This invention relates to a system and method for detecting the presence of an object and more particularly the invention relates to systems and methods for monitoring and recording the activity of traffic in a controlled intersection.
A system and method for traffic monitoring, vehicle speed determination and traffic light violation detection and recording is disclosed. In a preferred embodiment of the invention, the system and method are capable of monitoring traffic in an intersection/highway, measure vehicle speed, identify potential traffic violations, and trigger a visual recording device such as a camera or video system. The method and system can also serve as a tool for use by law enforcement agencies and research groups for other applications such as measurement of traffic density, monitoring vehicle speed, and studying traffic patterns. One of the potential applications of the system is to monitor and record red light violations. The disclosed system relies on generation of laser light and the detection of the scattering of such radiation off the road surface or intervening object to determine the presence of a car, estimate its speed, determine when a violation is likely to occur (based on predetermined criteria), and trigger a recording mechanism for collecting evidence of the violation.
The above and other features, aspects, and advantages of the present invention are considered in more detail, in relation to the following description of embodiments thereof shown in the accompanying drawings, in which:
a) is a schematic drawing of main parts and overall arrangement of a Laser system according to a first embodiment of the present invention.
b) is a schematic drawing of main parts and overall arrangement of a Laser system according to another embodiment of the present invention.
c) shows a principle of operation of a system according to the present invention.
a)-(b) illustrate speed estimation principles using the front or rear of an object.
a)-(c) are flowcharts for estimating speed according to various alternate embodiments of the present invention.
a)-(g) illustrate schematics for cross correlation analysis of object speed according to a first embodiment of the invention.
a)-(b) illustrates the pulse delay as recorded corresponding to a passing vehicle according to additional features of the present invention.
a)-(b) illustrate general concepts of speed uncertainty due to sensor repetition rate.
a)-(b) are graphs of speed estimation uncertainty as a function of object speed according to one embodiment of the present invention.
a)-(b) are graphs of speed estimation uncertainty as a function of sensor beam size according to one embodiment of the present invention.
The invention summarized above and defined by the enumerated claims may be better understood by referring to the following description, which should be read in conjunction with the accompanying drawings. This description of an embodiment, set out below to enable one to build and use an implementation of the invention, is not intended to limit the invention, but to serve as a particular example thereof. Those skilled in the art should appreciate that they may readily use the conception and specific embodiments disclosed as a basis for modifying or designing other methods and systems for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent assemblies do not depart from the spirit and scope of the invention in its broadest form.
The overall system is shown in
a) and (b) show the main parts and overall arrangement of a single lens speed sensor system according to the present invention. The sensor system includes two lasers (preferably diode lasers for compactness), two detectors (or an array of detectors), a lens, a mirror (or beam splitter), and several electronic boards for power conditioning and distribution, information recording, and decision-making. In
Each laser with its associated laser controller generates short pulses at high frequency. The duration of the optical pulses and the repetition frequency are a function of the desired speed accuracy, and can be adjusted according to the needs of the specific application. Short optical pulses in conjunction with high frequency lead to high accuracy in evaluating vehicle/object speed and other information from the recorded data. Reducing the frequency or increasing the pulse width decreases the system accuracy. Another factor that affects the system accuracy is the separation d between the two laser beams, described in more detail below. The beam separation can serve as an accuracy adjustment in order to satisfy requirements for specific applications.
The optical principle that provides the basis for operation of the disclosed system is scattering of optical radiation when it encounters a solid surface. It is always true that a small percentage of incident optical radiation on a surface (interface) will be scattered in many directions in addition to the other optical phenomena such as reflection and refraction. This is also true for shiny surfaces since a short exposure to open air will contaminate the surface enough to enable light scattering. The disclosed system relies on a small percentage of scattered optical radiation to be detected and to generate an electrical signal thru the use of a sensitive optical detector. The generated electrical signal is, in turn, used to trigger electronic processes and logic algorithms that enable the system to detect the presence of an object/vehicle.
The schematic in
As is the case with many optical systems, it is possible to interchange the position of the lasers and the detectors provided that the mirror (beam splitter) instead of having holes for the beam to go through, it will have one or more areas of high reflectivity for the beams to be reflected.
The overall principle of operation of the speed sensor system and the various functions performed to estimate the speed are outlined below:
Using the recorded delay in conjunction with the signal strength, the presence/absence of a vehicle can be determined using the analysis as illustrated in Table 1, below. Column 1 lists the various possibilities and column 2 contains the criterion used for the conclusion.
Chart 1: Conditions for detecting the presence of a vehicle.
The method used for determining the presence/absence of a vehicle from an intersection is further illustrated in the timing diagrams shown in
A final decision is made by combining the outputs of FF1 and FF2 through an AND gate. If the output of the AND gate is set to zero it means that no vehicle is present, while if it is high it indicates the presence of a vehicle. In a preferred embodiment, the flip-flops are replaced by electronic timing circuits for timing return pulses.
