System and method for transferring data in storage controllers

Information

  • Patent Grant
  • 8713224
  • Patent Number
    8,713,224
  • Date Filed
    Wednesday, September 21, 2005
    18 years ago
  • Date Issued
    Tuesday, April 29, 2014
    10 years ago
Abstract
A method and system for processing data by a storage controller with a buffer controller coupled to a buffer memory is provided. The method includes, evaluating incoming data block size; determining if the incoming data requires padding; and padding incoming data such that the incoming data can be processed by the buffer controller. The method also includes determining if any pads need to be removed from data that is read from the buffer memory; and removing pads from the data read from the buffer memory. The buffer controller can be set in a mode to receive any MOD size data and includes a first channel with a FIFO for receiving incoming data via a first interface. The buffer controller mode for receiving incoming data can be set by firmware.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally storage device controllers, and more particularly to streamlining data flow in storage device controllers.


2. Background


Conventional computer systems typically include several functional components. These components may include a central processing unit (CPU), main memory, input/output (“I/O”) devices, and streaming storage devices (for example, tape drives) (referred to herein as “storage device”). In conventional systems, the main memory is coupled to the CPU via a system bus or a local memory bus. The main memory is used to provide the CPU access to data and/or program information that is stored in main memory at execution time. Typically, the main memory is composed of random access memory (RAM) circuits. A computer system with the CPU and main memory is often referred to as a host system.


The storage device is coupled to the host system via a storage device controller that handles complex details of interfacing the storage devices to the host system. Communications between the host system and the controller is usually provided using one of a variety of standard I/O bus interfaces.


Conventionally, when data is read from a storage device, a host system sends a read command to the controller, which stores the read command into the buffer memory. Data is read from the device and stored in the buffer memory.


Typically when data enters the controller from an interface (for example, the “SCSI interface”), the data is MODN aligned (for example, MOD2]. The storage controller includes a buffer memory controller that moves data with a specific alignment, for example, a MOD4 alignment. Hence data must be padded such that it complies with the MOD4 alignment.


In addition, when data is moved from a buffer memory of the controller to the SCSI interface, it has to be re-aligned so that the SCSI interface can send the data out. For example, MOD4 aligned data must be re-aligned to MOD2 data so that it can be read from buffer memory.


Conventional controllers do not provide an efficient system for padding or removing the pad for efficiently transferring data.


Therefore, there is a need for a system to efficiently pad/remove the pad for moving data to/from a controller.


SUMMARY OF THE INVENTION

In one aspect of the present invention, a method for processing incoming data by a storage controller with a buffer controller coupled to a buffer memory is provided. The method includes, evaluating incoming data block size; determining if the incoming data requires padding; and padding incoming data such that the incoming data can be processed by the buffer controller. The incoming data after being padded may be stored in the buffer memory and the buffer controller pads incoming data in real time before being stored in the buffer memory.


In another aspect of the present invention, a method for reading data from the buffer memory operationally coupled to the storage controller through the buffer controller is provided. The method includes determining if any pads need to be removed from the data; and removing pads from the data read from the buffer memory.


In another aspect of the present invention, a storage controller is provided. The storage controller includes a buffer controller that can be set in a mode to receive any MOD size data and includes a first channel with a FIFO for receiving incoming data via a first interface, wherein the incoming data is padded so that it can be stored in a buffer memory. Also, padding may be removed from any data that is read from the buffer memory and the buffer controller mode for receiving incoming data can be set by firmware.


In one aspect of the present invention, a controller can process any MOD size data by padding (or removing the pad). This allows the controller to be flexible and hence more useful in the fast changing storage arena.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features and other features of the present invention will now be described with reference to the drawings of a preferred embodiment. In the drawings, the same components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following Figures:



FIG. 1A shows a block diagram of a controller, according to one aspect of the present invention;



FIG. 1B shows a block diagram of a buffer controller, according to one aspect of the present invention;



FIG. 2 shows a block diagram of Channel 1, according to one aspect of the present invention;



FIG. 3 shows a block diagram showing data coming from an interface, according to one aspect of the present invention;



FIG. 4 shows an example of data moving from buffer memory to an interface, according to one aspect of the present invention;



FIG. 5 shows a flow diagram for padding data, according to one aspect of the present invention; and



FIG. 6 shows a flow diagram for removing padding, according to one aspect of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

To facilitate an understanding of the preferred embodiment, the general architecture and operation of a controller will initially be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture.


