System and method for tracking changes to files in streaming applications

Information

  • Patent Grant
  • 9716609
  • Patent Number
    9,716,609
  • Date Filed
    Thursday, March 23, 2006
    18 years ago
  • Date Issued
    Tuesday, July 25, 2017
    7 years ago
Abstract
A technique for modifying virtual files involves tracking changes locally. A method according to the technique may include virtually representing a file on, for example, a streaming client, and writing modifications to the virtual file into a diff-file on the streaming client. A system according the technique may include a virtual file associated with a remotely stored file, a diff-file, stored locally, associated with the remotely stored file, and a diff-file integration engine. The diff-file may include local changes to the virtual file. The diff-file integration engine may be capable of combining the virtual file with the diff-file to create a locally modified virtual file.
Description
BACKGROUND

When streaming a software title a client is led to believe that some or all of the files associated with the streaming software title are locally available. The files actually may or may not reside on the local system. Techniques are used to trick the client into believing that all of the files are available. A description of streaming software is provided with reference to U.S. Pat. No. 6,453,334 filed on Jun. 16, 1998, which is incorporated herein by reference.


A client, believing that a file associated with a streaming title is available, may attempt to open the file. A file may be opened for read-only access, write-only access, or read/write access. In the case of read-only access, the file can be accessed according to streaming protocols. In the case of a write-only access, the file can be created locally. In the case of a read/write access, the file is downloaded, and then modified locally.


It may be desirable to use read/write access to open a file, but not download the entire file.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a flowchart of an example of a method for dealing with a read/write file in a streaming software context.



FIG. 2 depicts a flowchart of an example of a method for dealing with a read/write file in a streaming software context.



FIG. 3 depicts a flowchart of an example of a method for dealing with modified segments of a file in a streaming software context.



FIG. 4 depicts a flowchart of an example of a method for dealing with a modification request in a streaming software context.



FIG. 5 depicts an example of a system 500 that includes a diff-file on a streaming client.



FIG. 6 depicts a flowchart 600 of an example of a method for virtually representing a file on a client with local modifications.



FIG. 7 depicts a networked system for use in an embodiment.



FIG. 8 depicts a computer system for use in the system of FIG. 7.





DETAILED DESCRIPTION

One technique for streaming software is described in the co-pending patent application Ser. No. 10/988,014 filed Nov. 11, 2004, entitled “SYSTEM AND METHOD FOR PREDICTIVE STREAMING”, which is incorporated herein by reference.



FIG. 1 depicts a flowchart 100 of an example of a method for dealing with a read/write file in a streaming software context. This method and other methods are depicted as serially arranged modules. However, modules of the methods may be reordered, or arranged for parallel execution as appropriate. The flowchart 100 starts at module 102 wherein a file associated with a streaming software program is opened for modification. Typically, files may be opened read-only, write-only, or read/write. A file that is opened read/write may be referred to as a file opened for modification. Files that may or may not be stored locally when opened may be referred to as “virtual files.” Advantageously, read/write and write-only files can be virtual files by using techniques described herein.


When a file is opened write-only, the file is often a new file. For example, in a streaming context, if a client opens a file write-only, the client will typically create the new file locally. When a file is opened read-only, the file, or portions of the file may be streamed as needed. Portions of the file may also be streamed according to predicted need, as is described in the co-pending patent application Ser. No. 10/988,014 filed Nov. 11, 2004, entitled “SYSTEM AND METHOD FOR PREDICTIVE STREAMING.” When a file is opened read/write, on the other hand, the file may or may not be written to. For example, a client may have the right to modify (write) a file, but have no need to modify the file.


In the example of FIG. 1, the flowchart 100 continues at decision point 104 where it is determined whether the file is written to. It has been determined that in many cases, files are opened read/write, but then treated as read-only. Advantageously, in a non-limiting embodiment, if it is determined that the file has not been written to (104-N), then the flowchart 100 continues at module 106 where the file is treated as read-only until the file is written to. The flowchart 100 ends if the file is never written to. This can reduce the need to download portions of the file in preparation for writes.


If it is determined that the file is written to (104-Y), then the flowchart 100 continues at module 108, where changes to the file are tracked locally. For example, if, according to a write procedure, a pointer seeks to a location of the file and writes at that location, then the written part will be recorded locally, along with, for example, an indication of the location of the write. In an embodiment, the locally tracked information includes by way of example but not limitation, the size of the write, the location of the write, and an end-of-file (eof) indicator. The eof indicator can be valuable when a truncating write is performed on a file. Keeping track of the size of the write is optional, since the size of the write is determinable from the size of the written data.


In the example of FIG. 1, the flowchart 100 continues at module 110, wherein the file is closed. The file may be closed at any time during execution of an associated streaming program, or when the streaming program or some other associated program ends. This is not intended to limit the method to programs that close the file, since a system could be designed that allows the file to remain open practically all the time and the techniques described herein would still be applicable. Moreover, use of the file is not necessarily limited at any stage of the flowchart 100, before, after, or between modifications.


