System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems

Information

  • Patent Grant
  • 9014066
  • Patent Number
    9,014,066
  • Date Filed
    Monday, May 19, 2014
    10 years ago
  • Date Issued
    Tuesday, April 21, 2015
    9 years ago
Abstract
A method and system for applying a calibration procedure to match the peaks and nulls of the transmit and receive antenna patterns of a communication device are provided herein. The system may include: a plurality of antennas having tunable phases and configured for both transmitting and receiving; a plurality of radio circuits configured to transmit and receive via said antennas in a time division duplex (TDD) communication protocol; and a computer processor configured to calculate a weight setting difference between the transmit and the receive antenna pattern, wherein the antenna pattern is a peak-null pattern of the plurality of antennas operating together. The calibration value may enable the calibrated communication device to apply channel reciprocity to the beam-forming and/or nulling applications.
Description
FIELD OF THE INVENTION

The present invention relates generally to wireless communication systems, and more specifically, to such systems configured to calibrate transmit and receive antenna patterns thereof.


BACKGROUND OF THE INVENTION

Prior to setting forth a short discussion of the related art, it may be helpful to set forth definitions of certain terms that will be used hereinafter.


The term “time division duplex” (TDD) as used herein, is defined for the wireless communication systems is referred to in general for systems using the same frequency spectrum for methods of communications in a time division manner (for example, Wi-Fi, and TDD-long term evolution (LTE) systems).


The term multiple input multiple outputs (MIMO) communication system as defined herein is a communication system that may be used to improve the spectral efficiency, for example, by applying multiple inputs multiple outputs (MIMO) schemes, beam-forming, or nulling (interference mitigation/management). These operations usually require transmitter to have the knowledge of channel state information (CSI) so that a set of pre-coding weights may be set to the multiple data streams to exploit the channels for the multiple spatial channel transmission or to the same data stream to perform the beam-forming or nulling.


Typically, the receiver can feed the CSI or even the preferred pre-coding matrix (index) back to the transmitter. These feedbacks can consume some available bandwidth of the transmission in the opposite direction and reduce the data throughput. If transmission in both directions operate in the same spectrum, like TDD systems, the channels through the air are reversible and the channel information can be estimated by the receive device and then applied to the device's transmission. However, a complete transmission channel should be from the transmitter baseband to the receiver baseband, which includes various components inside the transmitter (e.g., digital to analog converter (DAC), up converter, power amplifier, filter) and receiver such as duplexer, linear amplifier (LNA), down converter, filter, analog to digital converter (ADC). The transmit path and receive path may thus experience very different gain/loss and delays behavior, due to the different components used in both paths. Applying channel reciprocity without considering the different delay and gain/loss factors between the transmit/receive paths are therefore not valid and may not be accurate enough for the use by devices in TDD systems. These parameters may be factory calibrated. However, this calibration may be tedious and costly. In addition, one important element that jeopardizes reciprocity is antennas, which project slightly different radiation patterns at up and down links, due to differences in the Voltage Standing Wave Ratio (VSWR) in both directions. Antenna VSWR may not be practically calibrated in the factory, due to the cost and time of such procedures.


Methods other than factory-calibration known in the art are capable of self-calibrating on transmit and receive paths of the device used in TDD systems. However, these methods may need an extra receive path with attenuator to calibrate transmit/receive (Tx/Rx) paths precisely on various power levels. This may limit the use of the known methods for the devices that are not equipped with the extra receive path.


SUMMARY OF THE INVENTION

According to embodiments of the invention, a calibration method is provided to improve TDD system performance for effectively overcoming the aforementioned difficulties inherent in the art.


Embodiments of the present invention provide calibration of transmit and receive antenna patterns (beam peaks and nulls) for the devices in TDD systems, in which the channel reciprocity may be utilized so that the feedback of channel state information can be reduced or eliminated for beam-forming, nulling (interference mitigation) operations.


Some of the TDD operations, for example, beam-forming and nulling (interference mitigation/management) of a communication device may not need the complete calibration information of the device's Tx and Rx paths for using channel reciprocity. Instead, matching Tx and Rx antenna pattern (peak and null), e.g., finding the weighting offset between the two antenna patterns, may be sufficient for the TDD device to take advantage of the channel reciprocity on certain applications. Embodiments of the invention provide a method for calibrating a device's transmit and receive antenna patterns (e.g., obtaining the weighting offset for the two antenna patterns) is disclosed herein for a TDD device (for example, Wi-Fi) to enable the use of the channel reciprocity.


According to an embodiment of the invention, communication devices are provided in a TDD system. The communication devices may include mobile devices such as user equipment (UE). A UE may include any end user device with wireless connectivity such as a smart telephone, a laptop or a tablet personal computer (PC). The communication device may include a plurality of M antennas for beam-forming or nulling operations. Each antenna may be used for both transmission and receiving.


According to one embodiment of this invention, the communication device may perform a calibration processes to find the weight (for example, the relative phase setting) difference for matching transmit and receive antenna patterns (peaks and nulls) so that the channel reciprocity may be applied in the TDD system.


According to one embodiment of the invention, the said calibration process may include measuring transmit and receive antenna patterns of the device; or finding out the weights (for example, the relative phase setting between two antennas) of the antenna pattern nulls or peaks.


According to one embodiment of the invention, the said antenna pattern measurements may be carried out with the direct radio frequency (RF) signal measurement or through system performance evaluation (for example, MCS—modulation coding set).


According to one embodiment of this invention, the said antenna pattern measurements (or calibration procedure) may be performed at the location that has line-of-sight view to the Wi-Fi access point (AP) (or base station) and is close to the AP to minimize the interference and to mitigate the fading situation.


According to one embodiment of the invention, the line-of-sight view may be confirmed if the difference of received signal strength indicator (RSSI) from the receive antennas are within a pre-set threshold (for example, 3 dB), and if the fluctuation (due to fading) of received signal strength indicator (RSSI) from each of the receive antennas are within a pre-set threshold (for example, 3 dB).


According to one embodiment of the invention, the closeness of the calibrated device to an AP (or base station) may be confirmed if the received signal powers from each of the receive antennas are within a pre-set range (for example, −25 to −50 dBm in WiFi device calibration).