System of FIG. 1A is an example of a streaming storage drive system (e.g., tape drive), included (or coupled to) in a computer system. The host computer (not shown) and storage device 115 communicate via port 102, which is connected to a data bus (not shown). In an alternate embodiment (not shown), the storage device 115 is an external storage device, which is connected to the host computer via a data bus. The data bus, for example, is a bus in accordance with a Small Computer System Interface (SCSI) specification. Those skilled in the art will appreciate that other communication buses known in the art can be used to transfer data between the drive and the host system.


As shown in FIG. 1A, the system includes controller 101, which is coupled to SCSI port 102, port 114, buffer memory 111 and microprocessor 100. Interface 118 serves to couple microprocessor bus 107 to microprocessor 100. A read only memory (“ROM”) omitted from the drawing is used to store firmware code executed by microprocessor 100. Port 114 couples controller 101 to device 115.


Controller 101 can be an integrated circuit (IC) that comprises of various functional modules, which provide for the writing and reading of data stored on storage device 115. Microprocessor 100 is coupled to controller 101 via interface 118 to facilitate transfer of data, address, timing and control information. Buffer memory 111 is coupled to controller 101 via ports to facilitate transfer of data, timing and address information.


Data flow controller 116 is connected to microprocessor bus 107 and to buffer controller 108. A DMA interface 112 is connected to microprocessor bus 107. DMA Interface 112 is also coupled to data and control port 113 and to data bus 107.


SCSI controller 105 includes programmable registers and state machine sequencers that interface with SCSI port 102 on one side and to a fast, buffered direct memory access (DMA) channel on the other side.


Sequencer 106 supports customized SCSI sequences, for example, by means of a 256-location instruction memory that allows users to customize command automation features. Sequencer 106 is organized in accordance with the Harvard architecture, which has separate instruction and data memories. Sequencer 106 includes, for example, a 32-byte register file, a multi-level deep stack, an integer algorithmic logic unit (ALU) and other special purpose modules. Sequencer 106 support's firmware and hardware interrupts schemes. The firmware interrupt allows microprocessor 100 to initiate an operation within Sequencer 106 without stopping sequencer operation. Hardware interrupt comes directly from SCSI controller 105.


Buffer controller (may also referred to as “BC”) 108 connects buffer memory 111 to DMA I/F 112, a SCSI channel of SCSI controller 105 and to micro-controller bus 107. Buffer controller 108 regulates data movement into and out of buffer memory 111.


To read data from device 115, a host system sends a read command to controller 101, which stores the read, commands in buffer memory 111. Microprocessor 100 then read the command out of buffer memory 111 and initializes the various functional blocks of controller 101. Data is read from device 115 and is passed through DMA I/F 112 to buffer controller 108.



FIG. 1B shows a block diagram of BC 108 with Channel 1108A and Channel 0108D. BC 108 also includes registers 108E and an Arbiter 108C. Arbiter 108C arbitrates channel 0108D and channel 1108A access to controller 108B. Register 108E is used for to store status information and assists in generating interrupts.



FIG. 2 shows a block diagram, of Channel 1108A. Channel 1108A includes a FIFO 200 that receives data from SCSI interface 105. Channel 1108A also includes a read assembly unit 201 and plural register 202, operationally coupled to a controller 203 that is coupled to a buffer memory 111.


Channel 1 register(s) 202 includes the following registers/counters that are used for padding data coming from SCSI interface 105 and removing the pads for data that is read from buffer 111:

    • (a) SCSI Block Size Register: This register holds data blocks destined for buffer 111.
    • (b) Channel 1 Block size register: This register holds a specific MOD size data block (for example, 512 bytes for MOD4 and 510 bytes for MOD2). This specifies the block size that is sent to buffer 111.
    • (c) Channel 1 Data Length Counter: This holds a MODN data block and counts how much data has been received. This register is loaded with the same value as the SCSI Block size register when the “Data Length Load Select” bit is reset, as described below. When the “Data Length Load Select” bit is set, Data Length Counter is loaded with Data Length Reload Register value.
    • (d) Channel 1 Data Length Reload Register: This register holds MODN data block size and is used to reload Data Length Counter.
    • (e) Channel 1 Control Register: This register includes the following bits used for controlling data transfer:


“Transfer Count Load Select” bit: This bit selects the transfer count (i.e. the block size).


