System and method for transmitting and receiving information on a neighborhood area network

Information

  • Patent Grant
  • 8502640
  • Patent Number
    8,502,640
  • Date Filed
    Friday, November 21, 2008
    16 years ago
  • Date Issued
    Tuesday, August 6, 2013
    11 years ago
Abstract
In accordance with the techniques discussed herein, a device can access data stored by other devices or units on a network. Devices recording data can provide the data to another device for display to a user. A user can then use the information to make decisions about how and when to control energy use. A communications logic unit associated with the radio can format messages including data from a data storage unit. Data can be stored in tables and written to or retrieved by reading or writing part of the table or the entire table.
Description
FIELD OF THE INVENTION

The field of the invention pertains to communication systems and more particularly to storage and transmission of data over a network.


BACKGROUND

In a building, many devices use energy. Frequently, such devices use electrical energy but may also use liquid natural gas, propane, or other energy types. Washing machines, dishwashers, thermostats, and pool pumps, other home appliances, computers, office and business machines, are some examples of energy using devices. There are of course many more. The use of the devices is normally controlled by an individual and the devices are used as needed. Individuals often have no idea of the amount of energy used until they receive their energy bill. Such use is not usually monitored or recorded.


A user does not typically conform, control, or modify his or her energy use to pricing, time of day, consumption level, or other factors. Such a user does not typically have information as to the amount of energy that she has used or is currently using. For example, a user might realize that a dishwasher was operating but might not be aware, give the time of day, or energy pricing at that time of day, what the actual cost of the energy consumed over the selected dishwasher cycle would be then (e.g., 6:00 pm), or as compared, for example, to some other time of day (e.g. 3:00 am). However, a user could conform or modify use of energy if such information was made available to the user, particularly if such information was readily available in an understandable form at the time of use (or when a decision as to use was needed) without significant effort. However, at least some devices would additionally need to be able to communicate with each other, or to some central device or unit, so as to provide energy use information to the user and to allow for control of the energy using devices.


One problem with monitoring and displaying information used by energy using devices is that devices tend to be located at various distances from each other without any communications lines connecting the devices together.


What is needed is a system and method that provides data transmission between such devices that can store information from energy using devices and retrieve information for display to a display device that may be viewed by a user. The energy use information should be available to a user so that the user may control or modify energy use.


The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent upon a reading of the specification and a study of the drawings.


SUMMARY

The following examples and aspects thereof are described and illustrated in conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not limiting in scope. In various examples, one or more of the above-described problems have been reduced or eliminated, while other examples are directed to other improvements.


At times, a device may require access to the data stored by other devices in a home or building in a neighborhood network. “Neighborhood” is not limited to residential neighborhoods, and extends to cover commercial areas, units and rural locations as well. Devices recording data can provide the data to another device for display to a user. The user can then use the information to make decisions about how and when to conform, control, or modify energy use. The device can include a wireless radio, or alternatively, may include a wired connection to communicate with other devices. A communications logic unit associated with the radio can format messages including data from a data storage unit. The radio, the communications logic unit, and the data storage unit can operate in accordance with standards governing their operation.


In one non-limiting aspect, there may be provided a device comprising: a data storage unit storing data in an extended table including home energy use information; a communications logic unit coupled to the radio operable to read data from the extended table and format the data as a message including the energy use information; and a radio to transmit the message.


In one non-limiting aspect, there may be provided a device comprising: an electricity meter reporting energy use information collected by the electricity meter; a data storage unit storing data in an extended table including home energy use information collected from the electricity meter and mesh radio information used to transmit the data over a NAN; a communications logic unit having an address on a NAN coupled to the radio and operable to read data from the extended table and format the data as a message including the energy use information according to the mesh radio information; and a radio to transmit the message to another device on the NAN.


In one non-limiting aspect, there may be provided a method comprising: providing a request to write data to an extended table; formatting the request as a message including a request code field, a table identifier, a count, and a data field; and transmitting the message via a radio.


In one non-limiting aspect, there may be provided a method comprising: providing a request to read data from an extended table; formatting the request as a message including a request code field, a table identifier, and a count; and transmitting the request via radio.


In one non-limiting aspect, there may be provided a method comprising: generating a request to write data to an extended table wherein: the write request is formatted as a write request message including a request code field, a table identifier, a count, and a data field; and transmitting the write request message via a radio; generating a request to read data from the extended table, wherein: the read request is formatted as a read request message including a request code field, a table identifier, and a count; and transmitting the read request message via a radio; and the generating of the request to write data and the generating of the request to read data may take place in any order.


