When streaming a software title a client is led to believe that some or all of the files associated with the streaming software title are locally available. The files actually may or may not reside on the local system. Techniques are used to trick the client into believing that all of the files are available. A description of streaming software is provided with reference to U.S. Pat. No. 6,453,334 filed on Jun. 16, 1998, which is incorporated herein by reference.
A client, believing that a file associated with a streaming title is available, may attempt to open the file. A file may be opened for read-only access, write-only access, or read/write access. In the case of read-only access, the file can be accessed according to streaming protocols. In the case of a write-only access, the file can be created locally. In the case of a read/write access, the file is downloaded, and then modified locally.
It may be desirable to use read/write access to open a file, but not download the entire file.
One technique for streaming software is described in the co-pending patent application Ser. No. 10/988,014 filed Nov. 11, 2004, entitled “SYSTEM AND METHOD FOR PREDICTIVE STREAMING”, which is incorporated herein by reference.
When a file is opened write-only, the file is often a new file. For example, in a streaming context, if a client opens a file write-only, the client will typically create the new file locally. When a file is opened read-only, the file, or portions of the file may be streamed as needed. Portions of the file may also be streamed according to predicted need, as is described in the co-pending patent application Ser. No. 10/988,014 filed Nov. 11, 2004, entitled “SYSTEM AND METHOD FOR PREDICTIVE STREAMING.” When a file is opened read/write, on the other hand, the file may or may not be written to. For example, a client may have the right to modify (write) a file, but have no need to modify the file.
In the example of
If it is determined that the file is written to (104-Y), then the flowchart 100 continues at module 108, where changes to the file are tracked locally. For example, if, according to a write procedure, a pointer seeks to a location of the file and writes at that location, then the written part will be recorded locally, along with, for example, an indication of the location of the write. In an embodiment, the locally tracked information includes by way of example but not limitation, the size of the write, the location of the write, and an end-of-file (eof) indicator. The eof indicator can be valuable when a truncating write is performed on a file. Keeping track of the size of the write is optional, since the size of the write is determinable from the size of the written data.
In the example of
It may be noted that no current API exists to delete from the middle of a file. Rather, what appears to be a deletion from the middle of a file is actually a truncating write. This is not intended to limit the invention in any way, since at least some embodiments of the invention would still work if an API were designed to perform a delete from the middle of a file.
If, on the other hand, the file is modified (202-Y), then the flowchart 200 continues at decision point 206 where it is determined whether the size of the file is less than a writeback threshold. The writeback threshold is a value of arbitrary size that is used to determine whether it is “worth it” to keep track of changes to a file. The threshold may be set to, by way of example but not limitation, 250 KB. In some cases it may be desirable to increase or decrease this threshold depending upon such factors as local memory resources and download bandwidth.
If it is determined that the size of the file is less than the writeback threshold (206-Y), then at module 208 the file is downloaded and modified locally. If, on the other hand, it is determined that the size of the file is not less than the writeback threshold (206-N), then at module 210 changes to the file are tracked locally in lieu of downloading and modifying the file. In this way, changes to large files can be tracked locally without using up bandwidth or memory in an attempt to download the large files. In any case, the file is assumed to eventually be closed at module 212, and the flowchart 100 ends.
The method of
In an embodiment, the flowchart 400 continues at decision point 404 where it is determined whether the file is associated with an application in which an append is typical. By way of example but not limitation, many games have data files that are modified over time. Typically, the data files include saved state. As the game progresses, additional saved state is appended to the data file. Thus, a game file may be associated with an application in which an append is typical. Other files, such as Word documents, may not typically be appended to (modifications may occur with reasonable frequency anywhere in the file). Accordingly, in some cases, it may be desirable to “turn off” the diff-file procedures.