“Assembly Mode” bit: This bit when set allows incoming data to be of any MOD size and padded for storage in buffer 111.


“Data Length Load Select” bit: This bit allows loading of data in Data Length Counter either from SCSI block Size register or Data Length Reload Register.


The foregoing bits may be set by controller 101 firmware such that any MOD size data can be processed (by setting the “Assembly Mode” bit).


It is noteworthy that the foregoing register configuration is shown to illustrate the adaptive aspects of the present and not to limit the present invention.



FIGS. 3 and 4 show block diagrams of how data is padded and padding is removed, according to one aspect of the present invention. FIG. 3 shows incoming data 300 is received by FIFO 200. This data is received from SCSI interface 105 and may be MODN aligned, which may be different than how data is stored in buffer 111. Data 300 leaving FIFO 200 is padded (for example MODN data is padded to MOD4) so that it can be stored in buffer 111.


For buffer 111 read operations, as shown in FIG. 4, MOD4 data 401 enters FIFO 200 and then the pad is removed so that data can be read.



FIG. 5 shows a flow diagram of process steps for padding incoming data. Turning in detail to FIG. 5, in step S500, data (300) is received from SCSI interface 105 at FIFO 200.


In step S501, data block length is evaluated by using the data length counter in register 202.


In step S502, data from FIFO 200 is sent to buffer 111, after a first data length has expired, and padding requirement is ascertained. If no padding is required, data is sent directly to buffer 111.


If padding is required, then data is padded in step S503. For example, if data is received as MOD2 and buffer 111 data is to be stored as MOD4, then two bytes are added to change the data alignment from MOD2 to MOD4.


In step S504, padded data block(s) are sent until all the data has been transferred.



FIG. 6 shows a flow diagram for removing padded information from data that is read from buffer 111. Turning in detail to FIG. 6, in step S601, the padding block size is evaluated by Channel 1 controller 203. In step S601, the process starts data transfer from buffer 111 and determines if any pad(s) need to be removed. If no pad(s) are to be removed, then in step S605, the process determines if the last block has been transferred. If the last block is not transferred, the process goes back to step S600. If the last block has been transferred, then the process stops in step S606.


If it is determined that pads have to be removed (in step S601), then in step S602, the pad(s) are removed. For example, as shown in FIG. 4, MOD4 data is read from buffer 111 and after the pads are removed, MODN data is sent to SCSI interface 105.


In step S603, the process determines if the last block of data has been transferred from buffer 111. If the last block has not been transferred, then the process moves back to step S600, otherwise, the process stops at step S604.


In one aspect of the present invention, controller 101 can process any MOD size data by padding (or removing the pad). This allows controller 101 to be flexible and hence more useful in the fast changing storage arena.


Although the present invention has been described with reference to specific embodiments, these embodiments are illustrative only and not limiting. Many other applications and embodiments of the present invention will be apparent in light of this disclosure.