According to one embodiment of the invention, the receive antenna pattern may be obtained through for example a coherent combining process (for example, the maximum ratio combining) on the received signals from receive antennas, while varying the combining weight of the signals over a pre-set range (for example, varying the relative phase over a range of 0 to 360 degrees).


According to another embodiment, the weight setting for the null or peak of receive antenna pattern may be obtained by performing the channel estimation on the signal from each receive antenna.


A direct RF measurement for the transmit antenna pattern (transmit power vs. the relative phase between the transmit antennas) may not be feasible. According to one embodiment of the invention, the transmit antenna pattern may be represented by system performance parameter, for example, the measured data rate or feedback data rate or feedback channel information, instead of transmit RF power, versus the relative phase between the two antenna signals.


According to one embodiment of the invention, the communication device may transmit the same signal (same data from a large file) with equally amplitude (power) through the transmit antennas while changing the relative phase between the two signals (or antennas), and collects the system performance information (for example, MCS—modulation coding set) to represent the transmit antenna pattern.


According to one embodiment of the invention, for the said transmit antenna pattern measurement, the data rate (for example, MCS—Modulation and Coding Set fed back from base station, or the transmit data rate count when the fixed data rate transmission and re-transmission scheme is used) may be collected to represent the transmit antenna pattern.


The system parameters (for example, data rate) for a transmit null may not be reliably obtainable, due to the low signal-to-noise ratio at null. According to one embodiment of this invention, the weight setting for the null may be extrapolated from the parameter slopes (for example, data rate changes) on the relatively reliable data on both sides of the null.


According to another embodiment, the weight setting for the null of an antenna pattern may be confirmed with the weight setting for the peak, which should occur at 180 degrees away from the null setting.


According to another embodiment of the invention, the antenna pattern calibration may be applied to the antenna pattern formed by any number of antennas.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be more fully understood by reference to the following detailed description when read with the accompanying drawings in which:



FIG. 1A shows that a station may have the unmatched Transmit and receive antenna patterns when assigning the same weight (relative phase) for transmit antennas and receive antennas, according some embodiments of the present invention;



FIG. 1B shows that the station may have the matched transmit and receive antenna patterns with a different weight (relative phase) setting according to some embodiments of the present invention;



FIG. 2 shows a high level flowchart illustrating a method according to some embodiments of the present invention;



FIG. 3 depicts the procedures for measuring receive antenna patterns according to some embodiments of the present invention;



FIG. 4 depicts the procedures for weight setting measurements for the receive antenna peak and null using a channel estimation method according to some embodiments of the present invention;



FIG. 5 depicts the procedures for weight setting measurements for the transmit antenna peak and null according to some embodiments of the present invention;



FIG. 6 depicts the procedure of measuring the weight setting and the transmit data rate for the system with dynamically pre-scheduled transmission according to some embodiments of the present invention;



FIG. 7 depicts the procedure of measuring the weight setting and the transmit data rate for the system with non-scheduled transmission according to some embodiments of the present invention;



FIG. 8 illustrates the exemplary measured data from which the phase setting for the transmit null may be extrapolated according to some embodiments of the present invention;



FIG. 9 depicts the procedure for calculating the phase settings for the transmit null and peak using the reliably measured data rates (versus relative phases) according to some embodiments of the present invention; and



FIG. 10 shows the exemplary collected data from which the calibration results may be obtained by comparing the phase settings of receive null and transmit null (e.g., ΦRN and ΦTN) according to some embodiments of the present invention.





It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.


DETAILED DESCRIPTION OF THE INVENTION

In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well known features may be omitted or simplified in order not to obscure the present invention.


Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer processor or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.


In accordance with the present invention and as used herein, the following terms are defined with the following meanings, unless explicitly stated otherwise.


As defined above, in TDD a single channel (e.g., the same or overlapping frequency spectrum) is used for both downlink and uplink transmissions. For example, both stations and their served access point in WiFi systems use the same frequency channel alternatively in time to communicate each other. Alternatively TDD cellular communication, e.g., between a mobile device and a base station, may periodically alternate between uplink transmissions (e.g. from the mobile device to a base station for a predetermined uplink interval or period, such as, 5 milliseconds (ms)) and downlink transmissions (e.g. from a base station to a mobile device or UE for a predetermined downlink period, such as, 5 ms). The base station typically coordinates the alternating timing between uplink (UL) and downlink (DL) transmissions.


Embodiments of the present invention propose the calibration procedures to derive the correction factors (weight difference) on matching transmit and receive antenna patterns of a TDD device. This correction factor information may enable the device perform the beam-forming and/or nulling application for improving the spectral efficiency in TDD (e.g., Wi-Fi) systems.



FIG. 1A is a block diagram showing a system according to some embodiments of the present invention. The example system is a Wi-Fi (e.g., TDD) system with unmatched transmit and receive antenna patterns. Station 110 may include for example a computer processor 124 (for example a baseband processor), M antennas 120-1 . . . , 120-M, and M radio circuits 122-1 . . . , 122-M. Radios circuits 122-1 . . . , 122-M may include various radio frequency (RF) circuitries such as gain amplifiers, phase shifters and switches. Each of antennas 120-1 . . . , 120-M may be used for both transmit and receive so that M radios circuits 122-1 . . . , 122-M transmit and receive on a common channel (e.g. same frequency band); Access Point (AP) 140 may also have multiple (N) antennas. In transmit antenna pattern 130-1, T indicates the relative transmit gain with the relative phase of transmit antennas set at Φ0. In receive antenna pattern 130-2, R indicates the relative receive gain with the same relative phase (Φ0) set for the receive antennas. The transmit antenna pattern and the receive antenna pattern are not matched; with the same relative phase setting (Φ0), the transmit gain (T) is on the peak of the antenna patterns while the receive gain (R) is not.



FIG. 1B is a block diagram illustrating the same system in FIG. 1A but with different relative phase settings for transmit antennas and receive antennas (Φ0 and Φ1, respectively), according some embodiments of the present invention. Station 110 may include a computer processor 124 (e.g., baseband processor), M antennas 120-1 . . . , 120-M, and M radios circuits 122-1 . . . , 122-M, each antenna may be used for both transmit and receive.