In the example of
If, on the other hand, it is determined that the file is associated with an application in which append is typical (404-Y), then at module 410 the file is modified according to a diff-file technique and the modify file request, then the flowchart 400 ends. The diff-file technique involves tracking changes to the file locally without downloading the file in its entirety, examples of which are provided with reference to
It should be noted that the file 504 may be referred to as a virtual file on the client 504. That means the client 502 includes one or more of a virtual environment in which to execute the file 504, registry information that has been spoofed to trick the client 502 into believing the file 504 is stored locally, or some other mechanism that makes the client 502 pretend that the file 504 is stored locally when it is not. Moreover, the file 504 could eventually be stored locally. For example, the file 504 might initially not be stored locally, but over time the client 502 might download some or all of the file 504 in, for example, streamed blocks. As used herein, the file 504 is referred to as a virtual file if it is capable of being a virtual file, even if it is eventually stored local to the client.
In the example of
The following description of
The web server 704 is typically at least one computer system which operates as a server computer system and is configured to operate with the protocols of the world wide web and is coupled to the Internet. The web server system 704 can be a conventional server computer system. Optionally, the web server 704 can be part of an ISP which provides access to the Internet for client systems. The web server 704 is shown coupled to the server computer system 706 which itself is coupled to web content 708, which can be considered a form of a media database. While two computer systems 704 and 706 are shown in
Access to the network 702 is typically provided by Internet service providers (ISPs), such as the ISPs 710 and 716. Users on client systems, such as client computer systems 712, 718, 722, and 726 obtain access to the Internet through the ISPs 710 and 716. Access to the Internet allows users of the client computer systems to exchange information, receive and send e-mails, and view documents, such as documents which have been prepared in the HTML format. These documents are often provided by web servers, such as web server 704, which are referred to as being “on” the Internet. Often these web servers are provided by the ISPs, such as ISP 710, although a computer system can be set up and connected to the Internet without that system also being an ISP.
Client computer systems 712, 718, 722, and 726 can each, with the appropriate web browsing software, view HTML pages provided by the web server 704. The ISP 710 provides Internet connectivity to the client computer system 712 through the modem interface 714, which can be considered part of the client computer system 712. The client computer system can be a personal computer system, a network computer, a web TV system, or other computer system. While
Similar to the ISP 714, the ISP 716 provides Internet connectivity for client systems 718, 722, and 726, although as shown in
Client computer systems 722 and 726 are coupled to the LAN 730 through network interfaces 724 and 728, which can be Ethernet network or other network interfaces. The LAN 730 is also coupled to a gateway computer system 732 which can provide firewall and other Internet-related services for the local area network. This gateway computer system 732 is coupled to the ISP 716 to provide Internet connectivity to the client computer systems 722 and 726. The gateway computer system 732 can be a conventional server computer system.
Alternatively, a server computer system 734 can be directly coupled to the LAN 730 through a network interface 736 to provide files 738 and other services to the clients 722 and 726, without the need to connect to the Internet through the gateway system 732.
In the example of
The computer 742 interfaces to external systems through the communications interface 750, which may include a modem or network interface. It will be appreciated that the communications interface 750 can be considered to be part of the computer system 740 or a part of the computer 742. The communications interface can be an analog modem, isdn modem, cable modem, token ring interface, satellite transmission interface (e.g. “direct PC”), or other interfaces for coupling a computer system to other computer systems.
The processor 748 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor. The memory 752 is coupled to the processor 748 by a bus 760. The memory 752 can be dynamic random access memory (DRAM) and can also include static ram (SRAM). The bus 760 couples the processor 748 to the memory 752, also to the non-volatile storage 756, to the display controller 754, and to the I/O controller 758.
The I/O devices 744 can include a keyboard, disk drives, printers, a scanner, and other input and output devices, including a mouse or other pointing device. The display controller 754 may control in the conventional manner a display on the display device 746, which can be, for example, a cathode ray tube (CRT) or liquid crystal display (LCD). The display controller 754 and the I/O controller 758 can be implemented with conventional well known technology.
The non-volatile storage 756 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 752 during execution of software in the computer 742. One of skill in the art will immediately recognize that the terms “machine-readable medium” or “computer-readable medium” includes any type of physical storage device that is accessible by the processor 748.