In one non-limiting aspect, there may be provided a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method comprising: providing a request to write data to an extended table; formatting the request as a message including a request code field, a table identifier, a count, and a data field; and transmitting the message over a radio.


In one non-limiting aspect, there may be provided a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method comprising: providing a request to read data from an extended table; formatting the request as a message including a request code field, a table identifier, and a count; and transmitting the request via radio.


In one non-limiting aspect, there may be provided a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method comprising: generating a request to write data to an extended table wherein: the write request is formatted as a write request message including a request code field, a table identifier, a count, and a data field; and transmitting the write request message via a radio; generating a request to read data from the extended table, wherein: the read request is formatted as a read request message including a request code field, a table identifier, and a count; and transmitting the read request message via a radio; and the generating of the request to write data and the generating of the request to read data may take place in any order.


This Summary introduces concepts in a simplified form that are described more fully below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an example system including devices on a Neighborhood Area Network (NAN) transmitting and receiving data.



FIG. 2 depicts an example system including devices on a Neighborhood Area Network (NAN) transmitting and receiving data.



FIG. 3 depicts an example of a first NAN device coupled to a meter transmitting energy use information to a NAN requesting device for display.



FIG. 4 depicts a flowchart of an example process for requesting data.



FIG. 5 depicts a flowchart of an example process for writing data.



FIG. 6 depicts a flowchart of an example process for reading data.



FIG. 7 depicts a flowchart of an example process for writing data.



FIG. 8 depicts an example system for displaying data.



FIG. 9 depicts an exemplary configuration having a plurality of devices on an automated metering infrastructure (AMI) network.





DETAILED DESCRIPTION

In the following description, several specific details are presented to provide a thorough understanding. One skilled in the relevant art will recognize, however, that the concepts and techniques disclosed herein can be practiced without one or more of the specific details, or in combination with other components, etc. In other instances, well-known implementations or operations are not shown or described in detail to avoid obscuring inventive aspects of various examples disclosed herein.


To overcome the problems described relative to conventional systems, devices, and methods above, the techniques introduced here allow for data storage, retrieval and transmission throughout a neighborhood area network. A device storing data can retrieve the data from an extended table and send the data as a message to another device that is similarly situated. Transmissions can be routed through wireless communication over a mesh network including devices located in various homes and buildings without the use of wires connecting the units. Advantageously, users are allowed to view the information and make decisions about energy use.


As used herein a “head end system” is a central processing system including one or more computing systems, and may for example include one or more server computers. Where the head end system includes more than one computing system, the computing systems can be connected by one or more networks. Typically the head end system is connected by a wired, wireless or combination of wired and wireless networks to a plurality of devices on a neighborhood area network.


As used herein, a “neighborhood area network” (NAN) may be a mesh network of devices transmitting data to each other. A mesh network includes a number of devices, wireless or wired, that transmit information from a source device to a destination device via one or more intermediate devices which relay the information toward the target device. A device on the NAN typically exists to serve an additional purpose other than to store, transmit and receive information, for example, as an electricity meter, a thermostat, an in home display, or other device useful relating to energy use. Advantageously, the NAN devices store energy use information.


As used herein, ANSI C12.19 refers to the American National Standard for Utility Industry End device Data Tables, published by the National Electrical Manufacturers Association in 2007, which is herein incorporated by reference as well as extensions and revisions to the original version.


As used herein, ANSI C12.22 refers to the American National Standard Protocol Specification For Interfacing Data Communication Networks: C12.22, published by the National Electrical Manufacturers Association in 2007, which is herein incorporated by reference, as well as extensions and revisions to the original version.


As used herein, IEEE 802.15 refers to the specification produced by the 15th working group of the Institute of Electrical and Electronics Engineers, published in 2003, and herein incorporated by reference, including all extensions and revisions to the original version.


As used herein, a “computer readable medium” or “machine readable medium” is any known or convenient machine manufacture or composition of matter capable of storing instructions or data thereon.



FIG. 1 depicts an example of a system including devices on a Neighborhood Area Network (NAN) transmitting and receiving data. FIG. 1 includes NAN Device 102-1, NAN Device 102-2, and NAN Device 102-n (collectively NAN devices 102). The NAN may include more or fewer devices, though at least two devices may be needed to support intra-NAN communication.


The NAN devices 102 may be hardware units, embedded devices, specially adapted computing systems, or other known or convenient units for storing, retrieving and transmitting data. The NAN devices 102 are typically coupled to a device performing a function, such as an electricity meter, an in-home display, a pool pump, a dishwasher, a thermostat, and any other known or convenient energy using device that may provide or produce energy consumption and/or use information. The NAN devices can be coupled to or included in the devices producing energy consumption and/or use information. The NAN devices 102 can be powered by connection to the energy using devices, or can separately derive power from, e.g. a battery or a standard electrical connection, photovoltaic or solar power source, or any other power source or supply.