Claims
  • 1. A storage controller, comprising: a buffer controller configured to operate in a first mode and a second mode, wherein while operating in the first mode, the buffer controller is configured to i) load a data length counter with a predetermined data block size stored in a first register, andii) receive data having the predetermined data block size from a host system, andwherein while operating in the second mode, the buffer controller is configured to i) receive data having a first data alignment from the host system, wherein the first data alignment is associated with a first data block size, and wherein the first data block size can be of any size,ii) store the first data block size in a second register,iii) load the data length counter with the first data block size stored in the second register to evaluate whether the first data block size is different from the predetermined data block size,iii) determine, based on (a) the first data block size loaded into the data length counter and (b) a second data alignment, a padding requirement of the data having the first data alignment, andiv) selectively pad, based on the padding requirement, the data having the first data alignment to generate data having the second data alignment, wherein the second data alignment is associated with a second data block size; anda buffer memory configured to i) receive the data having the second data alignment from the buffer controller, and ii) store the data having the second data alignment.
  • 2. The storage controller of claim 1, wherein the buffer controller includes a first channel configured to receive the data having the first data alignment.
  • 3. The storage controller of claim 2, wherein the first channel includes a first in first out memory.
  • 4. The storage controller of claim 2, wherein the first channel includes a channel controller configured to determine the padding requirement.
  • 5. The storage controller of claim 1, wherein the buffer controller is configured to remove padding from the data having the second data alignment that is transmitted from the buffer memory to the host system.
  • 6. A system comprising the storage controller of claim 1, wherein the system further comprises: a first interface configured to communicate with each of the storage controller and the buffer memory; anda second interface configured to communicate with each of the storage controller and the host system.
  • 7. The system of claim 6, wherein the second interface is a small computer system interface (SCSI).
  • 8. A data processing method, comprising: while operating in a first mode, loading a data length counter with a predetermined data block size stored in a first register, andreceiving data having the predetermined data block size from a host system; andwhile operating in a second mode, receiving, from the host system, data having a first data alignment, wherein the first data alignment is associated with a first data block size, and wherein the first data block size can be of any size;storing the first data block size in a second register;loading the data length counter with the first data block size stored in the second register to evaluate whether the first data block size is different from the predetermined data block size;determining, based on (a) the first data block size loaded into the data length counter and (b) a second data alignment, a padding requirement of the data having the first data alignment;selectively padding, based on the padding requirement, the data having the first data alignment to generate data having the second data alignment, wherein the second data alignment is associated with a second data block size; andstoring the data having the second data alignment in a buffer memory.
  • 9. The method of claim 8, wherein the step of receiving includes receiving the data having the first data alignment at a first channel.
  • 10. The method of claim 9, wherein the first channel includes a first in first out memory.
  • 11. The memory of claim 9, wherein the first channel includes a channel controller configured to determine the padding requirement.
  • 12. The method of claim 8, further comprising removing padding from the data having the second data alignment that is transmitted from the buffer memory to the host system.
CROSS REFERENCE TO RELATED APPLICATIONS

The present disclosure is a continuation of U.S. patent application Ser. No. 10/619,954 (now U.S. Pat. No. 7,007,114), filed on Jul. 15, 2003, which claims the benefit of U.S. provisional patent application Ser. No. 60/444,339, filed on Jan. 31, 2003. The entire disclosures of the applications referenced above are incorporated herein by reference.