Objects, methods, inline caches, cache states and other object-oriented components may be stored in the non-volatile storage 756, or written into memory 752 during execution of, for example, an object-oriented software program. In this way, the components illustrated in, for example,
The computer system 740 is one example of many possible computer systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an I/O bus for the peripherals and one that directly connects the processor 748 and the memory 752 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
Network computers are another type of computer system that can be used with the present invention. Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 752 for execution by the processor 748. A Web TV system, which is known in the art, is also considered to be a computer system according to the present invention, but it may lack some of the features shown in
In addition, the computer system 740 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of an operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile storage 756 and causes the processor 748 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 756.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The present invention, in some embodiments, also relates to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the methods of some embodiments. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language, and various embodiments may thus be implemented using a variety of programming languages.
While this invention has been described in terms of certain embodiments, it will be appreciated by those skilled in the art that certain modifications, permutations and equivalents thereof are within the inventive scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention; the invention is limited only by the claims.
Number | Name | Date | Kind |
---|---|---|---|
4796220 | Wolfe | Jan 1989 | A |
5063500 | Shorter | Nov 1991 | A |
5109413 | Comeford et al. | Apr 1992 | A |
5210850 | Kelly et al. | May 1993 | A |
5293556 | Hill et al. | Mar 1994 | A |
5442791 | Wrabetz et al. | Aug 1995 | A |
5495411 | Ananda | Feb 1996 | A |
5547202 | Tsumura | Aug 1996 | A |
5548645 | Ananda | Aug 1996 | A |
5652887 | Dewey et al. | Jul 1997 | A |
5666293 | Metz et al. | Sep 1997 | A |
5696965 | Dedrick | Dec 1997 | A |
5701427 | Lathrop | Dec 1997 | A |
5706440 | Compliment et al. | Jan 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5765152 | Erickson | Jun 1998 | A |
5768528 | Stumm | Jun 1998 | A |
5768539 | Metz et al. | Jun 1998 | A |
5771354 | Crawford | Jun 1998 | A |
5778395 | Whiting et al. | Jul 1998 | A |
5790753 | Krishnamoorthy et al. | Aug 1998 | A |
5805809 | Singh et al. | Sep 1998 | A |
5809144 | Sirbu et al. | Sep 1998 | A |
5812881 | Ku et al. | Sep 1998 | A |
5818711 | Schwabe et al. | Oct 1998 | A |
5822537 | Katseff et al. | Oct 1998 | A |
5835722 | Bradshaw et al. | Nov 1998 | A |
5838910 | Domenikos et al. | Nov 1998 | A |
5855020 | Kirsch | Dec 1998 | A |
5874986 | Gibbon et al. | Feb 1999 | A |
5878425 | Redpath | Mar 1999 | A |
5881232 | Cheng et al. | Mar 1999 | A |
5892915 | Duso et al. | Apr 1999 | A |
5892953 | Bhagria et al. | Apr 1999 | A |
5895454 | Harrington | Apr 1999 | A |