Computer processor 124 (e.g. a baseband processor) may be configured to carry out embodiments of the present invention e.g., by including dedicated circuitry and/or executing software or code. In operation, computer processor 124 may be configured to calculate a weight setting difference between transmit and receive antenna pattern, wherein the antenna pattern is a peak-null pattern of the plurality of antennas operating together.


Specifically, the receive antenna pattern 130-2B, may then be matched to the transmit antenna pattern 130-1B, with these relative phase settings; both transmit and receive gains (T and R) are on the peaks of transmit and receive antenna patterns. The calibration is to find the difference between the relative phase settings (Φ0 and Φ1) so that the TDD device may perform beam-forming and nulling without the feedback from AP (or base station) and thus improve the spectral efficiency of the TDD system. Embodiments of the invention include the calibration procedures.


According to some embodiments of the present invention, the weight setting difference for each of the antennas may be calculated by computer processor 124 for matching transmit and the receive antenna pattern.


According to some embodiments of the present invention, the calculation by computer processor 124 may be based on null measurements in the transmit antenna pattern.


According to some embodiments of the present invention, the calculating of the antenna pattern by computer processor 124 may be carried out by direct radio (RF) signal measurements.


According to some embodiments of the present invention, the calculating of the antenna pattern by computer processor 124 may be carried out based on baseband parameters associated with performance of the system.


According to some embodiments of the present invention, the phase calculation may be carried out by computer processor 124 at a location being at a line of sight (LOS) from another communication device in TDD communication system. The LOS location may be confirmed based on received signal strength indicator (RSSI) within a pre-set range.


According to some embodiments of the present invention, the calculating of the antenna pattern by computer processor 124 may be carried out by coherently combining the received signals from receive antennas, while varying the combining weight of the signals over a range of, for example, 0 to 360 degrees.


According to some embodiments of the present invention, computer processor 124 may be further configured to average the combined signal power for a phase setting until a stable averaged value is reached for the receive antenna pattern measurement. A stable averaged value may be defined as a fluctuation of the average values does not exceed a pre-set threshold.


According to some embodiments of the present invention, the computer processor 124 may be further configured to pre-set a threshold of the discrepancy of the received signal strength, to determine if the received signals are to be included in the average.


According to some embodiment of the present invention, the computer processor 124 deduces the antenna pattern by applying channel estimation on the received signal from each antenna.


According to some embodiment of the present invention the computer processor 124 deduces the receive null by adding 180 degree to the phase setting of the receive peak.


According to some embodiment of the present invention the computer processor 124 may be configured to transmit the same signal with equal amplitude through the transmit antennas while varying the relative phase between the two signals, and collects the data rate information for the said transmit antenna pattern measurement.


According to some embodiments of the present invention the computer processor 124 may be configured to count the transmission data rates for performing the said transmit antenna pattern measurement if the calibrated transmit data rate is not scheduled by the receiver.


According to some embodiments of the present invention the computer processor 124 may be configured to utilize feedback information to determine data rates for performing the said transmit antenna pattern measurement if the calibrated device' transmit data rate is dynamically scheduled by the receiver.


According to some embodiments of the present invention the computer processor 124 may be configured to extrapolate from the two reliable measured transmit data rates and their corresponding phase settings.


According to some embodiments of the present invention the computer processor 124 may be configured to calculate the offset of phase settings for transmit and receive antenna patterns by comparing the phase settings of the transmit and receive nulls.


Embodiments of the calibration procedures are configured to obtain the difference of weight (relative phase) settings between the transmit null (peak) and the receive null (peak).



FIG. 2 shows a high level flowchart illustrating a method 200 according to some embodiments of the present invention. Method 200 may include the following steps: transmitting and receiving signals via a plurality of antennas having tunable phases 210; applying a time division duplex (TDD) communication protocol to said transmitting and receiving 220; and calculating a weight setting difference between a transmit and a receive antenna pattern, wherein the antenna pattern is a peak-null pattern of the plurality of antennas operating together 230.



FIG. 3 is a flowchart 300 illustrating procedures for measuring receive antenna patterns according some embodiments of the present invention. Step 310 shows that the calibration (e.g., receive and transmit antenna pattern measurements) may be performed at the location where the device is, which preferably has a Line-Of-Sight (LOS) view to the AP (or base station) and close to the AP to minimize the impact of the multiple paths, interference, and fading. The line-of-sight view may be defined quantitatively. For example, LOS may be confirmed if the difference of received signal strength indicator (RSSI) from the receive antennas are within a pre-set threshold (for example, 3 dB) and if the fluctuation (due to fading) of received signal strength indicator (RSSI) from each of the receive antennas are within a pre-set threshold (for example, 3 dB). The closeness of the calibrated device to AP (or base station) may be defined quantitatively as well. For the example of the Wi-Fi device calibration, the closeness may be confirmed if the received signal powers from each of the receive antennas are within a pre-set range (for example, −25 to −50 dBm).


For receive antenna pattern measurement, Step 320 shows that the device may monitor the constant signal broadcasted from AP (or base station), for example, the Service Set Identifier (SSID) from Wi-Fi AP or system broadcast message (including pilot) from base station. An initial relative phase ΦRi may be set in Step 320 as well. Step 330 shows that the device under calibration may measure the received signals from each receive antenna and coherently combine them with the weight (relative phase) setting. For example, the combined signal power C(ΦR)=a2+b2+2*a*b*cos(ΦR), where a and b are the received signal strength (amplitude) from each of the two antenna and ΦR is the relative phase setting (may be ΦRi for the initial measurement). Step 340 shows that the combined signal powers may then be averaged over many repeated measurements until the average value becomes stable (for example, the average values fluctuates within a pre-set value say, 1 dB or 20%). The collected signal strength may be discarded and not be input into the averaging if the discrepancy of signal strengths (a and b) exceed a pre-set threshold (for example 1 dB). Step 350 indicates that the received signal measurement and the signal combining using the same relative phase will be repeated if the averaged value is not relative stable. Once the stable averaged combined power becomes stable, 360 shows that the averaged combined power and the corresponding relative phase setting may be stored and a new relative phase may be set by adding the phase resolution (say, 10 degrees) to the current relative phase setting. Step 370 shows that the receive antenna patterns measurement is complete and may be stopped once the measurements have through the full range (360 degrees) of the relative phase settings. Otherwise, continue the measurement with the new phase setting.