FIG. 2 depicts an example of a system including devices on a Neighborhood Area Network (NAN) transmitting and receiving data. FIG. 2 includes NAN Device 202-1 and NAN Device 202-2. NAN device 202-1 includes table data 206, communication or “comms” logic 208, and radio 210. NAN device 202-2 includes radio 214, comms logic 216, and energy use data 218. In the example of FIG. 2, the NAN Device 202-1 and the NAN device 202-2 can be NAN devices as described above in reference to FIG. 1.


In the example of FIG. 2, the table data 206 and the table data 218 each include standard tables and may include extended tables. As used herein, a “standard table” is a table common to all devices on a neighborhood area network (NAN), whereas an “extended table” can include information specific to an individual class or group of devices. The data tables 206 can store data in records entered into a database, as data objects stored in a data structure, or in any known or convenient manner.


Examples of standard tables are: general configuration, manufacturer identification, mode and status, additionally any table common to all devices on a NAN can be included as a standard table.


Examples of extended tables can include framework identification, GPS coordinates, firmware information, MESH radio identification, and other extended tables adapted to store information for use by devices on a NAN such as those transmitting data over a MESH network.


In the example of FIG. 2, the comms or communication logic 208 and the comms logic 216 can each generate messages to transmit data in a serial protocol defining messages, commands, service requests, responses and other known and convenient messages. The services can provide such high level operations as firmware upgrades, message encryption, reporting and other known or convenient functionality.


In the example of FIG. 2, the comms logic 216 and the comms logic 208 each include services used to retrieve, store and transmit data to and from tables. Any known or convenient language can be used to create the services. Services provided by the comms logic 216 and the comms logic 208 generally include services to read table data and to write table data. For example, a full read table service can acquire all table information for example, a table identifier, a number of bytes of data, a variable length data field including the table data, and a checksum to validate transmitted data.


In the example of FIG. 2, the radio 214 and the radio 210 can include any combination of electrical components, such as transistors, resistors, capacitors interconnected to provide for transmission of data. The radio 214 and the radio 210 can be configured to transmit data to the IEEE 802.15.4 protocol, and additionally any other known or convenient protocol.


In the example of FIG. 2, the energy use data 212 includes information or data, such as information or data to be displayed to a user, reported to a head end system, stored or otherwise used to monitor or control energy use. The energy use information can be related to a device coupled to either of the NAN Devices 202. The energy use data 212 can be transmitted from either the NAN device 202-1 to the NAN Device 202-2 or from the NAN Device 202-2 to the NAN Device 202-1. The specific example discussed below assumes, for the purposes of example, that information or data is transmitted from the NAN Device 202-1 to the NAN Device 202-2.


In the example of FIG. 2, in operation, the NAN Device 202-1 initiates a procedure to transmit data stored in an extended table in table data 206 to NAN Device 202-2. Comms logic 208 retrieves an identifier and data from the extended table in the table data 206 and formats it as a message including the identifier and the table as a variable length field. The comms logic 208 may include a count specifying the number of bytes included in the variable length field. Also, the comms logic 208 may include a checksum field to validate the data in the variable length data field to ensure that the data was not corrupted in transmission. The message may then be transmitted by the radio 210 to the NAN Device 202-2 as energy use data 212. The radio 214 receives the message on behalf of the NAN Device 202-2 and the comms logic 216 calculates the checksum to validate the data included in the message. The comms logic 216 reads the table identifier included in the message and saves the data to the table data 218.



FIG. 3 depicts a system including an information origination device, and a requesting device. FIG. 3 includes an information origination device 302 and a requesting device 304.


The information origination device 302 includes a radio 310, a communications (comms) logic unit 312, meter data 314, and meter 316.


In operation, the meter 316 produces meter data stored in the meter data storage 314 according to the ANSI C12.19 format, however, any known or convenient message formatting standard may be used. The comms logic 312 formats a message including meter data according to the ANSI C12.22 format, however, any known or convenient message formatting standard may be used. The radio 310 transmits the message using the IEEE 802.15.4 standard, or any other known or convenient standard.


The requesting device 304 includes a radio 320, communications (comms) logic 322, and display 324.


In operation, the radio 320 provides a request for meter data. The radio receives a message including meter data, and the comms logic provides the meter data to display 324. Display 324 may include additional processing and memory displaying meter data. User input may be provided as well.