5895471 | King et al. | Apr 1999 | A |
5901315 | Edwards et al. | May 1999 | A |
5903721 | Sixtus | May 1999 | A |
5903732 | Reed et al. | May 1999 | A |
5903892 | Hoffert et al. | May 1999 | A |
5905868 | Baghai et al. | May 1999 | A |
5909545 | Frese et al. | Jun 1999 | A |
5911043 | Duffy et al. | Jun 1999 | A |
5918015 | Suzuki et al. | Jun 1999 | A |
5923885 | Johnson | Jul 1999 | A |
5925126 | Hsieh | Jul 1999 | A |
5929849 | Kikinis | Jul 1999 | A |
5931907 | Davies et al. | Aug 1999 | A |
5933603 | Vahalia et al. | Aug 1999 | A |
5933822 | Braden-Harder et al. | Aug 1999 | A |
5943424 | Berger et al. | Aug 1999 | A |
5948062 | Tzelnic et al. | Sep 1999 | A |
5948065 | Eilert et al. | Sep 1999 | A |
5949877 | Traw et al. | Sep 1999 | A |
5953506 | Kalra et al. | Sep 1999 | A |
5956717 | Kraay et al. | Sep 1999 | A |
5960411 | Hartman et al. | Sep 1999 | A |
5960439 | Hammer et al. | Sep 1999 | A |
5961586 | Pedersen | Oct 1999 | A |
5961591 | Jones et al. | Oct 1999 | A |
5963444 | Shidira et al. | Oct 1999 | A |
5963944 | Admas | Oct 1999 | A |
5973696 | Arganat et al. | Oct 1999 | A |
5987454 | Hobbs | Nov 1999 | A |
6003065 | Yan et al. | Dec 1999 | A |
6003095 | Pekowski et al. | Dec 1999 | A |
6014686 | Elnozahy et al. | Jan 2000 | A |
6018619 | Allrad et al. | Jan 2000 | A |
6026166 | LeBourgeois | Feb 2000 | A |
6028925 | Van Berkum et al. | Feb 2000 | A |
6038379 | Fletcher et al. | Mar 2000 | A |
6038610 | Belfiore et al. | Mar 2000 | A |
6047323 | Krause | Apr 2000 | A |
6049835 | Gagnon | Apr 2000 | A |
6061738 | Osaku et al. | May 2000 | A |
6065043 | Domenikos et al. | May 2000 | A |
6076104 | McCue | Jun 2000 | A |
6081842 | Shachar et al. | Jun 2000 | A |
6085186 | Christianson et al. | Jul 2000 | A |
6085193 | Malkin et al. | Jul 2000 | A |
6088705 | Lightstone | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094649 | Bowen et al. | Jul 2000 | A |
6099408 | Schneier et al. | Aug 2000 | A |
6101482 | DiAngelo et al. | Aug 2000 | A |
6101491 | Woods | Aug 2000 | A |
6101537 | Edelstein et al. | Aug 2000 | A |
6108420 | Larose et al. | Aug 2000 | A |
6115741 | Domenikos et al. | Sep 2000 | A |
6138271 | Keeley | Oct 2000 | A |
6154878 | Saboff | Nov 2000 | A |
6157948 | Inoue et al. | Dec 2000 | A |
6173330 | Guo et al. | Jan 2001 | B1 |
6185608 | Hon et al. | Feb 2001 | B1 |
6192398 | Hunt et al. | Feb 2001 | B1 |
6192408 | Vahalia et al. | Feb 2001 | B1 |
6195694 | Chen et al. | Feb 2001 | B1 |
6212640 | Abdelnur et al. | Apr 2001 | B1 |
6219693 | Napolitano et al. | Apr 2001 | B1 |
6226665 | Deo et al. | May 2001 | B1 |
6253234 | Hunt et al. | Jun 2001 | B1 |
6275496 | Burns et al. | Aug 2001 | B1 |
6278992 | Curtis et al. | Aug 2001 | B1 |
6282712 | Davis et al. | Aug 2001 | B1 |
6298356 | Jawahar et al. | Oct 2001 | B1 |
6301605 | Napolitano et al. | Oct 2001 | B1 |
6311221 | Raz et al. | Oct 2001 | B1 |
6330561 | Cohen et al. | Dec 2001 | B1 |
6343287 | Kumar et al. | Jan 2002 | B1 |
6347398 | Parthasarathy et al. | Feb 2002 | B1 |
6356946 | Clegg et al. | Mar 2002 | B1 |
6356961 | Oprescu-Surcobe | Mar 2002 | B1 |
6370686 | Delo et al. | Apr 2002 | B1 |
6374402 | Schmeidler et al. | Apr 2002 | B1 |
6385596 | Wiser et al. | May 2002 | B1 |
6389467 | Eyal | May 2002 | B1 |