It may be noted that no current API exists to delete from the middle of a file. Rather, what appears to be a deletion from the middle of a file is actually a truncating write. This is not intended to limit the invention in any way, since at least some embodiments of the invention would still work if an API were designed to perform a delete from the middle of a file.



FIG. 2 depicts a flowchart 200 of an example of a method for dealing with a read/write file in a streaming software context. The flowchart 200 starts at decision point 202 where it is determined whether a file has been modified. For the purposes of this example, it is assumed that the file has been opened read/write. If the file is not modified (202-N), then the flowchart 100 continues at module 204, where the file is treated as a read-only file. In some cases, a file that is opened read/write is not modified from the time the file is opened until the file is closed (at module 212).


If, on the other hand, the file is modified (202-Y), then the flowchart 200 continues at decision point 206 where it is determined whether the size of the file is less than a writeback threshold. The writeback threshold is a value of arbitrary size that is used to determine whether it is “worth it” to keep track of changes to a file. The threshold may be set to, by way of example but not limitation, 250 KB. In some cases it may be desirable to increase or decrease this threshold depending upon such factors as local memory resources and download bandwidth.


If it is determined that the size of the file is less than the writeback threshold (206-Y), then at module 208 the file is downloaded and modified locally. If, on the other hand, it is determined that the size of the file is not less than the writeback threshold (206-N), then at module 210 changes to the file are tracked locally in lieu of downloading and modifying the file. In this way, changes to large files can be tracked locally without using up bandwidth or memory in an attempt to download the large files. In any case, the file is assumed to eventually be closed at module 212, and the flowchart 100 ends.



FIG. 3 depicts a flowchart 300 of an example of a method for dealing with modified segments of a file in a streaming software context. The flowchart 360 starts at module 302 where changes to segments of a file are tracked locally. The flowchart 300 continues at module 304 where overlapping segments of the file are merged. In a non-limiting embodiment, if the tracked changes result in changes to a segment twice, then the latest change to the segment should control. In order to save space and/or reduce the risk of error, the two changes should be merged into a single change.


The method of FIG. 3 could be incorporated into the method of FIG. 2. For example, for files that exceed a writeback threshold, segments of the file could be tracked locally, and overlapping segments could be merged. Alternatively, all files could be handled as described with reference to FIG. 3. Alternatively, the example of FIG. 3 could be applied to files that have a specified characteristic, such as, by way of example but not limitation, certain media files, token files, files associated with a certain application, etc.



FIG. 4 depicts a flowchart 400 of a method according to an embodiment. The flowchart 400 starts at module 402 where a file modify request is received. This request may follow an open read/write of the file.


In an embodiment, the flowchart 400 continues at decision point 404 where it is determined whether the file is associated with an application in which an append is typical. By way of example but not limitation, many games have data files that are modified over time. Typically, the data files include saved state. As the game progresses, additional saved state is appended to the data file. Thus, a game file may be associated with an application in which an append is typical. Other files, such as Word documents, may not typically be appended to (modifications may occur with reasonable frequency anywhere in the file). Accordingly, in some cases, it may be desirable to “turn off” the diff-file procedures.


In the example of FIG. 4, if it is determined that the file is not associated with an application in which append is typical (404-N), then at module 406 the file is downloaded, at module 408 the file is modified according to the modify file request, and the flowchart 400 ends.


If, on the other hand, it is determined that the file is associated with an application in which append is typical (404-Y), then at module 410 the file is modified according to a diff-file technique and the modify file request, then the flowchart 400 ends. The diff-file technique involves tracking changes to the file locally without downloading the file in its entirety, examples of which are provided with reference to FIGS. 1-3.



FIG. 5 depicts an example of a system 500 that includes a diff-file on a streaming client. The system 500 includes a server 502 with a file 504 stored thereon, a network 506, and a client 510 with a diff-file 512 and a diff-file integration engine 514 stored thereon. The server 502 and the client 510 will include other components, such as a processor, as is described later with reference to FIG. 8. In the example of FIG. 5, the server 502 may be referred to as a streaming server and the client 510 may be referred to as a streaming client in the context of a streaming software system. The diff-file 512 includes locally tracked changes to the file 504. The diff-file integration engine 514 combines the file 504 and the diff-file 512 in such a way that the file 504, modified as indicated in the diff-file 512, appears to reside locally on the client 502.


It should be noted that the file 504 may be referred to as a virtual file on the client 504. That means the client 502 includes one or more of a virtual environment in which to execute the file 504, registry information that has been spoofed to trick the client 502 into believing the file 504 is stored locally, or some other mechanism that makes the client 502 pretend that the file 504 is stored locally when it is not. Moreover, the file 504 could eventually be stored locally. For example, the file 504 might initially not be stored locally, but over time the client 502 might download some or all of the file 504 in, for example, streamed blocks. As used herein, the file 504 is referred to as a virtual file if it is capable of being a virtual file, even if it is eventually stored local to the client.