FIG. 4 depicts a flowchart of an example of a process for requesting data. The process 400 is organized as a sequence of modules or steps in the flowchart. However, it should be understood that these and modules associated with other methods described herein may be reordered for parallel execution or into different sequences of modules or steps.


In the example of FIG. 4, the process for requesting data 400 starts at module or step 402 with providing a request to read data from an extended table. The request can be received from an external NAN device, as part of, e.g., updating the device, reporting data to a head end system, displaying information to a user, or another known or convenient purpose. The request can identify a destination device to which the data is to be transmitted.


In the example of FIG. 4, the process for requesting data 400 continues to module or step 404 with formatting the request to include a request code field and a table identifier. The requesting device can indicate the nature of the request, for example, to read an entire table or to read a part of a table. The request code can specify the type of request and an amount of data to read, for example, a whole table, the request code can indicate that the entire table should be read, or alternatively the request code can indicate that, for example, 8 kb should be read from a table starting at an offset of 16 k or according to some other read instruction or strategy. The table identifier can indicate which table the read should be made from, for example, an extended table directed to the number of kilowatts used by a device in a time period can be stored in an extended table. The table can be identified as, for example, table 450, and the code can be included in the message. Other examples of tables could be General configuration, Manufacturer identification, Mode and status, Procedure initiate, Procedure response, Actual security, Access control, Extended key, Identification, Framework identification, Date time, Bar code, Framework test data, Device statistic, Scratchpad, Report list status, Report list, LAN control, LAN statistic, MeshGate update report, GPS coordinates, LAN radio provisioning, Key IDs lookup, LAN diagnostic statistic, Report ctrl, Event ctrl, Program check, Firmware download info, Firmware download status, Firmware scratchpad, MESH radio version, Framework firmware info, Information report, and any other known or convenient table. The structure for a table can be defined in accordance with the ANSI C12.19 specification, and any other known or convenient table structure can be used.


In the example of FIG. 4, the process for requesting data 400 continues to module or step 406 with transmitting the request via radio. The request can be included in a message and transmitted using any known or convenient protocol, such as the IEEE 802.15.4 protocol. The request is delivered either directly or indirectly via a MESH network to a destination device. In the context of a MESH network, one or more devices can re-transmit the message to the destination device. Therein, one or more devices could be connected by wired connection. The message itself can be re-transmitted several times using one or more protocols. Having transmitted the request via radio, the exemplary process 400 set forth in the flowchart terminates.



FIG. 5 depicts a flowchart of an example of a process or method 500 for writing data. The process 500 is organized as a sequence of modules or steps in the flowchart. However, it should be understood that these and modules associated with other methods described herein may be reordered for parallel execution or into different sequences of modules or steps.


In the example of FIG. 5, the process for writing data 500 starts at module or step 502 with providing a request to write data to an extended table. The request can include energy use data, device instructions, firmware upgrades, test data, security information, time and date data, or any known or convenient data to be written to an extended table. The request can be provided by a head end system, a NAN device, a hand held field device, or any known or convenient device transmitting data to a NAN device to be written to an extended table.


In the example of FIG. 5, the process for writing data 500 continues to module or step 504 with formatting the request to include for example, a request code field, a table identifier, a data field, and a checksum. The request code field can be used to determine the type of request, for example, whether a read or a write is specified. Here, the request code can be a write code. A count can be included to specify the number of bytes of the table that are to be written, for example, 8 kb could be written. A table identifier can be included to specify a table to which to write data. The table can be a manufacturer specified table, or an extended table. The checksum can be included to store data used to validate the data included in the data field.


In the example of FIG. 5, the process for writing data 500 continues to module or step 506 with transmitting the request via radio. The request can be transmitted using any known or convenient radio protocol, for example, the 802.15.4 protocol can be used to transmit the request. Having transmitted the request the exemplary process 500 set forth in the flowchart terminates.



FIG. 6 depicts a flowchart of an example of a process or method 600 for reading data. The process 600 is organized as a sequence of modules or steps in the flowchart. However, it should be understood that these and modules associated with other methods described herein may be reordered for parallel execution or into different sequences of modules or steps.


In the example of FIG. 6, the process for reading data 600 begins at module or step 602 with providing a request to read data from part of an extended table. The table can store energy use data, instructions, firmware upgrades, test data, security information, time and date data, or any known or convenient data to be written to an extended table. The data can be read from the beginning of the table, part way through the table, or at the end of the table.