6418554 | Delo et al. | Jul 2002 | B1 |
6418555 | Mohammed | Jul 2002 | B2 |
6418556 | Bennington et al. | Jul 2002 | B1 |
6424991 | Gish | Jul 2002 | B1 |
6425017 | Dievendorff et al. | Jul 2002 | B1 |
6449688 | Peters et al. | Sep 2002 | B1 |
6453334 | Vinson et al. | Sep 2002 | B1 |
6457076 | Cheng et al. | Sep 2002 | B1 |
6508709 | Karmarkar | Jan 2003 | B1 |
6510458 | Berstis et al. | Jan 2003 | B1 |
6510462 | Blumenau | Jan 2003 | B2 |
6510466 | Cox et al. | Jan 2003 | B1 |
6524017 | Lecocq et al. | Feb 2003 | B2 |
6574618 | Eylon et al. | Jun 2003 | B2 |
6584507 | Bradley et al. | Jun 2003 | B1 |
6587857 | Carothers et al. | Jul 2003 | B1 |
6594682 | Peterson et al. | Jul 2003 | B2 |
6598125 | Romm | Jul 2003 | B2 |
6601103 | Goldschmidt Iki et al. | Jul 2003 | B1 |
6601110 | Marsland | Jul 2003 | B2 |
6605956 | Farnworth et al. | Aug 2003 | B2 |
6609114 | Gressel et al. | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6622137 | Ravid et al. | Sep 2003 | B1 |
6622171 | Gupta et al. | Sep 2003 | B2 |
6636961 | Braun et al. | Oct 2003 | B1 |
6687745 | Franco et al. | Feb 2004 | B1 |
6694510 | Williems | Feb 2004 | B1 |
6697869 | Mallart et al. | Feb 2004 | B1 |
6711619 | Chanderamohan et al. | Mar 2004 | B1 |
6732179 | Brown et al. | May 2004 | B1 |
6735631 | Oekrke et al. | May 2004 | B1 |
6757708 | Craig et al. | Jun 2004 | B1 |
6757894 | Eylon et al. | Jun 2004 | B2 |
6763370 | Schmeidler et al. | Jul 2004 | B1 |
6772209 | Chernock et al. | Aug 2004 | B1 |
6775779 | England et al. | Aug 2004 | B1 |
6779179 | Romm et al. | Aug 2004 | B1 |
6785768 | Peters et al. | Aug 2004 | B2 |
6785865 | Cote et al. | Aug 2004 | B1 |
6801507 | Humpleman et al. | Oct 2004 | B1 |
6810525 | Safadi et al. | Oct 2004 | B1 |
6816909 | Chang et al. | Nov 2004 | B1 |
6816950 | Nichols | Nov 2004 | B2 |
6832222 | Zimowski | Dec 2004 | B1 |
6836794 | Lucowsky et al. | Dec 2004 | B1 |
6854009 | Hughes | Feb 2005 | B1 |
6891740 | Williams | May 2005 | B2 |
6918113 | Patel et al. | Jul 2005 | B2 |
6925495 | Hegde et al. | Aug 2005 | B2 |
6938096 | Greschler et al. | Aug 2005 | B1 |
6950987 | Hargraves et al. | Sep 2005 | B1 |
6959320 | Shah et al. | Oct 2005 | B2 |
6970866 | Pravetz et al. | Nov 2005 | B1 |
6985915 | Somalwar et al. | Jan 2006 | B2 |
7028305 | Schaefer et al. | Apr 2006 | B2 |
7043524 | Shah et al. | May 2006 | B2 |
7051315 | Artiz et al. | May 2006 | B2 |
7062567 | Benitez et al. | Jun 2006 | B2 |
7096253 | Vinson et al. | Aug 2006 | B2 |
7112138 | Hendrick et al. | Sep 2006 | B2 |
7137072 | Bauer et al. | Nov 2006 | B2 |
7191441 | Abbott et al. | Mar 2007 | B2 |
7192352 | Walker et al. | Mar 2007 | B2 |
7197516 | Hipp et al. | Mar 2007 | B1 |
7246119 | Kuwata et al. | Jul 2007 | B2 |
20010003828 | Peterson et al. | Jun 2001 | A1 |
20010014878 | Mitra et al. | Aug 2001 | A1 |
20010034736 | Eylon et al. | Oct 2001 | A1 |
20010037399 | Eylon et al. | Nov 2001 | A1 |
20010037400 | Raz et al. | Nov 2001 | A1 |
20010044850 | Raz et al. | Nov 2001 | A1 |
20010044851 | Rothman et al. | Nov 2001 | A1 |
20020015106 | Taylor, Jr. | Feb 2002 | A1 |
20020019864 | Mayer | Feb 2002 | A1 |
20020042833 | Hendler et al. | Apr 2002 | A1 |
20020057893 | Wood et al. | May 2002 | A1 |