FIG. 6 depicts a flowchart 600 of an example of a method for virtually representing a file on a client with local modifications. The flowchart 600 starts at module 602 wherein a file is virtually represented on a streaming client. The virtual representation of a file on a streaming client may involve modifying a system registry, or presenting the file in a virtual environment. A file that is represented virtually need not actually exist on the streaming client. This is typical of streaming software applications, and allows the streamed applications to be executed locally without downloading the application in its entirety, and without installing the application.


In the example of FIG. 6, the flowchart 600 continues at module 604 wherein updates to the file are written to a diff-file on the streaming client. In this way, even though the file has not been downloaded to the streaming client, and the streamed file remains unchanged at a server, the file can be “virtually modified” by tracking changes that would have been made to the file if the file were stored locally.


The following description of FIGS. 7 and 8 is intended to provide an overview of computer hardware and other operating components suitable for performing the methods of the invention described herein, but is not intended to limit the applicable environments. Similarly, the computer hardware and other operating components may be suitable as part of the apparatuses of the invention described herein. The invention can be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.



FIG. 7 depicts a networked system 700 that includes several computer systems coupled together through a network 702, such as the Internet. The term “Internet” as used herein refers to a network of networks which uses certain protocols, such as the TCP/IP protocol, and possibly other protocols such as the hypertext transfer protocol (HTTP) for hypertext markup language (HTML) documents that make up the World Wide Web (the web). The physical connections of the Internet and the protocols and communication procedures of the Internet are well known to those of skill in the art.


The web server 704 is typically at least one computer system which operates as a server computer system and is configured to operate with the protocols of the world wide web and is coupled to the Internet. The web server system 704 can be a conventional server computer system. Optionally, the web server 704 can be part of an ISP which provides access to the Internet for client systems. The web server 704 is shown coupled to the server computer system 706 which itself is coupled to web content 708, which can be considered a form of a media database. While two computer systems 704 and 706 are shown in FIG. 7, the web server system 704 and the server computer system 706 can be one computer system having different software components providing the web server functionality and the server functionality provided by the server computer system 706, which will be described further below.


Access to the network 702 is typically provided by Internet service providers (ISPs), such as the ISPs 710 and 716. Users on client systems, such as client computer systems 712, 718, 722, and 726 obtain access to the Internet through the ISPs 710 and 716. Access to the Internet allows users of the client computer systems to exchange information, receive and send e-mails, and view documents, such as documents which have been prepared in the HTML format. These documents are often provided by web servers, such as web server 704, which are referred to as being “on” the Internet. Often these web servers are provided by the ISPs, such as ISP 710, although a computer system can be set up and connected to the Internet without that system also being an ISP.


Client computer systems 712, 718, 722, and 726 can each, with the appropriate web browsing software, view HTML pages provided by the web server 704. The ISP 710 provides Internet connectivity to the client computer system 712 through the modem interface 714, which can be considered part of the client computer system 712. The client computer system can be a personal computer system, a network computer, a web TV system, or other computer system. While FIG. 7 shows the modem interface 714 generically as a “modem,” the interface can be an analog modem, isdn modem, cable modem, satellite transmission interface (e.g. “direct PC”), or other interface for coupling a computer system to other computer systems.


Similar to the ISP 714, the ISP 716 provides Internet connectivity for client systems 718, 722, and 726, although as shown in FIG. 7, the connections are not the same for these three computer systems. Client computer system 718 is coupled through a modem interface 720 while client computer systems 722 and 726 are part of a LAN 730.


Client computer systems 722 and 726 are coupled to the LAN 730 through network interfaces 724 and 728, which can be Ethernet network or other network interfaces. The LAN 730 is also coupled to a gateway computer system 732 which can provide firewall and other Internet-related services for the local area network. This gateway computer system 732 is coupled to the ISP 716 to provide Internet connectivity to the client computer systems 722 and 726. The gateway computer system 732 can be a conventional server computer system.


Alternatively, a server computer system 734 can be directly coupled to the LAN 730 through a network interface 736 to provide files 738 and other services to the clients 722 and 726, without the need to connect to the Internet through the gateway system 732.



FIG. 8 depicts a computer system 740 for use in the system 700 (FIG. 7). The computer system 740 may be a conventional computer system that can be used as a client computer system or a server computer system or as a web server system. Such a computer system can be used to perform many of the functions of an Internet service provider, such as ISP 710 (FIG. 7).