In the example of FIG. 6, the process for reading data 600 continues to module or step 604 with formatting the request to include a request code field, a table identifier, an offset, and a count. The request code field can be used to determine the type of request, for example, whether a read or a write is specified. The table identifier can be used to specify a table from which to read data. The offset can be used to specify a starting address from which to read data. For example, the offset can specify the beginning, middle or end of the table. The count can be used to indicate the number of bytes that are to be read from the table at the offset.


In the example of FIG. 6, the process for reading data 600 continues to module or step 606 with transmitting the request via radio. The request can be transmitted using any known or convenient protocol, for example 802.15.4. Having transmitted the request via radio, the exemplary process 600 set forth in the flowchart terminates.



FIG. 7 depicts a flowchart of an example of a process or method 700 for writing data. The process 700 is organized as a sequence of modules or steps in the flowchart. However, it should be understood that these and modules associated with other methods described herein may be reordered for parallel execution or into different sequences of modules or steps.


In the example of FIG. 7, the process for writing data 700 starts at module or step 702 with providing a request to write data to part of an extended table. The request can be provided by a NAN device, a head end system, a field unit, or another known or convenient device. An automated process or an individual can initiate the request to write data to part of an extended table.


In the example of FIG. 7, the process for writing data 700 continues to module or step 704 with formatting the request to include a request code, a table identifier, an offset, a count, and a checksum. The request code can indicate the nature of the request, in this case to write data. The table identifier can indicate the table to which to write data. The offset can indicate an address at which to begin writing data. For example, the beginning or the middle of the file can be specified. The checksum can be used to verify the integrity of the data to write.


In the example of FIG. 7, the process for writing data 700 continues to module or step 706 with transmitting the request via radio. The request can be transmitted by any known or convenient protocol, for example, IEEE 802.15.4. Having transmitted the request the exemplary process 700 set forth in the flowchart terminates.



FIG. 8 depicts a non-limiting example of a system 800 for displaying data. The non-limiting exemplary system depicted in FIG. 8 includes by way of example, thermostat 802 and in home display 804. In the example of FIG. 8, thermostat 802 and in home display 804 are each NAN devices and are able to transmit data by wireless radio to other NAN devices, whether directly or indirectly via another intermediate NAN device.


In the example of FIG. 8, the thermostat 802 includes a unit controlling temperature in a home, office, building, room, or other space. Additionally, thermostat 802 includes a communications device coupled to a table data (such as may be stored in a data storage device or memory) and to a radio. The table data storage device or memory stores information from the unit controlling temperature, for example, energy used in controlling the temperature, pricing information, previous temperature settings, and other known or convenient data.


In the example of FIG. 8, the in home display 804 includes a user interface, such as is depicted including a display and one or more keys, buttons, or other devices to enter data with. Any known or convenient interface can be specified. The interface is coupled to table data, which is accessible to communications logic coupled to a radio.


In the example of FIG. 8 in operation, the thermostat 802 transmits energy use information to the in home display 804 to display to a user. The information can be formatted as a request to write data to a data table in the in home display 804. Alternatively the information can be formatted as a request from the in home display 804 to read data from a data table stored in the thermostat 802. Either the request to read or the request to write can be structured as a request to read or write data to a part of a table.



FIG. 9 depicts an exemplary configuration having a plurality of devices on an automated metering infrastructure (AMI) network 900. FIG. 9 includes head end 902, wide area network (WAN) 904, NAN-WAN gate 906, neighborhood area network (NAN) 908, node 910-1, node 910-2, node 910-n (collectively nodes 910), microportal 916, home area network (HAN) 918 (sometimes referred to as a premise area network (PAN)), node 920-1, node 920-2, node 920-n (collectively nodes 920).


The head end 902, sometimes referred to as the back end, server, or head end server can include a suite of applications including functionality for an acquisition system, real-time data access, device management, network management, and other known or convenient functionality. The head end 902 can include one or more computing devices coupled or otherwise networked together.


The WAN 904 can be, for example, metropolitan area network (MAN), global area network such as the Internet, any combination of such networks, or any other known convenient medium for communicating data. The WAN 904 can include routers, switches and/or other networking hardware elements coupled together to provide communications to systems or within systems and devices coupled to the network 904.