In embodiments of the present invention, the calibration is to find the weight (relative phase) between transmit and receive antenna patterns. On certain antenna spacing (for example, distance of the antennas is less than half of the wavelength), the antenna patterns may have a single null (or peak). The antenna pattern offset may be obtained by comparing the relative phase settings of transmit null (or peak) and receive null (or peak). The calibration may then only measure the phase setting for the null (or peak), instead of the measurement for the whole antenna pattern. FIG. 4 is a flowchart 400 illustrating that the calibrated device may perform channel estimation to obtain the relative phase setting for the receive null and peak according some embodiments of the present invention. Step 410 selects the calibration site that has a LOS view and close to AP (same location and orientation for the transmit antenna pattern measurement). The calibration device monitors the constant broadcast message that has a pilot (or reference signal), shown in Step 420. Step 430 shows that the calibrated device may perform channel estimation on the pilot or reference signal. Step 440 indicates that the relative phase Φ between the two (receive antennas) channels may be found and stored. The phase settings for the receive peak, ΦRP, and null, ΦRN, may then be found as:

ΦRP=−Φ  (1)
ΦRNRP+180(degrees)  (2)


Step 460 shows that the phase settings may be separately averaged over several channel estimations. Step 470 indicates that the receive null (peak) measurement is complete and may be stopped once the averaged values become stable. Stability can be achieved when, for example, the fluctuation of the averaged values is less than a pre-set value (e.g., 20%).


A direct RF signal measurement may not be feasible for the transmit antenna pattern. Instead, the system performance, for example, data rate evaluation, may be used for representing the transmit antenna pattern. A transmit antenna pattern may be presented by collected data rates versus the relative phase settings of the transmit antennas. For the transmit antenna measurement, the calibrated device may transmit the equal and constant amplitude signal through the transmit antennas and collect the data rate information for various relative phase settings (between the transmit antennas).



FIG. 5 is a flowchart 500 depicting the procedure to measure the transmit antenna pattern according some embodiments of the present invention. Step 510 indicates that transmit antenna measurement should be done at the same site and the same orientation for receive antenna pattern measurement. Step 520 shows that the calibrated device may perform User Datagram Protocol (UDP) to upload random data until transmit antenna measurement is completed. The data rate count may be based on the feedback data rate information or counted by the calibrated device itself, depending on the system data transmission scheme. Step 530 shows that if the transmit data rate is dynamically scheduled (based on the channel quality) by the receiver (e.g., base station), for example, in TDD-LTE system, the feedback data rate (MCS—Modulation/Coding Set) may then be used for representing the antenna pattern, shown on step 540.


An embodiment of a procedure for the data rate collection based on feedback is shown in FIG. 6 in flowchart 600 according some embodiments of the present invention. As opposed to LTE, for example, in a Wi-Fi system, the transmit data rate is not scheduled by the receiver station, the calibrated device may then count the transmit data rate itself 550.



FIG. 7 is a flowchart 700 showing an embodiment of a procedure for self-counting on the transmit data rate. The data rate count may be limited by the system setup and/or the receiver capability. For example, the received signal (and SNR) may be too low to support any transmit data rate, due to that the transmission is on or around the transmit null. On the other hand, the received signal (and SNR) may far exceed the required SNR to support highest transmit data rate of the system setup when the transmission is on or around the transmission peak. 560 calculate the phase settings for transmit null and peak. The detailed calculation and procedure are described in FIGS. 8 and 9.


For one embodiment of the system with dynamically scheduled transmit data rate by receiver, the feedback data rate information may be collected for representing the transmit antenna pattern. Flowchart 600 of FIG. 6 depicts the procedure to collect the transmit data rate according to one embodiment. Step 610 shows that the calibrated device set a relative phase ΦTi and equal amplitude for the two transmit signals/antennas for the UDP transmission. Step 620 indicates that the calibrated device monitor (and use) the feedback MCS until it becomes stable, For example, the feedback MCS is not changed for consecutive pre-set number (say, 10) of feedbacks. The relative phase setting and the feedback data rate (MCS) may then be stored, shown on 630. Step 640 shows that a new phase setting by adding the pre-set phase resolution (say 10 degree) may be set for continuous UDP transmission. Step 650 shows that if data rate collection has through the whole range of the phase settings (360 degrees), the calibrated device may stop the data rate collection and proceed to calculate the phase setting for transmit null and peak shown on 660. Otherwise, it continues the data rate collection with the new phase setting.


For one embodiment of the system with non-scheduled transmit data rate by receiver, the calibrated device may count its transmit data rate for representing the transmit antenna pattern. Flowchart 700 of FIG. 7 depicts the procedure to self-count the transmit data rate according to one embodiment. Step 710 shows that the calibrated device set a relative phase ΦTi and equal amplitude for the two transmit signals/antennas for the UDP transmission. In the example of WiFi system, the transmission may be with irregular data size and on the irregular time period, and may be even unsuccessful. Step 720 indicates that the calibrated device may sum the transmitted data for each successful transmission and calculate the data rate with the sum of the transmission periods until the aggregate data rate becomes stable. The relative phase setting and the stable aggregate data rate may then be stored, shown on 730. Step 740 shows that a new phase setting by adding the pre-set phase resolution (say 10 degree) may be set. Step 750 shows that if data rate collection has through the whole range of the phase settings (360 degrees), the calibrated device may stop the data rate collection and proceed to calculate the phase setting for transmit null and peak shown on 760. Otherwise, it continues the data rate collection with the new phase setting.