In the example of FIG. 8, the computer system 740 includes a computer 742, I/O devices 744, and a display device 746. The computer 742 includes a processor 748, a communications interface 750, memory 752, display controller 754, non-volatile storage 756, and I/O controller 758. The computer system 740 may be couple to or include the I/O devices 744 and display device 746.


The computer 742 interfaces to external systems through the communications interface 750, which may include a modem or network interface. It will be appreciated that the communications interface 750 can be considered to be part of the computer system 740 or a part of the computer 742. The communications interface can be an analog modem, isdn modem, cable modem, token ring interface, satellite transmission interface (e.g. “direct PC”), or other interfaces for coupling a computer system to other computer systems.


The processor 748 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor. The memory 752 is coupled to the processor 748 by a bus 760. The memory 752 can be dynamic random access memory (DRAM) and can also include static ram (SRAM). The bus 760 couples the processor 748 to the memory 752, also to the non-volatile storage 756, to the display controller 754, and to the I/O controller 758.


The I/O devices 744 can include a keyboard, disk drives, printers, a scanner, and other input and output devices, including a mouse or other pointing device. The display controller 754 may control in the conventional manner a display on the display device 746, which can be, for example, a cathode ray tube (CRT) or liquid crystal display (LCD). The display controller 754 and the I/O controller 758 can be implemented with conventional well known technology.


The non-volatile storage 756 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 752 during execution of software in the computer 742. One of skill in the art will immediately recognize that the terms “machine-readable medium” or “computer-readable medium” includes any type of physical storage device that is accessible by the processor 748.


Objects, methods, inline caches, cache states and other object-oriented components may be stored in the non-volatile storage 756, or written into memory 752 during execution of, for example, an object-oriented software program. In this way, the components illustrated in, for example, FIGS. 1-3 and 6 can be instantiated on the computer system 740.


The computer system 740 is one example of many possible computer systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an I/O bus for the peripherals and one that directly connects the processor 748 and the memory 752 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.


Network computers are another type of computer system that can be used with the present invention. Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 752 for execution by the processor 748. A Web TV system, which is known in the art, is also considered to be a computer system according to the present invention, but it may lack some of the features shown in FIG. 8, such as certain input or output devices. A typical computer system will usually include at least a processor, memory, and a bus coupling the memory to the processor.


In addition, the computer system 740 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of an operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile storage 756 and causes the processor 748 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 756.


Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


The present invention, in some embodiments, also relates to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.


The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the methods of some embodiments. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language, and various embodiments may thus be implemented using a variety of programming languages.


While this invention has been described in terms of certain embodiments, it will be appreciated by those skilled in the art that certain modifications, permutations and equivalents thereof are within the inventive scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention; the invention is limited only by the claims.