20020059402 | Belanger | May 2002 | A1 |
20020065848 | Walker et al. | May 2002 | A1 |
20020078170 | Brewer et al. | Jun 2002 | A1 |
20020078203 | Greschler et al. | Jun 2002 | A1 |
20020083183 | Pujare et al. | Jun 2002 | A1 |
20020083187 | Sim et al. | Jun 2002 | A1 |
20020087883 | Wohlgemuth et al. | Jul 2002 | A1 |
20020138640 | Raz et al. | Sep 2002 | A1 |
20020147849 | Wong et al. | Oct 2002 | A1 |
20020156911 | Croman et al. | Oct 2002 | A1 |
20030004882 | Holler et al. | Jan 2003 | A1 |
20030009538 | Shah et al. | Jan 2003 | A1 |
20030056112 | Vinson et al. | Mar 2003 | A1 |
20030105816 | Goswami | Jun 2003 | A1 |
20030140160 | Raz et al. | Jul 2003 | A1 |
20040036722 | Warren | Feb 2004 | A1 |
20040036912 | Liou et al. | Feb 2004 | A1 |
20040128342 | Maes et al. | Jul 2004 | A1 |
20040133657 | Smith et al. | Jul 2004 | A1 |
20040230784 | Cohen | Nov 2004 | A1 |
20040230971 | Rachman et al. | Nov 2004 | A1 |
20040267813 | Rivers-Moore et al. | Dec 2004 | A1 |
20040268361 | Schaefer | Dec 2004 | A1 |
20050010607 | Parker et al. | Jan 2005 | A1 |
20050010670 | Greschler et al. | Jan 2005 | A1 |
20050091534 | Nave et al. | Apr 2005 | A1 |
20050193139 | Vinson et al. | Sep 2005 | A1 |
20060010074 | Zeitsiff et al. | Jan 2006 | A1 |
20060031165 | Nave et al. | Feb 2006 | A1 |
20060047716 | Keith | Mar 2006 | A1 |
20060048136 | De Vries et al. | Mar 2006 | A1 |
20060106770 | De Vries et al. | May 2006 | A1 |
20060123185 | De Vries et al. | Jun 2006 | A1 |
20070038642 | Durgin et al. | Feb 2007 | A1 |
20070043550 | Tzruya | Feb 2007 | A1 |
20070067435 | Landis et al. | Mar 2007 | A1 |
20070074223 | Lescouet et al. | Mar 2007 | A1 |
20070126749 | Tzruya et al. | Jun 2007 | A1 |
20070129146 | Tzruya et al. | Jun 2007 | A1 |
20070129990 | Tzruya et al. | Jun 2007 | A1 |
20070130292 | Tzruya et al. | Jun 2007 | A1 |
20070168309 | Tzruya et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
0 813 325 | Dec 1997 | EP |
0 658 837 | Jun 2000 | EP |
1 020 824 | Jul 2000 | EP |
1 143 349 | Oct 2001 | EP |
94140171 | Nov 2005 | TW |
WO 9840993 | Sep 1998 | WO |
WO 9850853 | Nov 1998 | WO |
WO 9957863 | Nov 1999 | WO |
WO 9960458 | Nov 1999 | WO |
WO 0004681 | Jan 2000 | WO |
WO 0031657 | Jun 2000 | WO |
WO 0031672 | Jun 2000 | WO |
WO 0056028 | Sep 2000 | WO |
WO 0127805 | Apr 2001 | WO |
WO 0146856 | Jun 2001 | WO |
WO 0244840 | Jun 2002 | WO |
WO US2004028195 | Aug 2004 | WO |
WO US2005037351 | Oct 2005 | WO |
WO US2005041024 | Nov 2005 | WO |
WO US2006010637 | Mar 2006 | WO |
WO US2006010904 | Mar 2006 | WO |
WO 2006102532 | Sep 2006 | WO |
WO 2006102621 | Sep 2006 | WO |
Entry |
---|
Fiedler et al, UNIX System V, Release 4 Administration, Aug. 1991, Sams 2d edition. |
Mullender et al, A Distributed Operating System for the 1990s, 1990 IEEE. |
Nakayoshi et al, A Secure Private File System with Minimal Syste Administration, 1997 IEEE. |
O'Mahony, Security Considerations in a Network Management Environment, Jun. 1994, IEEE. |
U.S. Appl. No. 10/023,915, filed Dec. 14, 2001, De Vries et al. |
U.S. Appl. No. 11/021,569, filed Dec. 22, 2004, Cover et al. |
U.S. Appl. No. 11/274,442, filed Nov. 14, 2005, De Vries et al. |
U.S. Appl. No. 11/371,627, filed Mar. 8, 2006, De Vries et al. |