The NAN-WAN gate 906, sometimes referred to as a mesh gate/collector, can include an IEEE 802.15.4 PAN Coordinator, an ANSI C12.22 Relay, a device collecting messages from multiple units on the NAN and a firewall. An IEEE 802.15.4 PAN Coordinator may be a device that is responsible for communication between devices on a NAN and complies with the IEEE 802.15.4 standard for transmission of data that is in effect as of the date of filing of this patent application. An ANSI C12.22 Relay may be a device that is responsible for communication between devices on a NAN and complies with the ANSI C12.22 standard for transmission of data that is in effect as of the date of filing of this patent application. An access point operable to perform many functions including, for example, but not limited to, one or any combination of: relaying information from the head end server to the nodes, routing information, aggregating information from the nodes and micro portals within its sub-network for transmission to the head end server, acting as a HAN coordinator, transmitting mass firmware upgrades, and multicasting messages. A NAN-WAN gate 906 may also be referred to as a collector because it collects information from the nodes 910 and micro portal 916 in its sub-network.


The NAN 908, can be a wireless, wired, or mixed wireless and wired network. The NAN 908 can transmit and receive signals using a protocol, for example, the IEEE 802.15.4 standard for transmission of data that is in effect as of the date of filing of this patent application can be used for wireless transmission. Similarly for wired transmission, the Ethernet/IEEE 802.3 interface standard could be used.


The nodes 910 can be devices operable to collect metering information and transmit and receive signals via the NAN using any known or convenient protocol. Examples of nodes 910 could be a meter, a thermostat, a remote appliance controller (RAC), in home display, or any known or convenient NAN device. Each of the nodes 910 could potentially serve as a NAN-WAN gate by the addition of a WAN radio or wired device allowing communication over the WAN 904.


The microportal 916, sometimes referred to as a micro access portal or home gateway, may be a gateway in the sense that a protocol used by devices connected to the gateway use a different protocol than the gateway uses to connect to the nodes 920. In a non-limiting example, ZigBee, Z-Wave, or X-4 may be used by the nodes 920 to connect to the microportal 916 whereas the microportal 916 uses the Trilliant transport protocol to connect to the NAN-WAN gate 908.


The HAN 918 can be a wireless, wired, or mixed wireless and wired network. The NAN 908 can transmit and receive signals using a protocol, by way of example and not limitation, the ZigBee, Z-Wave, or X-4 standard for transmission of data that is in effect as of the date of filing of this patent application can be used for wireless transmission. Similarly for wired transmission, the Ethernet/IEEE 802.3 interface standard could be used as well as other known or convenient wired interfaces.


The nodes 920 can be devices operable to collect metering information and transmit and receive signals via the HAN using any known or convenient protocol. Examples of nodes 920 could be a meter, a thermostat, a remote appliance controller (RAC), in home display, or any known or convenient NAN device. Each of the nodes 910 could potentially serve as a microportal by the addition of a NAN radio or wired device allowing communication over the NAN 904. Each of the nodes 920 may include a radio and a processor coupled to a memory storing instructions. The nodes 920, may each communicate using the ZigBee protocol, the Z-Wave protocol, X-10 or another known or convenient protocol.


It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting in scope. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of these teachings. It is therefore intended that the following appended claims include all such modifications, permutations, and equivalents as fall within the true spirit and scope of these teachings.