The speed of a moving vehicle can be estimated at two instances, one corresponding to the front of the vehicle, and the second corresponding to the back of the vehicle in conjunction with the separation d of the two laser beams (which is known and is a design parameter). Speed estimation using the output of the two detectors is illustrated in
The process for speed estimation of a moving vehicle is outlined in greater detail in flowcharts presented in
The algorithms outlined in the flowcharts of
The acceleration/deceleration of a moving vehicle can be estimated by comparing the speed estimates for the front and the rear of the moving vehicle and is given by the following expression.
where:
The ability to estimate acceleration/deceleration of a moving vehicle may prove to be significant since in applications such as red light photo enforcement this information can show whether a driver tried to stop to avoid running the red light, or whether the driver accelerate to beat the red light.
Speed estimation can be carried out using a variety of methods. The simplest and most straightforward method is the one previously described where the time between the first interruption of laser beam 1 to the first interruption of laser beam 2 is recorded. Given that the beam separation is fixed and can be measured, then the speed of the moving vehicle may be estimated. The disadvantage of this method, when the system shown in
d+r sin (θ)
Another method for estimating the speed of a moving object/vehicle is by recording the range corresponding to every optical pulse and then comparing the two streams of data recorded by the two detectors. This can be accomplished by performing a cross-correlation analysis on the recorded profiles that considers the possibility of acceleration and deceleration during the recording. The result of this analysis will be a better estimate of the time delay (τs) that it takes for the vehicle to cross from laser beam 1 to laser beam 2. The analysis may be performed on carefully selected sections of the vehicle or for the whole vehicle profile.
The series of schematics in
The flowchart shown in
A detailed description of an exemplary process of detecting a vehicle and documenting a violation is presented in Table 4. Notably, the contents of Table 4 present only one step sequence and decision process with the main characteristic that there is no image capturing unless a violation is highly probable. Simpler algorithms can be developed where, even though they might seem to be simpler, image recordings are needed before any indication of a violation will occur.
The algorithm and decision process presented in the flowchart of
A less complicated version of the system described above is one in which the decision process is only based on the presence or absence of the detected pulses. In other words, if no pulse is detected within the predetermined programmable time interval Δτ, then it is assumed that an object is present. Signal absence may be due to either high absorption of the vehicle's surface, or highly efficient specular reflection, or high transmission of the vehicle's surface, which results in less laser radiation scattering.
Yet another embodiment of the disclosed method and apparatus is a more complex case, but can provide maximum information concerning a moving vehicle. The continuous recording of the time delay for the two laser beams generates a table that contains important information that can be used to evaluate several properties of the moving vehicle. Simple plotting of the inverse of the recorded time delay as a function of time reveals the shape of the car. This process is schematically shown in
The graph in
In an alternate embodiment, a comparable system to the one disclosed above can be built in a different way. Rather than sending laser pulses and waiting for their return, the transmitter can send laser radiation that has undergone an intensity modulation using a repetitive waveform (such as a sinusoidal, triangular, or similar). The laser radiation scatters off the hard surface and a fraction of it is directed into the detector. The phase of the detected radiation depends on the round trip distance, which in turn can be processed in a similar fashion to determine the presence of an object and its speed.
The uncertainty in speed estimation depends on several factors:
There are several ways of controlling the accuracy in speed determination. The disclosed system becomes more accurate by
a) and (b) present the source of the speed estimation uncertainty due to the repetition rate. A vehicle may intercept the beam path of sensor A just after a laser pulse has been reflected/scattered by the asphalt and intersect the beam path of sensor B just before a light pulse hits the asphalt. This will result in a time measurement error equal to the period. In other words, the time it takes for the vehicle to cover the distance d will be larger by one period and as indicated by equation (2) the vehicle's speed will be underestimated. (“E1” and “O1” markings on
The two graphs shown on
A schematic detailing the speed uncertainty due to the finite spot sizes of the two laser beams is shown in
The results of a numerical simulation are shown in the graphs presented in
One of the main applications for the speed sensor discussed above is red light photo enforcement. The simplest two-laser beam speed sensor has one of the laser beams vertical (or perpendicular with respect to the road surface) while the second laser beam is at a slight angle as compared to the other beam (see
The use of the speed sensor for red light photo-enforcement is schematically predicted in
The process of detecting and recording a traffic violation starts with sensing the status of the traffic light. When the traffic light is red then the speed of passing vehicles is estimated. If the vehicle's speed is lower than a critical value then it means that the vehicle will be able to stop before the intersection. In this case, no image recording takes place. On the other hand, if the vehicle's speed is above a critical value then the probability of stopping before the intersection is minimum, and the process of recording the violation starts. The violation recording may consist of still images of the vehicle before and during the traffic violation as well as a short video clip documenting the violation.
The compactness of the disclosed system allows multiples of the system to be package into a single housing, and the system can be used in an intersection for “Red Light Violation Detection and Recording”. An example of a two-lane configuration using the system, coupled with a recording mechanism for documenting red light violations is shown in
The exact height for placing the system is subject to local codes and laws. For convenience, during the analysis of the disclosed system, a hanging height between 16-20 feet was assumed. (According to the commercial drivers license study guide no vehicle can exceed a height of 14 feet.) Another important feature of the disclosed arrangement is the ease of disguise. It is feasible to design a street lighting feature that would be able to house both a light bulb as well as the disclosed system. This will provide maximum camouflage. Similar to a two-lane configuration the disclosed system can be used in a three-lane intersection. The schematic in
Another possible application for the disclosed system is its potential use for speed violation detection and speed photo enforcement in urban and rural areas as well as highways.