Boneh et al, An Attack on RSA Given a Small Fraction of the Private Key Bits, Advances in Cryptology—ASIACRYPT '98, Lecture Notes in Computer Science, 25-34, V.1514, Springer-Verlag Berlin Heidelberg, retrieved online on Jun. 15, 2006 at http://crypto.stanford.edu/˜dabo/abstracts/bits—of—d.html. |
Binto, George et al, Secure Transaction Processing in Firm Real-Time Database Systems, SIGMOD International Conference on Management of Data 1997, 462-473, V26, Issue 2, Association for Computing Machinery (ACM) Press, Tucson, Arizona, United States. |
Chu, et al, Referee: Trust Management for Web Applications, Proceedings of the Sixth International World Wide Web Conference, 1997, retrieved online on Jun. 15, 2006 at http://www.si.umich.edu/˜presnick/papers/Referee/www6-referee.html. |
Faupel, Status of Industry Work on Signed Mobile Code, Joint European Networking Conference (JENC), May 1997, 313-1-313-8. |
Mullender et al, Amoeba: A Distributed Operating System for the 1990s, Computer Magazine, May 1990, 44-53, 23(5). |
Nakayoshi et al, A Secure Private File System with Minimal System Administration, Communications, Computers and Signal Processing, 1997 IEEE Pacific Rim Conference, 251-255, vol. 1. |
O'Mahony, Donal, Security Considerations in a Network Management Environment, 1994, 12-17, vol. 8, IEEE, USA. |
Pyarali et al, Design and Performance of an Object-Oriented Framework for High-Speed Electronic Medical Imaging, Fall 1996, Computing Systems Journal, 331-375, vol. 9 No. 4, USENIX, retrieved online on Jun. 15, 2006 at http://www.cs.wustl.edu/˜schmidt/PDF/COOTS-96.pdf. |
Reinhardt, Robert B., An Architectural Overview of UNIX Network Security, ARINC Research Corporation, Sep. 19, 1992, retrieved online on Jun. 15, 2006 at http://www.clusit.it/whitepapers/unixnet.pdf. |
Tardo & Valente, Mobile Agent Security and Telescript, 4th International Conference of the IEEE Computer Society (IEEE CompCon1996), Feb. 1996. |
Avi Rappaport, “Robots & Spiders & Crawlers: How Web and Intranet Search Engines Follow Links to Build Indexes”, Infoseek Software, pp. 1-38 (Oct. 1999). |
Gralla, Preston, Chapter 44, “Shopping on the Internet” How the Internet Works, IEEE Personal Communications, Aug. 1999, 260-67, QUE-A divison of Macmillon Computer Publishing, Millenium Edition. |
Marvin Sirbu et al., “Netbill: An Internet Commerce System Optimized for Network-Delivered Services”, IEEE Personal Communications, 2(4):34-39 (Aug. 1995). |
Microsoft Corp., Computer Dictionary, 3rd edition, 1997, 119 & 305, Microsoft Press. |
Morrow, Brian et al., Indexing Within—The Lost Gold Within the Enetrprise: Endeavors Technology, Aug. 22, 2000, pp. 1-6. |
Peter Bailey, et al., “Chart of Darkness: Mapping a Large Intranet”, Dept of Computer Science, FEIT, The Australian National University, Canberra ACT 0200, Australia pp. 1-23, http://pastime.anu.edu.au/nick/pubs/www9/cod.html. (Feb. 2001). |
Sergey Brin, et al., “The Anatomy of a Large-Scale Hypertextual Web Search Engine”, Computer Science Department, Stanford University, Stanford, CA 94305 pp. 1-20. |
Microsoft, “Understanding Universal Plug and Play”, pp. 1-39, Feb. 6, 2000. |
Number | Date | Country | |
---|---|---|---|
20060230175 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60664765 | Mar 2005 | US |