Claims
  • 1. A method, comprising: virtually representing a file associated with a streaming software program on a streaming client;streaming a segment of the file to the streaming client;if the size of the file is greater than a writeback threshold: tracking modifications to the segment of the file at the streaming client;writing, at the streaming client, tracked modifications to the file into a diff-file, the diff-file residing on the streaming client;combining, at the streaming client, the segment of the file with the diff-file to create a locally modified virtual file;virtually representing, on the streaming client, the locally modified virtual file;if the size of the file is less than the writeback threshold: downloading a downloadable file having content corresponding to content of the segment of the file;modifying the downloadable file locally.
  • 2. The method of claim 1, further comprising merging overlapping segments of the file.
  • 3. The method of claim 1, further comprising: receiving, at the streaming client, a modify file request; if the file comprises a document file: downloading the document file; modifying the document file according to the modify file request.
  • 4. The method of claim 1, further comprising: receiving a modify file request; modifying the file according to a diff-file technique and the modify file request if the file is a game file; if the file is a document file: downloading the file and modifying the file according to the modify file request.
  • 5. A method comprising: opening for modification a segment of a file, the file being associated with a streaming software program and represented virtually on a streaming client;streaming the segment of the file to the streaming client;treating the file as a read-only file until a modification is received;receiving, at the streaming client, a modification to the segment of the file;if the size of the file is greater than a writeback threshold: storing the modification in a local file, on the streaming client;integrating, at the streaming client, the modification into the segment of the file when the file is used, the integrating creating a modified virtual file on the streaming client;if the size of the file is less than the writeback threshold: downloading a downloadable file having content corresponding to content of the segment of the file; modifying the downloadable file locally.
  • 6. The method of claim 5, further comprising merging overlapping segments of the file.
  • 7. The method of claim 5, further comprising: receiving, at the streaming client, a modify file request; modifying, at the streaming client, the segment of the file according to a diff-file technique and the modify file request.
  • 8. The method of claim 5, further comprising: receiving, at the streaming client, a modify file request; if the file comprises a document file: downloading the document file; modifying the downloaded document file according to the modify file request.
  • 9. The method of claim 5, further comprising: receiving a modify file request; modifying the file according to a diff-file technique and the modify file request if the file is a game file; if the file is a document file: downloading the file and modifying the downloaded file according to the modify file request.
  • 10. A system, comprising: a remotely stored file associated with a streaming software program represented virtually on a streaming client;if the size of the remotely stored file is greater than a writeback threshold: a diff-file, stored on the streaming client in a non-transitory computer-readable storage medium, that includes local changes to a segment of the remotely stored file, the segment of the remotely stored file streamed to the streaming client;a diff-file integration engine, including a processor and memory, that, in operation, combines the segment of the remotely stored file with the diff-file to create a locally modified virtual file on the streaming client;if the size of the remotely stored file is less than the writeback threshold: a means for downloading a downloadable file having content corresponding to content of the segment of the remotely stored file;a means for modifying the downloadable file locally.
  • 11. The system of claim 10, wherein the diff-file is further used to merge overlapping segments of the remotely stored file.