Claims
  • 1. A mesh network system comprising: a transmitting mesh device in communication with an energy using device, the transmitting mesh device comprising: a data storage unit storing data in a standard table and an extended table, the extended table including energy use information of the energy using device and the standard table including one or more of general configuration information, manufacturer identification information, mode information and status information;a radio to receive a request for energy use information from a receiving mesh device and to transmit a message to the receiving mesh device, the request comprising a request code field specifying a type of request, a table identifier specifying the extended table, an offset specifying a location in the extended table, and a count specifying a number of bytes to be read from the extended table at the location; anda communications logic unit in communication with the radio operable to read data from the standard table and extended table and to format the data as the message including the energy use information, based on the received request; anda receiving mesh device in communication with the transmitting mesh device, the receiving mesh device comprising: a data storage unit for storing table data;a radio for sending the request for energy use information comprising the request code field, the table identifier, the offset and the count, and for receiving the message transmitted by the transmitting device;a communications logic unit coupled to the radio, the communications logic unit operable to read the message and write the received energy use information to the storage unit; anda display;wherein the receiving mesh device originates the request for energy use information and displays the energy use information to a user.
  • 2. The system of claim 1, wherein the energy using device regulates temperature in a room.
  • 3. The system of claim 1, wherein the energy using device is an electricity meter.
  • 4. The system of claim 1, wherein the data stored in the extended table of the transmitting mesh device includes mesh radio information used by the radio to transmit data over a neighborhood area network (NAN).
  • 5. The system of claim 1, wherein the data storage unit of the transmitting mesh device includes an address identifying a location on a mesh network.
  • 6. The system of claim 1, wherein the data stored in the data storage unit of the transmitting mesh device includes a GPS coordinate.
  • 7. A mesh network system comprising: a receiving mesh device comprising: a data storage unit for storing table data;a radio for sending a request for energy use information and for receiving a message from a transmitting mesh device, the request comprising a request code field specifying a type of request, a table identifier specifying an extended table at the transmitting mesh device, an offset specifying a location in the extended table, and a count specifying a number of bytes to be read from the extended table at the location;a communications logic unit coupled to the radio, the communications logic unit operable to read received messages and write energy use information to the data storage unit;a display for displaying the energy use information to a user; anda transmitting mesh device in communication with the receiving mesh device and an electricity meter reporting energy use information collected by the electricity meter, the transmitting mesh device comprising: a data storage unit storing data in a standard table and an extended table, the extended table including the energy use information collected from the electricity meter and mesh radio information used to transmit the data over a neighborhood area network (NAN), the standard table including one or more of general configuration information, manufacturer identification information, mode information and status information;a communications logic unit having an address on a NAN and operable to read data from the extended table and format the data as a message including the energy use information according to the mesh radio information, based on the request for energy use information; anda radio coupled to the communications logic unit to transmit the message to the requesting mesh device on the NAN upon receiving the request for energy use information from the requesting mesh device,wherein the requesting mesh device originates the request for energy use information and displays the energy use information to a user.
  • 8. A method comprising: providing, by a receiving mesh device, a request to write energy use information data to an extended table within a data storage unit, the data storage unit storing data in the extended table and a standard table including one or more of general configuration information, manufacturer identification information, mode information and status information;formatting, by the receiving mesh device, the request as a message including a request code field specifying a type of request, a table identifier specifying the extended table, an offset specifying a location in the extended table, and a count specifying a number of bites to be written to the extended table at the location;transmitting the message to a transmitting mesh device via a radio of the receiving mesh device;receiving, by the receiving mesh device, energy use information data from the transmitting mesh device;writing, by the receiving mesh device, the energy use information data in the extended table; anddisplaying, by the receiving mesh device, the energy use information data to a user,wherein the receiving mesh device originates the request to write energy use information.
  • 9. The method of claim 8, wherein the message further comprises a checksum, wherein the checksum may be used to validate data integrity.
  • 10. The method of claim 8, wherein the message is transmitted over a wireless radio via a mesh network.
  • 11. The method of claim 10, wherein the mesh network includes a plurality of wireless mesh nodes for receiving and transmitting radio signals.
  • 12. A method according to claim 8 further comprising: receiving, by the transmitting device, a request to read data from an extended table of the transmitting device;formatting, by the transmitting device, a message including a request code field, a table identifier, the energy use data and a count; andtransmitting the message to the receiving mesh device via radio.