US Referenced Citations (176)
Number Name Date Kind
3800281 Devore et al. Mar 1974 A
3988716 Fletcher et al. Oct 1976 A
4001883 Strout et al. Jan 1977 A
4016368 Apple, Jr. Apr 1977 A
4050097 Miu et al. Sep 1977 A
4080649 Calle et al. Mar 1978 A
4156867 Bench et al. May 1979 A
4225960 Masters Sep 1980 A
4275457 Leighou et al. Jun 1981 A
4390969 Hayes Jun 1983 A
4451898 Palermo et al. May 1984 A
4486750 Aoki Dec 1984 A
4500926 Yoshimaru et al. Feb 1985 A
4587609 Boudreau et al. May 1986 A
4603382 Cole Jul 1986 A
4625321 Pechar et al. Nov 1986 A
4667286 Young et al. May 1987 A
4777635 Glover Oct 1988 A
4805046 Kuroki et al. Feb 1989 A
4807116 Katzman et al. Feb 1989 A
4807253 Hagenauer et al. Feb 1989 A
4809091 Miyazawa et al. Feb 1989 A
4811282 Masina Mar 1989 A
4812769 Agoston Mar 1989 A
4860333 Bitzinger et al. Aug 1989 A
4866606 Kopetz Sep 1989 A
4881232 Sako et al. Nov 1989 A
4920535 Watanabe et al. Apr 1990 A
4949342 Shimbo et al. Aug 1990 A
4970418 Masterson Nov 1990 A
4972417 Sako et al. Nov 1990 A
4975915 Sako et al. Dec 1990 A
4989190 Kuroe et al. Jan 1991 A
5014186 Chisholm May 1991 A
5023612 Liu Jun 1991 A
5027357 Yu et al. Jun 1991 A
5050013 Holsinger Sep 1991 A
5051998 Murai et al. Sep 1991 A
5068755 Hamilton et al. Nov 1991 A
5068857 Yoshida Nov 1991 A
5072420 Conley et al. Dec 1991 A
5088093 Storch et al. Feb 1992 A
5109500 Iseki et al. Apr 1992 A
5117442 Hall May 1992 A
5127098 Rosenthal et al. Jun 1992 A
5133062 Joshi et al. Jul 1992 A
5136592 Weng Aug 1992 A
5146585 Smith, III Sep 1992 A
5157669 Yu et al. Oct 1992 A
5162954 Miller et al. Nov 1992 A
5193197 Thacker Mar 1993 A
5204859 Paesler et al. Apr 1993 A
5218564 Haines et al. Jun 1993 A
5220569 Hartness Jun 1993 A
5237593 Fisher et al. Aug 1993 A
5243471 Shinn Sep 1993 A
5249271 Hopkinson et al. Sep 1993 A
5257143 Zangenehpour Oct 1993 A
5261081 White et al. Nov 1993 A
5271018 Chan Dec 1993 A
5274509 Buch Dec 1993 A
5276564 Hessing et al. Jan 1994 A
5276662 Shaver, Jr. et al. Jan 1994 A
5276807 Kodama et al. Jan 1994 A
5280488 Glover et al. Jan 1994 A
5285327 Hetzler Feb 1994 A
5285451 Henson et al. Feb 1994 A
5301333 Lee Apr 1994 A
5307216 Cook et al. Apr 1994 A
5315708 Eidler et al. May 1994 A
5339443 Lockwood Aug 1994 A
5361266 Kodama et al. Nov 1994 A
5361267 Godiwala et al. Nov 1994 A
5408644 Schneider et al. Apr 1995 A
5420984 Good et al. May 1995 A
5428627 Gupta Jun 1995 A
5440751 Santeler et al. Aug 1995 A
5465343 Henson et al. Nov 1995 A
5487170 Bass et al. Jan 1996 A
5488688 Gonzales et al. Jan 1996 A
5491701 Zook Feb 1996 A
5500848 Best et al. Mar 1996 A
5506989 Boldt et al. Apr 1996 A
5507005 Kojima et al. Apr 1996 A
5519837 Tran May 1996 A
5523903 Hetzler et al. Jun 1996 A
5544180 Gupta Aug 1996 A
5544346 Amini Aug 1996 A
5546545 Rich Aug 1996 A
5546548 Chen et al. Aug 1996 A
5563896 Nakaguchi Oct 1996 A
5572148 Lytle et al. Nov 1996 A
5574867 Khaira Nov 1996 A
5581715 Verinsky et al. Dec 1996 A
5583999 Sato et al. Dec 1996 A
5592404 Zook Jan 1997 A
5600662 Zook et al. Feb 1997 A
5602857 Zook et al. Feb 1997 A
5615190 Best et al. Mar 1997 A
5623672 Popat Apr 1997 A
5626949 Blauer et al. May 1997 A
5627695 Prins et al. May 1997 A
5640602 Takase Jun 1997 A
5649230 Lentz Jul 1997 A
5664121 Cerauskis Sep 1997 A
5689656 Baden et al. Nov 1997 A