  • 12. The system of claim 10, further comprising a means for receiving a modify file request, wherein the diff-file integration engine modifies the segment of the remotely stored file according to a diff-file technique and the modify file request.
  • 13. The system of claim 10, further comprising: a means for receiving, at the streaming client, a modify file request;a means for downloading a document file if the file comprises the document file;a means for modifying the downloaded document file according to the modify file request.
  • 14. The system of claim 10, further comprising: memory having a plurality of modules stored therein; a processor, coupled to the memory, capable of executing the executable modules, wherein the memory includes the remotely stored file, the diff-file, and the diff-file integration engine.
  • 15. The system of claim 10, further comprising a means for receiving a modify file request, wherein the diff-file integration engine modifies the remotely stored file according to a diff-file technique and the modify file request, if the remotely stored file is a game file.
US Referenced Citations (236)
Number Name Date Kind
4796220 Wolfe Jan 1989 A
5063500 Shorter Nov 1991 A
5109413 Comeford et al. Apr 1992 A
5210850 Kelly et al. May 1993 A
5293556 Hill et al. Mar 1994 A
5442791 Wrabetz et al. Aug 1995 A
5495411 Ananda Feb 1996 A
5547202 Tsumura Aug 1996 A
5548645 Ananda Aug 1996 A
5652887 Dewey et al. Jul 1997 A
5666293 Metz et al. Sep 1997 A
5696965 Dedrick Dec 1997 A
5701427 Lathrop Dec 1997 A
5706440 Compliment et al. Jan 1998 A
5715403 Stefik Feb 1998 A
5764906 Edelstein et al. Jun 1998 A
5765152 Erickson Jun 1998 A
5768528 Stumm Jun 1998 A
5768539 Metz et al. Jun 1998 A
5771354 Crawford Jun 1998 A
5778395 Whiting et al. Jul 1998 A
5790753 Krishnamoorthy et al. Aug 1998 A
5805809 Singh et al. Sep 1998 A
5809144 Sirbu et al. Sep 1998 A
5812881 Ku et al. Sep 1998 A
5818711 Schwabe et al. Oct 1998 A
5822537 Katseff et al. Oct 1998 A
5835722 Bradshaw et al. Nov 1998 A
5838910 Domenikos et al. Nov 1998 A
5855020 Kirsch Dec 1998 A
5874986 Gibbon et al. Feb 1999 A
5878425 Redpath Mar 1999 A
5881232 Cheng et al. Mar 1999 A
5892915 Duso et al. Apr 1999 A
5892953 Bhagria et al. Apr 1999 A
5895454 Harrington Apr 1999 A
5895471 King et al. Apr 1999 A
5901315 Edwards et al. May 1999 A
5903721 Sixtus May 1999 A
5903732 Reed et al. May 1999 A
5903892 Hoffert et al. May 1999 A
5905868 Baghai et al. May 1999 A
5909545 Frese et al. Jun 1999 A
5911043 Duffy et al. Jun 1999 A
5918015 Suzuki et al. Jun 1999 A
5923885 Johnson Jul 1999 A
5925126 Hsieh Jul 1999 A
5929849 Kikinis Jul 1999 A
5931907 Davies et al. Aug 1999 A
5933603 Vahalia et al. Aug 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5943424 Berger et al. Aug 1999 A
5948062 Tzelnic et al. Sep 1999 A
5948065 Eilert et al. Sep 1999 A
5949877 Traw et al. Sep 1999 A
5953506 Kalra et al. Sep 1999 A
5956717 Kraay et al. Sep 1999 A
5960411 Hartman et al. Sep 1999 A
5960439 Hammer et al. Sep 1999 A
5961586 Pedersen Oct 1999 A
5961591 Jones et al. Oct 1999 A
5963444 Shidira et al. Oct 1999 A
5963944 Admas Oct 1999 A
5973696 Arganat et al. Oct 1999 A
5987454 Hobbs Nov 1999 A
6003065 Yan et al. Dec 1999 A
6003095 Pekowski et al. Dec 1999 A
6014686 Elnozahy et al. Jan 2000 A
6018619 Allrad et al. Jan 2000 A
6026166 LeBourgeois Feb 2000 A
6028925 Van Berkum et al. Feb 2000 A
6038379 Fletcher et al. Mar 2000 A
6038610 Belfiore et al. Mar 2000 A
6047323 Krause Apr 2000 A
6049835 Gagnon Apr 2000 A
6061738 Osaku et al. May 2000 A
6065043 Domenikos et al. May 2000 A
6076104 McCue Jun 2000 A
6081842 Shachar et al. Jun 2000 A
6085186 Christianson et al. Jul 2000 A
6085193 Malkin et al. Jul 2000 A
6088705 Lightstone Jul 2000 A
6092194 Touboul Jul 2000 A
6094649 Bowen et al. Jul 2000 A
6099408 Schneier et al. Aug 2000 A
6101482 DiAngelo et al. Aug 2000 A
6101491 Woods Aug 2000 A
6101537 Edelstein et al. Aug 2000 A
6108420 Larose et al. Aug 2000 A
6115741 Domenikos et al. Sep 2000 A
6138271 Keeley Oct 2000 A
6154878 Saboff Nov 2000 A
6157948 Inoue et al. Dec 2000 A
6173330 Guo et al. Jan 2001 B1
6185608 Hon et al. Feb 2001 B1
6192398 Hunt et al. Feb 2001 B1
6192408 Vahalia et al. Feb 2001 B1
6195694 Chen et al. Feb 2001 B1
6212640 Abdelnur et al. Apr 2001 B1
6219693 Napolitano et al. Apr 2001 B1
6226665 Deo et al. May 2001 B1
6253234 Hunt et al. Jun 2001 B1
6275496 Burns et al. Aug 2001 B1
6278992 Curtis et al. Aug 2001 B1
6282712 Davis et al. Aug 2001 B1
6298356 Jawahar et al. Oct 2001 B1
6301605 Napolitano et al. Oct 2001 B1
6311221 Raz et al. Oct 2001 B1