Additionally, a variety of laser systems can be used for the construction of the disclosed system. The prime candidates are diode lasers due to their small size, low cost, rugged package, ability to operate in harsh environments, ease of installation and maintenance-free operation. Diode laser sources where the light emitting area is rectangular (and are currently well developed) offer the additional advantage that they can be focused to very narrow lines on the road surface. The maximum advantage is realized when the long side of the rectangular focusing spot is arranged perpendicular to the traffic direction, which also minimizes the speed uncertainty due to spot size.
Even though there is no specific wavelength requirement for the disclosed system, lasers operating in the wavelength region between 0.8 μm to 2 μm are preferred. The main reason is the fact that these wavelengths are invisible to the human eye, therefore eliminating the possibility of obstructing the drivers.
As is the case with laser sources, there is a great variety of sensors that can be used for the disclosed systems. Some examples are avalanche photodiodes (analogue mode or “Geiger mode,”) photodiodes, and photomultipliers. Mainly the choice of light detector depends on the operating wavelength.
Concerning the road surface, it is well published that the scattering efficiency of asphalt is typically between 5% and 15%. Numerical simulations and experimental investigation performed indicated that even the low end of scattering efficiency is sufficient for operation of the disclosed system. Special reflective tapes or road paints developed by a variety of vendors can be also used to enhance scattering efficiency and improve the operating characteristics of the disclosed system.
Lastly, the disclosed system can be easily configured to work as an autonomous portable device for traffic monitoring, vehicle speed determination, and speed violation detection and recording. Such a device can operate using batteries or a small portable electrical generator depending on the duration of needed operation. Possible applications of a portable system may be areas where road construction and maintenance is performed. A portable system may also provide a useful tool for preliminary investigation and feasibility studies of traffic light intersections and highways before permanent installation is carried out.
The invention has been described with references to a preferred embodiment. While specific values, relationships, materials and steps have been set forth for purposes of describing concepts of the invention, it will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the basic concepts and operating principles of the invention as broadly described. It should be recognized that, in the light of the above teachings, those skilled in the art can modify those specifics without departing from the invention taught herein. Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with such underlying concept. It is intended to include all such modifications, alternatives and other embodiments insofar as they come within the scope of the appended claims or equivalents thereof. It should be understood, therefore, that the invention may be practiced otherwise than as specifically set forth herein. Consequently, the present embodiments are to be considered in all respects as illustrative and not restrictive.
This application is based upon and claims benefit of and co-owned U.S. Provisional Patent Application Ser. No. 60/566,539 entitled “System and Method for Sensing an Object and Determining the Speed of Same,” filed with the U.S. Patent and Trademark Office on Apr. 29, 2004 by the inventors herein, and and co-owned U.S. Provisional Patent Application Ser. No. 60/583,559 entitled “System and Method for Traffic Monitoring, Speed Determination, and Traffic Light Violation Detection and Recording,” filed with the U.S. Patent and Trademark Office on Jun. 28, 2004 by the inventors herein, the specifications of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3532886 | Kruger, Jr. et al. | Oct 1970 | A |
3623057 | Henn | Nov 1971 | A |
4690550 | Kuhne | Sep 1987 | A |
5066950 | Schweitzer et al. | Nov 1991 | A |
5221956 | Patterson et al. | Jun 1993 | A |
5227784 | Masamori | Jul 1993 | A |
5243553 | Flockencier | Sep 1993 | A |
5321490 | Olson et al. | Jun 1994 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5680120 | Tilleman | Oct 1997 | A |
5757472 | Wangler et al. | May 1998 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5896190 | Wangler et al. | Apr 1999 | A |
6111523 | Mee | Aug 2000 | A |
6188469 | Liou et al. | Feb 2001 | B1 |
6366219 | Hoummady | Apr 2002 | B1 |
6373402 | Mee | Apr 2002 | B1 |
6404506 | Cheng et al. | Jun 2002 | B1 |
6466260 | Hatae et al. | Oct 2002 | B1 |
6476943 | Yertoprakhov | Nov 2002 | B1 |
6546119 | Ciolli et al. | Apr 2003 | B2 |
6573929 | Glier et al. | Jun 2003 | B1 |
6614536 | Doemens et al. | Sep 2003 | B1 |
6943868 | Haig | Sep 2005 | B2 |
20020012534 | Kibayashi et al. | Jan 2002 | A1 |
20020024652 | Ooga | Feb 2002 | A1 |
20020054210 | Glier et al. | May 2002 | A1 |
20020063858 | Patterson | May 2002 | A1 |
20020186297 | Bakewell | Dec 2002 | A1 |
20030020633 | Lee | Jan 2003 | A1 |
20030080878 | Kirmuss | May 2003 | A1 |
20050046821 | Hanson et al. | Mar 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050242306 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60566539 | Apr 2004 | US | |
60583559 | Jun 2004 | US |