FIG. 8 is a graph diagram 800 showing the example of the collected data rate and relative phase settings for obtaining the phase setting of the transmit null and peak according some embodiments of the present invention. In the example, R1 and R2 are the measured data rates in the midrange of the all measured data rates selected for calculate the phase setting for the transmit null. The reasons for selecting the data rates in the midrange are that the data rate measured around the transmit null may be too noisy (and unreliable) and the data rate measured around the transmit peak may be under-stated due to the system limitation and hence not accurate. Each measured data rate may have two phase settings; phase settings of Φ1 and Φ4 result in the measured data rate R1 and Φ2 and Φ3 for R2, shown in 800. These phase settings (Φ1, Φ2, Φ3, and Φ4) and the selected data rate (R1 and R2) may form two straight lines S1 (810) and S2 (820). S1 and S2 may then be presented as

S1: R=[(R1−R2)/(Φ1−Φ2)]*+(R21−R12)/(Φ1−Φ2)  (3)
S2: R=[(R1−R2)/(Φ4−Φ3)]*+(R24−R13)/(Φ4−Φ3)  (4)

The phase setting of transmit null, ΦTN, is the phase setting corresponding to the intersect point (830) of the two lines. Using Equation 3 and 4, the phase setting of transmit null may be obtained,

ΦTN=(Φ13−Φ24)/(Φ1−Φ23,−Φ4)  (5)
840 shows the phase setting for the transmit peak, which is 180 degree away from the transmit null.



FIG. 9 is a flowchart 900 depicting the procedure of the invented method to calculate the phase settings of the transmit null and peak according to some embodiments of the present invention. Step 910 shows that two data rates R1 and R2 in the midrange of all the measured data rates may be selected to calculate the phase setting of transmit null. Step 920 is the procedure to find the phase settings for the two selected data rate (Φ1, Φ4, Φ2, and Φ3). Step 930 shows that the phase setting of transmit null, ΦTN, may be calculated according Equation 5. In step 940 the phase setting for the transmit peak ΦTP may be calculated,

ΦTP=(ΦTN+180)degrees  (6)


The phase offset of transmit and receive antenna pattern may be obtained by comparing the phase settings for transmit and receive nulls, ΦTN and ΦRN.



FIG. 10 shows a graph 1000 exhibiting exemplary collected data for transmit and receive antenna patterns formed by two antennas according to some embodiments of the present invention. In this exemplary figure, A10 and A20 indicate receive and the transmit antenna patterns. From the phase settings of receive null (A30) and transmit null (A40), the calibration procedure according to embodiments of the present invention finds 30 degree phase shift between these two antenna patterns (A10 and A20).


As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or an apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” For example, a baseband processor or other computer processor may be configured to carry out methods of the present invention by for example executing code or software.


The aforementioned flowcharts and block diagrams illustrate the architecture, functionality, and operation of possible implementations of systems and methods according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment,” “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.


Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.


Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions. It will further be recognized that the aspects of the invention described hereinabove may be combined or otherwise coexist in embodiments of the invention.


The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples.


It is to be understood that the details set forth herein do not construe a limitation to an application of the invention.


Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.


It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.


If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.


It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.


Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.


The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.


Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.


The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein. While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.

Claims
  • 1. A system comprising: a plurality of antennas having tunable phases and configured for both transmitting and receiving;a plurality of radio circuits configured to transmit and receive via said antennas in a time division duplex (TDD) communication protocol; anda computer processor configured to perform the following steps: cause the radio circuits to transmit and receive signals via said antennas in said TDD communication protocol using a plurality of weight settings;collect data rate information pertaining to transmission using said weight settings;identify a transmit weight setting associated with a transmit null pattern based on a minimum data rate;identify a receive weight setting associated with a receive null pattern;calculate a difference between the transmit weight setting associated with the transmit null pattern and the receive weight setting associated with the receive null pattern; anduse said calculated difference to match transmission and reception on said antenna patterns.
  • 2. The system according to claim 1, wherein the radio circuits are further configured to transmit and receive on a common channel.
  • 3. The system according to claim 1, wherein the calculation is based on null measurements in the transmit antenna pattern.
  • 4. The system according to claim 1, wherein the calculating of the antenna pattern is carried out by direct radio (RF) signal measurements.
  • 5. The system according to claim 1, wherein the calculating of the antenna pattern is carried out based on baseband parameters associated with performance of the system.
  • 6. The system according to claim 1, wherein the phase calculation is carried out at a location being at a line of sight from another communication device in TDD communication system.
  • 7. The system according to claim 6, wherein the line of sight location is confirmed based on received signal strength indicator (RSSI) within a pre-set range.
  • 8. The system according to claim 1, wherein the calculating of the antenna pattern is carried out by coherently combining the received signals from receive antennas, while varying the combining weight of the signals over a range of 0 to 360 degrees.
  • 9. The system according to claim 1, wherein the computer processor is further configured to average the combined signal power for a phase setting until a stable averaged value is reached for the receive antenna pattern measurement.
  • 10. The system according to claim 9, wherein said stable averaged value is defined as a fluctuation of the average values does not exceed a pre-set threshold.
  • 11. The system according to claim 9, wherein the computer processor is further configured to pre-set a threshold of the discrepancy of the received signal strength, to determine if the received signals are to be included in the average.
  • 12. The system according to claim 1, wherein the computer processor deduces the antenna pattern by applying channel estimation on the received signal from each antenna.
  • 13. The system according to claim 1, wherein the computer processor deduces the receive null by adding 180 degree to the phase setting of the receive peak.
  • 14. The system according to claim 1, wherein the computer processor is configured to transmit the same signal with equal amplitude through the transmit antennas while varying the relative phase between the two signals, and collects the data rate information for the said transmit antenna pattern measurement.
  • 15. The system according to claim 1, wherein the computer processor is configured to count the transmission data rates for performing the said transmit antenna pattern measurement if the calibrated transmit data rate is not scheduled by the receiver.
  • 16. The system according to claim 1, wherein the computer processor is configured to utilize feedback information to determine data rates for performing the said transmit antenna pattern measurement if the calibrated device' transmit data rate is dynamically scheduled by the receiver.
  • 17. The system according to claim 1, wherein the computer processor is configured to extrapolate from the two reliable measured transmit data rates and their corresponding phase settings.
  • 18. The system according to claim 1, wherein the computer processor is configured to calculate the offset of phase settings for transmit and receive antenna patterns by comparing the phase settings of the said transmit and receive nulls.
  • 19. The system according to claim 1, wherein the computer processor is to identify the receive weight setting associated with a receive null pattern based on a parameter selected from the group consisting of: a received signal strength indicator (RSSI) or a channel estimation.
  • 20. A method comprising: transmitting and receiving signals via a plurality of antennas having tunable phases using a time division duplex (TDD) communication protocol using a plurality of weight settings;collecting data rate information pertaining to said weight settings;identifying a transmit weight setting associated with a transmit null pattern based on a minimum data rate;identifying a receive weight setting associated with a receive null pattern;calculating a difference between the transmit weight setting associated with the transmit null pattern and the receive weight setting associated with the receive null pattern; andusing said calculated difference to match transmission and reception on said antenna patterns.
  • 21. The method according to claim 20, wherein the calculating is based on null measurements in the transmit antenna pattern.
  • 22. The method according to claim 20, wherein the calculating of the antenna pattern is carried out by direct radio frequency (RF) signal measurements.
  • 23. The method according to claim 20, wherein the calculating of the antenna pattern is carried out based on baseband parameters associated with performance of the system.
  • 24. The method according to claim 20, wherein the phase calculation is carried out at a location being at a line of sight from another communication device in Time Division Duplex (TDD) communication system.
  • 25. The method according to claim 24, wherein the line of sight location is confirmed based on received signal strength indicator (RSSI) within a pre-set range.
  • 26. The method according to claim 20, wherein the calculating of the antenna pattern is carried out by coherently combining received signals from receive antennas, while varying a combining weight of the signals over a range of 0 to 360 degrees.
  • 27. The method according to claim 20, wherein identifying a receive weight setting associated with a receive null pattern comprises identifying a receive weight setting associated with the receive null pattern based on a parameter selected from the group consisting of: a received signal strength indicator (RSSI) or a channel estimation.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of prior U.S. Provisional Application Ser. No. 61/909,135 filed 26 Nov. 2013 and prior U.S. Provisional Application Ser. No. 61/946,273 filed 28 Feb. 2014, which are incorporated herein by reference in their entirety.