6330561 Cohen et al. Dec 2001 B1
6343287 Kumar et al. Jan 2002 B1
6347398 Parthasarathy et al. Feb 2002 B1
6356946 Clegg et al. Mar 2002 B1
6356961 Oprescu-Surcobe Mar 2002 B1
6370686 Delo et al. Apr 2002 B1
6374402 Schmeidler et al. Apr 2002 B1
6385596 Wiser et al. May 2002 B1
6389467 Eyal May 2002 B1
6418554 Delo et al. Jul 2002 B1
6418555 Mohammed Jul 2002 B2
6418556 Bennington et al. Jul 2002 B1
6424991 Gish Jul 2002 B1
6425017 Dievendorff et al. Jul 2002 B1
6449688 Peters et al. Sep 2002 B1
6453334 Vinson et al. Sep 2002 B1
6457076 Cheng et al. Sep 2002 B1
6508709 Karmarkar Jan 2003 B1
6510458 Berstis et al. Jan 2003 B1
6510462 Blumenau Jan 2003 B2
6510466 Cox et al. Jan 2003 B1
6524017 Lecocq et al. Feb 2003 B2
6574618 Eylon et al. Jun 2003 B2
6584507 Bradley et al. Jun 2003 B1
6587857 Carothers et al. Jul 2003 B1
6594682 Peterson et al. Jul 2003 B2
6598125 Romm Jul 2003 B2
6601103 Goldschmidt Iki et al. Jul 2003 B1
6601110 Marsland Jul 2003 B2
6605956 Farnworth et al. Aug 2003 B2
6609114 Gressel et al. Aug 2003 B1
6611812 Hurtado et al. Aug 2003 B2
6622137 Ravid et al. Sep 2003 B1
6622171 Gupta et al. Sep 2003 B2
6636961 Braun et al. Oct 2003 B1
6687745 Franco et al. Feb 2004 B1
6694510 Williems Feb 2004 B1
6697869 Mallart et al. Feb 2004 B1
6711619 Chanderamohan et al. Mar 2004 B1
6732179 Brown et al. May 2004 B1
6735631 Oekrke et al. May 2004 B1
6757708 Craig et al. Jun 2004 B1
6757894 Eylon et al. Jun 2004 B2
6763370 Schmeidler et al. Jul 2004 B1
6772209 Chernock et al. Aug 2004 B1
6775779 England et al. Aug 2004 B1
6779179 Romm et al. Aug 2004 B1
6785768 Peters et al. Aug 2004 B2
6785865 Cote et al. Aug 2004 B1
6801507 Humpleman et al. Oct 2004 B1
6810525 Safadi et al. Oct 2004 B1
6816909 Chang et al. Nov 2004 B1
6816950 Nichols Nov 2004 B2
6832222 Zimowski Dec 2004 B1
6836794 Lucowsky et al. Dec 2004 B1
6854009 Hughes Feb 2005 B1
6891740 Williams May 2005 B2
6918113 Patel et al. Jul 2005 B2
6925495 Hegde et al. Aug 2005 B2
6938096 Greschler et al. Aug 2005 B1
6950987 Hargraves et al. Sep 2005 B1
6959320 Shah et al. Oct 2005 B2
6970866 Pravetz et al. Nov 2005 B1
6985915 Somalwar et al. Jan 2006 B2
7028305 Schaefer et al. Apr 2006 B2
7043524 Shah et al. May 2006 B2
7051315 Artiz et al. May 2006 B2
7062567 Benitez et al. Jun 2006 B2
7096253 Vinson et al. Aug 2006 B2
7112138 Hendrick et al. Sep 2006 B2
7137072 Bauer et al. Nov 2006 B2
7191441 Abbott et al. Mar 2007 B2
7192352 Walker et al. Mar 2007 B2
7197516 Hipp et al. Mar 2007 B1
7246119 Kuwata et al. Jul 2007 B2
20010003828 Peterson et al. Jun 2001 A1
20010014878 Mitra et al. Aug 2001 A1
20010034736 Eylon et al. Oct 2001 A1
20010037399 Eylon et al. Nov 2001 A1
20010037400 Raz et al. Nov 2001 A1
20010044850 Raz et al. Nov 2001 A1
20010044851 Rothman et al. Nov 2001 A1
20020015106 Taylor, Jr. Feb 2002 A1
20020019864 Mayer Feb 2002 A1
20020042833 Hendler et al. Apr 2002 A1
20020057893 Wood et al. May 2002 A1
20020059402 Belanger May 2002 A1
20020065848 Walker et al. May 2002 A1
20020078170 Brewer et al. Jun 2002 A1
20020078203 Greschler et al. Jun 2002 A1
20020083183 Pujare et al. Jun 2002 A1
20020083187 Sim et al. Jun 2002 A1
20020087883 Wohlgemuth et al. Jul 2002 A1
20020138640 Raz et al. Sep 2002 A1
20020147849 Wong et al. Oct 2002 A1
20020156911 Croman et al. Oct 2002 A1
20030004882 Holler et al. Jan 2003 A1
20030009538 Shah et al. Jan 2003 A1
20030056112 Vinson et al. Mar 2003 A1
20030105816 Goswami Jun 2003 A1
20030140160 Raz et al. Jul 2003 A1
20040036722 Warren Feb 2004 A1
20040036912 Liou et al. Feb 2004 A1
20040128342 Maes et al. Jul 2004 A1
20040133657 Smith et al. Jul 2004 A1
20040230784 Cohen Nov 2004 A1
20040230971 Rachman et al. Nov 2004 A1
20040267813 Rivers-Moore et al. Dec 2004 A1
20040268361 Schaefer Dec 2004 A1
20050010607 Parker et al. Jan 2005 A1
20050010670 Greschler et al. Jan 2005 A1
20050091534 Nave et al. Apr 2005 A1
20050193139 Vinson et al. Sep 2005 A1
20060010074 Zeitsiff et al. Jan 2006 A1
20060031165 Nave et al. Feb 2006 A1
20060047716 Keith Mar 2006 A1
20060048136 De Vries et al. Mar 2006 A1
20060106770 De Vries et al. May 2006 A1
20060123185 De Vries et al. Jun 2006 A1
20070038642 Durgin et al. Feb 2007 A1
20070043550 Tzruya Feb 2007 A1
20070067435 Landis et al. Mar 2007 A1
20070074223 Lescouet et al. Mar 2007 A1
20070126749 Tzruya et al. Jun 2007 A1
20070129146 Tzruya et al. Jun 2007 A1
20070129990 Tzruya et al. Jun 2007 A1
20070130292 Tzruya et al. Jun 2007 A1
20070168309 Tzruya et al. Jul 2007 A1