5691994 Acosta et al. Nov 1997 A
5692135 Alvarez, II et al. Nov 1997 A
5692165 Jeddeloh et al. Nov 1997 A
5719516 Sharpe-Geisler Feb 1998 A
5729718 Au Mar 1998 A
5740466 Geldman et al. Apr 1998 A
5745793 Atsatt et al. Apr 1998 A
5754759 Clarke et al. May 1998 A
5758188 Appelbaum et al. May 1998 A
5784569 Miller et al. Jul 1998 A
5794073 Ramakrishnan et al. Aug 1998 A
5801998 Choi Sep 1998 A
5815501 Gaddis et al. Sep 1998 A
5818886 Castle Oct 1998 A
5822142 Hicken Oct 1998 A
5831922 Choi Nov 1998 A
5835930 Dobbek Nov 1998 A
5841722 Willenz Nov 1998 A
5844844 Bauer et al. Dec 1998 A
5850422 Chen Dec 1998 A
5854918 Baxter Dec 1998 A
5890207 Sne et al. Mar 1999 A
5890210 Ishii et al. Mar 1999 A
5907717 Ellis May 1999 A
5912906 Wu et al. Jun 1999 A
5925135 Trieu et al. Jul 1999 A
5937435 Dobbek et al. Aug 1999 A
5950223 Chiang et al. Sep 1999 A
5968180 Baco Oct 1999 A
5983293 Murakami Nov 1999 A
5991911 Zook Nov 1999 A
6029226 Ellis et al. Feb 2000 A
6029250 Keeth Feb 2000 A
6041417 Hammond et al. Mar 2000 A
6065053 Nouri et al. May 2000 A
6067206 Hull et al. May 2000 A
6070200 Gates et al. May 2000 A
6078447 Sim Jun 2000 A
6081849 Born et al. Jun 2000 A
6092231 Sze Jul 2000 A
6094320 Ahn Jul 2000 A
6124994 Malone, Sr. Sep 2000 A
6134063 Weston-Lewis et al. Oct 2000 A
6157984 Fisher Dec 2000 A
6178486 Gill et al. Jan 2001 B1
6191712 Still Feb 2001 B1
6192499 Yang Feb 2001 B1
6198876 Iwasaki et al. Mar 2001 B1
6201655 Watanabe et al. Mar 2001 B1
6223303 Billings et al. Apr 2001 B1
6279089 Schibilla et al. Aug 2001 B1
6297926 Ahn Oct 2001 B1
6330626 Dennin et al. Dec 2001 B1
6381659 Proch et al. Apr 2002 B2
6401149 Dennin et al. Jun 2002 B1
6434635 Case et al. Aug 2002 B1
6438604 Kuver et al. Aug 2002 B1
6460097 Harumoto et al. Oct 2002 B1
6466581 Yee et al. Oct 2002 B1
6470461 Pinvidic et al. Oct 2002 B1
6487631 Dickinson et al. Nov 2002 B2
6490635 Holmes Dec 2002 B1
6530000 Krantz et al. Mar 2003 B1
6574676 Megiddo Jun 2003 B1
6662334 Stenfort Dec 2003 B1
6708258 Potter et al. Mar 2004 B1
6826650 Krantz et al. Nov 2004 B1
20020095537 Slater Jul 2002 A1
20020138692 Gerhart Sep 2002 A1
20020146061 Rambaud Oct 2002 A1
Foreign Referenced Citations (8)
Number Date Country
0528273 Feb 1993 EP
0622726 Nov 1994 EP
0718827 Jun 1996 EP
2285166 Jun 1995 GB
63-292462 Nov 1988 JP
01-315071 Dec 1989 JP
03183067 Aug 1991 JP
9814861 Apr 1998 WO
Non-Patent Literature Citations (7)
Entry
PCT International Search Report, Doc. No. PCT/US00/15084, Dated Nov. 15, 2000, 2 pages.
Blathut R. Digital Transmission of Information (Dec. 4, 1990), pp. 429-430.
Hwang, Kai and Briggs, Faye A., “Computer Architecture and Parallel Processing” pp. 156-164.
Zeidman, Bob, “Interleaving DRAMS for faster access”, System Design ASIC & EDA, pp. 24-34 (Nov. 1993).
P.M. Bland et al. Shared Storage Bus Circuitry, IBM Technical Disclosure Bulletin, vol. 25, No. 4, Sep. 1982, pp. 2223-2224.
PCT Search Report for PCT/US00/07780 mailed Aug. 2, 2000, 4 pages.
PCT Search Report for PCT/US01/22404, mailed Jan. 29, 2003, 4 pages.
Related Publications (1)
Number Date Country
20060129715 A1 Jun 2006 US
Provisional Applications (1)
Number Date Country
60444339 Jan 2003 US
Continuations (1)
Number Date Country
Parent 10619954 Jul 2003 US
Child 11232437 US