US Referenced Citations (306)
Number Name Date Kind
4044359 Applebaum et al. Aug 1977 A
4079318 Kinoshita Mar 1978 A
4359738 Lewis Nov 1982 A
4540985 Clancy et al. Sep 1985 A
4628320 Downie Dec 1986 A
5162805 Cantrell Nov 1992 A
5363104 Richmond Nov 1994 A
5444762 Frey et al. Aug 1995 A
5732075 Tangemann et al. Mar 1998 A
5915215 Williams et al. Jun 1999 A
5936577 Shoki et al. Aug 1999 A
5940033 Locher et al. Aug 1999 A
6018317 Dogan et al. Jan 2000 A
6026081 Hamabe Feb 2000 A
6046655 Cipolla Apr 2000 A
6101399 Raleigh et al. Aug 2000 A
6163695 Takemura Dec 2000 A
6167286 Ward et al. Dec 2000 A
6215812 Young et al. Apr 2001 B1
6226507 Ramesh et al. May 2001 B1
6230123 Mekuria et al. May 2001 B1
6259683 Sekine et al. Jul 2001 B1
6297772 Lewis Oct 2001 B1
6321077 Saitoh et al. Nov 2001 B1
6335953 Sanderford et al. Jan 2002 B1
6370378 Yahagi Apr 2002 B1
6377783 Lo et al. Apr 2002 B1
6393282 Iimori May 2002 B1
6584115 Suzuki Jun 2003 B1
6697622 Ishikawa et al. Feb 2004 B1
6697633 Dogan et al. Feb 2004 B1
6834073 Miller et al. Dec 2004 B1
6842460 Olkkonen et al. Jan 2005 B1
6914890 Tobita et al. Jul 2005 B1
6927646 Niemi Aug 2005 B2
6975582 Karabinis et al. Dec 2005 B1
6987958 Lo et al. Jan 2006 B1
7068628 Li et al. Jun 2006 B2
7177663 Axness et al. Feb 2007 B2
7190964 Damnjanovic et al. Mar 2007 B2
7257425 Wang et al. Aug 2007 B2
7299072 Ninomiya Nov 2007 B2
7391757 Haddad et al. Jun 2008 B2
7392015 Farlow et al. Jun 2008 B1
7474676 Tao et al. Jan 2009 B2
7499109 Kim et al. Mar 2009 B2
7512083 Li Mar 2009 B2
7606528 Mesecher Oct 2009 B2
7634015 Waxman Dec 2009 B2
7646744 Li Jan 2010 B2
7719993 Li et al. May 2010 B2
7742000 Mohamadi Jun 2010 B2
7769107 Sandhu et al. Aug 2010 B2
7898478 Niu et al. Mar 2011 B2
7904086 Kundu et al. Mar 2011 B2
7933255 Li Apr 2011 B2
7970366 Arita et al. Jun 2011 B2
8078109 Mulcay Dec 2011 B1
8103284 Mueckenheim et al. Jan 2012 B2
8115679 Falk Feb 2012 B2
8155613 Kent et al. Apr 2012 B2
8275377 Nanda et al. Sep 2012 B2
8280443 Tao et al. Oct 2012 B2
8294625 Kittinger et al. Oct 2012 B2
8306012 Lindoff et al. Nov 2012 B2
8315671 Kuwahara et al. Nov 2012 B2
8369436 Stirling-Gallacher Feb 2013 B2
8509190 Rofougaran Aug 2013 B2
8520657 Rofougaran Aug 2013 B2
8526886 Wu et al. Sep 2013 B2
8588844 Shpak Nov 2013 B2
8599955 Kludt et al. Dec 2013 B1
8599979 Farag et al. Dec 2013 B2
8611288 Zhang et al. Dec 2013 B1
8644413 Harel et al. Feb 2014 B2
8649458 Kludt et al. Feb 2014 B2
8666319 Kloper et al. Mar 2014 B2
8744511 Jones et al. Jun 2014 B2
8767862 Abreu et al. Jul 2014 B2
8780743 Sombrutzki et al. Jul 2014 B2
20010029326 Diab et al. Oct 2001 A1
20010038665 Baltersee et al. Nov 2001 A1
20020024975 Hendler Feb 2002 A1
20020051430 Kasami et al. May 2002 A1
20020065107 Harel et al. May 2002 A1
20020085643 Kitchener et al. Jul 2002 A1
20020107013 Fitzgerald Aug 2002 A1
20020115474 Yoshino et al. Aug 2002 A1
20020181426 Sherman Dec 2002 A1
20020181437 Ohkubo et al. Dec 2002 A1
20030087645 Kim et al. May 2003 A1
20030114162 Chheda et al. Jun 2003 A1
20030153322 Burke et al. Aug 2003 A1
20030153360 Burke et al. Aug 2003 A1
20030186653 Mohebbi et al. Oct 2003 A1
20030203717 Chuprun et al. Oct 2003 A1
20030203743 Sugar et al. Oct 2003 A1
20040023693 Okawa et al. Feb 2004 A1
20040056795 Ericson et al. Mar 2004 A1
20040063455 Eran et al. Apr 2004 A1
20040081144 Martin et al. Apr 2004 A1
20040121810 Goransson et al. Jun 2004 A1
20040125899 Li et al. Jul 2004 A1
20040125900 Liu et al. Jul 2004 A1
20040142696 Saunders et al. Jul 2004 A1
20040147266 Hwang et al. Jul 2004 A1
20040156399 Eran Aug 2004 A1
20040166902 Castellano et al. Aug 2004 A1
20040198292 Smith et al. Oct 2004 A1
20040228388 Salmenkaita Nov 2004 A1
20040235527 Reudink et al. Nov 2004 A1
20040264504 Jin Dec 2004 A1
20050068230 Munoz et al. Mar 2005 A1
20050068918 Mantravadi et al. Mar 2005 A1
20050075140 Famolari Apr 2005 A1
20050129155 Hoshino Jun 2005 A1
20050147023 Stephens et al. Jul 2005 A1
20050163097 Do et al. Jul 2005 A1
20050245224 Kurioka Nov 2005 A1
20050250544 Grant et al. Nov 2005 A1