Foreign Referenced Citations (23)
Number Date Country
0 813 325 Dec 1997 EP
0 658 837 Jun 2000 EP
1 020 824 Jul 2000 EP
1 143 349 Oct 2001 EP
94140171 Nov 2005 TW
WO 9840993 Sep 1998 WO
WO 9850853 Nov 1998 WO
WO 9957863 Nov 1999 WO
WO 9960458 Nov 1999 WO
WO 0004681 Jan 2000 WO
WO 0031657 Jun 2000 WO
WO 0031672 Jun 2000 WO
WO 0056028 Sep 2000 WO
WO 0127805 Apr 2001 WO
WO 0146856 Jun 2001 WO
WO 0244840 Jun 2002 WO
WO US2004028195 Aug 2004 WO
WO US2005037351 Oct 2005 WO
WO US2005041024 Nov 2005 WO
WO US2006010637 Mar 2006 WO
WO US2006010904 Mar 2006 WO
WO 2006102532 Sep 2006 WO
WO 2006102621 Sep 2006 WO
Non-Patent Literature Citations (26)
Entry
Fiedler et al, UNIX System V, Release 4 Administration, Aug. 1991, Sams 2d edition.
Mullender et al, A Distributed Operating System for the 1990s, 1990 IEEE.
Nakayoshi et al, A Secure Private File System with Minimal Syste Administration, 1997 IEEE.
O'Mahony, Security Considerations in a Network Management Environment, Jun. 1994, IEEE.
U.S. Appl. No. 10/023,915, filed Dec. 14, 2001, De Vries et al.
U.S. Appl. No. 11/021,569, filed Dec. 22, 2004, Cover et al.
U.S. Appl. No. 11/274,442, filed Nov. 14, 2005, De Vries et al.
U.S. Appl. No. 11/371,627, filed Mar. 8, 2006, De Vries et al.
Boneh et al, An Attack on RSA Given a Small Fraction of the Private Key Bits, Advances in Cryptology—ASIACRYPT '98, Lecture Notes in Computer Science, 25-34, V.1514, Springer-Verlag Berlin Heidelberg, retrieved online on Jun. 15, 2006 at http://crypto.stanford.edu/˜dabo/abstracts/bits—of—d.html.
Binto, George et al, Secure Transaction Processing in Firm Real-Time Database Systems, SIGMOD International Conference on Management of Data 1997, 462-473, V26, Issue 2, Association for Computing Machinery (ACM) Press, Tucson, Arizona, United States.
Chu, et al, Referee: Trust Management for Web Applications, Proceedings of the Sixth International World Wide Web Conference, 1997, retrieved online on Jun. 15, 2006 at http://www.si.umich.edu/˜presnick/papers/Referee/www6-referee.html.
Faupel, Status of Industry Work on Signed Mobile Code, Joint European Networking Conference (JENC), May 1997, 313-1-313-8.
Mullender et al, Amoeba: A Distributed Operating System for the 1990s, Computer Magazine, May 1990, 44-53, 23(5).
Nakayoshi et al, A Secure Private File System with Minimal System Administration, Communications, Computers and Signal Processing, 1997 IEEE Pacific Rim Conference, 251-255, vol. 1.
O'Mahony, Donal, Security Considerations in a Network Management Environment, 1994, 12-17, vol. 8, IEEE, USA.
Pyarali et al, Design and Performance of an Object-Oriented Framework for High-Speed Electronic Medical Imaging, Fall 1996, Computing Systems Journal, 331-375, vol. 9 No. 4, USENIX, retrieved online on Jun. 15, 2006 at http://www.cs.wustl.edu/˜schmidt/PDF/COOTS-96.pdf.
Reinhardt, Robert B., An Architectural Overview of UNIX Network Security, ARINC Research Corporation, Sep. 19, 1992, retrieved online on Jun. 15, 2006 at http://www.clusit.it/whitepapers/unixnet.pdf.
Tardo & Valente, Mobile Agent Security and Telescript, 4th International Conference of the IEEE Computer Society (IEEE CompCon1996), Feb. 1996.
Avi Rappaport, “Robots & Spiders & Crawlers: How Web and Intranet Search Engines Follow Links to Build Indexes”, Infoseek Software, pp. 1-38 (Oct. 1999).
Gralla, Preston, Chapter 44, “Shopping on the Internet” How the Internet Works, IEEE Personal Communications, Aug. 1999, 260-67, QUE-A divison of Macmillon Computer Publishing, Millenium Edition.
Marvin Sirbu et al., “Netbill: An Internet Commerce System Optimized for Network-Delivered Services”, IEEE Personal Communications, 2(4):34-39 (Aug. 1995).
Microsoft Corp., Computer Dictionary, 3rd edition, 1997, 119 & 305, Microsoft Press.
Morrow, Brian et al., Indexing Within—The Lost Gold Within the Enetrprise: Endeavors Technology, Aug. 22, 2000, pp. 1-6.
Peter Bailey, et al., “Chart of Darkness: Mapping a Large Intranet”, Dept of Computer Science, FEIT, The Australian National University, Canberra ACT 0200, Australia pp. 1-23, http://pastime.anu.edu.au/nick/pubs/www9/cod.html. (Feb. 2001).
Sergey Brin, et al., “The Anatomy of a Large-Scale Hypertextual Web Search Engine”, Computer Science Department, Stanford University, Stanford, CA 94305 pp. 1-20.
Microsoft, “Understanding Universal Plug and Play”, pp. 1-39, Feb. 6, 2000.
Related Publications (1)
Number Date Country
20060230175 A1 Oct 2006 US
Provisional Applications (1)
Number Date Country
60664765 Mar 2005 US