embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention.
The present application is based on, claims priority to, and incorporates herein by reference in its entirety U.S. Provisional Application Ser. No. 62/366,177, filed Jul. 25, 2016, and entitled “SYSTEM AND METHOD FOR TOMOGRAPHIC IMAGE RECONSTRUCTION.”
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US17/43635 | 7/25/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62366177 | Jul 2016 | US |