20050254513 Cave et al. Nov 2005 A1
20050265436 Suh et al. Dec 2005 A1
20050286440 Strutt et al. Dec 2005 A1
20050287962 Mehta et al. Dec 2005 A1
20060041676 Sherman Feb 2006 A1
20060092889 Lyons et al. May 2006 A1
20060094372 Ahn et al. May 2006 A1
20060098605 Li May 2006 A1
20060111149 Chitrapu et al. May 2006 A1
20060135097 Wang et al. Jun 2006 A1
20060183503 Goldberg Aug 2006 A1
20060203850 Johnson et al. Sep 2006 A1
20060227854 McCloud et al. Oct 2006 A1
20060264184 Li et al. Nov 2006 A1
20060270343 Cha et al. Nov 2006 A1
20060271969 Takizawa et al. Nov 2006 A1
20060285507 Kinder et al. Dec 2006 A1
20070041398 Benveniste Feb 2007 A1
20070058581 Benveniste Mar 2007 A1
20070076675 Chen Apr 2007 A1
20070093261 Hou et al. Apr 2007 A1
20070097918 Cai et al. May 2007 A1
20070115882 Wentink May 2007 A1
20070115914 Ohkubo et al. May 2007 A1
20070152903 Lin et al. Jul 2007 A1
20070217352 Kwon Sep 2007 A1
20070223380 Gilbert et al. Sep 2007 A1
20070249386 Bennett Oct 2007 A1
20080043867 Blanz et al. Feb 2008 A1
20080051037 Molnar et al. Feb 2008 A1
20080081671 Wang et al. Apr 2008 A1
20080095163 Chen et al. Apr 2008 A1
20080108352 Montemurro et al. May 2008 A1
20080144737 Naguib Jun 2008 A1
20080165732 Kim et al. Jul 2008 A1
20080238808 Arita et al. Oct 2008 A1
20080240314 Gaal et al. Oct 2008 A1
20080267142 Mushkin et al. Oct 2008 A1
20080280571 Rofougaran et al. Nov 2008 A1
20080285637 Liu et al. Nov 2008 A1
20090003299 Cave et al. Jan 2009 A1
20090028225 Runyon et al. Jan 2009 A1
20090046638 Rappaport et al. Feb 2009 A1
20090058724 Xia et al. Mar 2009 A1
20090121935 Xia et al. May 2009 A1
20090137206 Sherman et al. May 2009 A1
20090154419 Yoshida et al. Jun 2009 A1
20090187661 Sherman Jul 2009 A1
20090190541 Abedi Jul 2009 A1
20090227255 Thakare Sep 2009 A1
20090239486 Sugar et al. Sep 2009 A1
20090268616 Hosomi Oct 2009 A1
20090285331 Sugar et al. Nov 2009 A1
20090322610 Hants et al. Dec 2009 A1
20090322613 Bala et al. Dec 2009 A1
20090323608 Adachi et al. Dec 2009 A1
20100002656 Ji et al. Jan 2010 A1
20100037111 Ziaja et al. Feb 2010 A1
20100040369 Zhao et al. Feb 2010 A1
20100067473 Cave et al. Mar 2010 A1
20100111039 Kim et al. May 2010 A1
20100117890 Vook et al. May 2010 A1
20100135420 Xu et al. Jun 2010 A1
20100150013 Hara et al. Jun 2010 A1
20100172429 Nagahama et al. Jul 2010 A1
20100195560 Nozaki et al. Aug 2010 A1
20100195601 Zhang Aug 2010 A1
20100208712 Wax et al. Aug 2010 A1
20100222011 Behzad Sep 2010 A1
20100232355 Richeson et al. Sep 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100278063 Kim et al. Nov 2010 A1
20100283692 Achour et al. Nov 2010 A1
20100285752 Lakshmanan et al. Nov 2010 A1
20100291931 Suemitsu et al. Nov 2010 A1
20100303170 Zhu et al. Dec 2010 A1
20100316043 Doi et al. Dec 2010 A1
20110019639 Karaoguz et al. Jan 2011 A1
20110032849 Yeung et al. Feb 2011 A1
20110032972 Wang et al. Feb 2011 A1
20110085465 Lindoff et al. Apr 2011 A1
20110085532 Scherzer et al. Apr 2011 A1
20110105036 Rao et al. May 2011 A1
20110116489 Grandhi May 2011 A1
20110134816 Liu et al. Jun 2011 A1
20110150050 Trigui et al. Jun 2011 A1
20110150066 Fujimoto Jun 2011 A1
20110151826 Miller et al. Jun 2011 A1
20110163913 Cohen et al. Jul 2011 A1
20110205883 Mihota Aug 2011 A1
20110205998 Hart et al. Aug 2011 A1
20110228742 Honkasalo et al. Sep 2011 A1
20110249576 Chrisikos et al. Oct 2011 A1
20110250884 Brunel et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110281541 Borremans Nov 2011 A1
20110299437 Mikhemar et al. Dec 2011 A1
20110310827 Srinivasa et al. Dec 2011 A1
20110310853 Yin et al. Dec 2011 A1
20120014377 Joergensen et al. Jan 2012 A1
20120015603 Proctor et al. Jan 2012 A1
20120020396 Hohne et al. Jan 2012 A1
20120027000 Wentink Feb 2012 A1
20120028638 Mueck et al. Feb 2012 A1
20120028655 Mueck et al. Feb 2012 A1
20120028671 Niu et al. Feb 2012 A1
20120033761 Guo et al. Feb 2012 A1
20120034952 Lo et al. Feb 2012 A1
20120045003 Li et al. Feb 2012 A1
20120051287 Merlin et al. Mar 2012 A1
20120064838 Miao et al. Mar 2012 A1
20120069828 Taki et al. Mar 2012 A1
20120076028 Ko et al. Mar 2012 A1
20120076229 Brobston et al. Mar 2012 A1
20120088512 Yamada et al. Apr 2012 A1
20120092217 Hosoya et al. Apr 2012 A1
20120100802 Mohebbi Apr 2012 A1
20120115523 Shpak May 2012 A1
20120155349 Bajic et al. Jun 2012 A1
20120155397 Shaffer et al. Jun 2012 A1
20120163257 Kim et al. Jun 2012 A1
20120163302 Takano Jun 2012 A1
20120170453 Tiwari Jul 2012 A1
20120170672 Sondur Jul 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jain et al. Aug 2012 A1
20120207256 Farag et al. Aug 2012 A1
20120212372 Petersson et al. Aug 2012 A1
20120213065 Koo et al. Aug 2012 A1
20120218962 Kishiyama et al. Aug 2012 A1
20120220331 Luo et al. Aug 2012 A1
20120230380 Keusgen et al. Sep 2012 A1
20120251031 Suarez et al. Oct 2012 A1
20120270531 Wright et al. Oct 2012 A1
20120270544 Shah Oct 2012 A1
20120281598 Struhsaker et al. Nov 2012 A1
20120314570 Forenza et al. Dec 2012 A1
20120321015 Hansen et al. Dec 2012 A1
20120327870 Grandhi et al. Dec 2012 A1
20130010623 Golitschek Jan 2013 A1
20130017794 Kloper et al. Jan 2013 A1
20130023225 Weber Jan 2013 A1
20130044877 Liu et al. Feb 2013 A1
20130051283 Lee et al. Feb 2013 A1
20130058239 Wang et al. Mar 2013 A1
20130070741 Li et al. Mar 2013 A1
20130079048 Cai et al. Mar 2013 A1
20130094437 Bhattacharya Apr 2013 A1
20130094621 Luo et al. Apr 2013 A1
20130095780 Prazan et al. Apr 2013 A1
20130101073 Zai et al. Apr 2013 A1
20130150012 Chhabra et al. Jun 2013 A1
20130156016 Debnath et al. Jun 2013 A1
20130156120 Josiam et al. Jun 2013 A1
20130170388 Ito et al. Jul 2013 A1
20130172029 Chang et al. Jul 2013 A1
20130190006 Kazmi et al. Jul 2013 A1
20130208587 Bala et al. Aug 2013 A1
20130208619 Kudo et al. Aug 2013 A1
20130223400 Seo et al. Aug 2013 A1
20130229996 Wang et al. Sep 2013 A1
20130229999 Da Silva et al. Sep 2013 A1
20130235720 Wang et al. Sep 2013 A1
20130242853 Seo et al. Sep 2013 A1
20130242899 Lysejko et al. Sep 2013 A1
20130242965 Horn et al. Sep 2013 A1
20130242976 Katayama et al. Sep 2013 A1
20130252621 Dimou et al. Sep 2013 A1
20130272437 Eidson et al. Oct 2013 A1
20130301551 Ghosh et al. Nov 2013 A1
20130331136 Yang et al. Dec 2013 A1
20130343369 Yamaura Dec 2013 A1
20140010089 Cai et al. Jan 2014 A1
20140010211 Asterjadhi et al. Jan 2014 A1
20140029433 Wentink Jan 2014 A1
20140071873 Wang et al. Mar 2014 A1
20140086077 Safavi Mar 2014 A1
20140086081 Mack et al. Mar 2014 A1
20140098681 Stager et al. Apr 2014 A1
20140119288 Zhu et al. May 2014 A1
20140185501 Park et al. Jul 2014 A1
20140185535 Park et al. Jul 2014 A1
20140192820 Azizi et al. Jul 2014 A1
20140204821 Seok et al. Jul 2014 A1
20140241182 Smadi Aug 2014 A1
20140307653 Liu et al. Oct 2014 A1
Foreign Referenced Citations (9)
Number Date Country
1 189 303 Mar 2002 EP
1 867 177 May 2010 EP
2 234 355 Sep 2010 EP
2009-278444 Nov 2009 JP
WO 03047033 Jun 2003 WO
WO 03073645 Sep 2003 WO
WO 2010085854 Aug 2010 WO
WO 2011060058 May 2011 WO
WO 2013192112 Dec 2013 WO
Non-Patent Literature Citations (98)
Entry
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Oct. 6, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Oct. 10, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013.
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014.
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015.
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Feb. 3, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2014/064185 dated Feb. 5, 2015.
Kai Yang et al., “Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms”, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 4095-4099.
Songtao Lu et al., “A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation”, Asilomar Conference on Signals, Systems and Computers. Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242.
International Search Report and Written Opinion for International Application No. PCT/US2014/065635 dated Feb. 13, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Feb. 20, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Feb. 23, 2015.
Provisional Applications (2)
Number Date Country
61909135 Nov 2013 US
61946273 Feb 2014 US