  • 13. The method of claim 12, wherein the transmitted message from the transmitting mesh device further comprises an offset, the offset identifying a location in the extended table to begin reading the energy use information.
  • 14. The method of claim 12, wherein the transmitted message from the transmitting mesh device further comprises a checksum, wherein the checksum may be used to validate data integrity.
  • 15. The method of claim 12, wherein the message is transmitted via a mesh network.
  • 16. A computer program stored in a non-transitory computer readable form for execution in a processor and a processor coupled memory to implement a method comprising: providing, by a receiving mesh device, a request to write energy use information data to an extended table within a data storage unit, the data storage unit storing data in the extended table and a standard table including one or more of general configuration information, manufacturer identification information, mode information and status information;formatting, by the receiving mesh device, the request as a message including a request code field specifying a type of request, a table identifier specifying the extended table, an offset specifying a location in the extended table, and a count specifying a number of bites to be written to the extended table at the location;transmitting the message to a transmitting mesh device over a radio of the receiving mesh device;receiving, by the receiving mesh device, energy use data from the transmitting mesh device; andwriting, by the receiving mesh device, the energy use data in the extended table;wherein the receiving mesh device originates the request for energy use information and displays the energy use information to a user.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to the following United States provisional patent applications which are incorporated herein by reference in their entirety: Ser. No. 60/989,957 entitled “Point-to-Point Communication within a Mesh Network”, filed Nov. 25, 2007;Ser. No. 60/989,967 entitled “Efficient And Compact Transport Layer And Model For An Advanced Metering Infrastructure (AMI) Network,” filed Nov. 25, 2007;Ser. No. 60/989,958 entitled “Creating And Managing A Mesh Network Including Network Association,” filed Nov. 25, 2007;Ser. No. 60/989,964 entitled “Communication and Message Route Optimization and Messaging in a Mesh Network,” filed Nov. 25, 2007;Ser. No. 60/989,950 entitled “Collector Device and System Utilizing Standardized Utility Metering Protocol,” filed Nov. 25, 2007;Ser. No. 60/989,953 entitled “System And Method For Real Time Event Report Generation Between Nodes And Head End Server In A Meter Reading Network Including From Smart And Dumb Meters,” filed Nov. 25, 2007;Ser. No. 60/989,975 entitled “System and Method for Network (Mesh) Layer And Application Layer Architecture And Processes,” filed Nov. 25, 2007;Ser. No. 60/989,971 entitled “Response Devices Providing Inter-Device Communication For Neighborhood Area Network (NAN),” filed Nov. 25, 2007;Ser. No. 60/989,966 entitled “System And Method For Demand Response Devices Providing Requests For Information To Inform A Consumer,” filed Nov. 25, 2007;Ser. No. 60/989,959 entitled “Tree Routing Within a Mesh Network,” filed Nov. 25, 2007;Ser. No. 60/989,961 entitled “Source Routing Within a Mesh Network,” filed Nov. 25, 2007;Ser. No. 60/989,962 entitled “Method and System for Creating and Managing Association and Balancing of a Mesh Device in a Mesh Network,” filed Nov. 25, 2007;Ser. No. 60/989,951 entitled “Network Node And Collector Architecture For Communicating Data And Method Of Communications,” filed Nov. 25, 2007;Ser. No. 60/989,955 entitled “System And Method For Recovering From Head End Data Loss And Data Collector Failure In An Automated Meter Reading Infrastructure,” filed Nov. 25, 2007;Ser. No. 60/989,952 entitled “System And Method For Assigning Checkpoints To A Plurality Of Network Nodes In Communication With A Device Agnostic Data Collector,” filed Nov. 25, 2007;Ser. No. 60/989,954 entitled “System And Method For Synchronizing Data In An Automated Meter Reading Infrastructure,” filed Nov. 25, 2007;Ser. No. 60/992,312 entitled “Mesh Network Broadcast,” filed Dec. 4, 2007;Ser. No. 60/992,313 entitled “Multi Tree Mesh Networks”, filed Dec. 4, 2007;Ser. No. 60/992,315 entitled “Mesh Routing Within a Mesh Network,” filed Dec. 4, 2007;Ser. No. 61/025,279 entitled “Point-to-Point Communication within a Mesh Network”, filed Jan. 31, 2008, and which are incorporated by reference.Ser. No. 61/025,270 entitled “Application Layer Device Agnostic Collector Utilizing Standardized Utility Metering Protocol Such As ANSI C12.22,” filed Jan. 31, 2008;Ser. No. 61/025,276 entitled “System And Method For Real-Time Event Report Generation Between Nodes And Head End Server In A Meter Reading Network Including Form Smart And Dumb Meters,” filed Jan. 31, 2008;Ser. No. 61/025,282 entitled “Method And System for Creating And Managing Association And Balancing Of A Mesh Device In A Mesh Network,” filed Jan. 31, 2008;Ser. No. 61/025,271 entitled “Method And System for Creating And Managing Association And Balancing Of A Mesh Device In A Mesh Network,” filed Jan. 31, 2008;Ser. No. 61/025,287 entitled “System And Method For Operating Mesh Devices In Multi-Tree Overlapping Mesh Networks”, filed Jan. 31, 2008;Ser. No. 61/025,278 entitled “System And Method For Recovering From Head End Data Loss And Data Collector Failure In An Automated Meter Reading Infrastructure,” filed Jan. 31, 2008;Ser. No. 61/025,273 entitled “System And Method For Assigning Checkpoints to A Plurality Of Network Nodes In Communication With A Device-Agnostic Data Collector,” filed Jan. 31, 2008;Ser. No. 61/025,277 entitled “System And Method For Synchronizing Data In An Automated Meter Reading Infrastructure,” filed Jan. 31, 2008;Ser. No. 61/050,538 entitled “System And Method For Transmitting And Receiving Information On A Neighborhood Area Network,” filed May 5, 2008; andSer. No. 61/094,116 entitled “Message Formats and Processes for Communication Across a Mesh Network,” filed Sep. 4, 2008. This application hereby references and incorporates by reference each of the following United States patent applications filed contemporaneously herewith: Ser. No. 12/275,236 entitled “Point-to-Point Communication within a Mesh Network”, filed Nov. 21, 2008;Ser. No. 12/275,305 entitled “Efficient And Compact Transport Layer And Model For An Advanced Metering Infrastructure (AMI) Network,” filed Nov. 21, 2008;Ser. No. 12/275,238 entitled “Route Optimization Within A Mesh Network,” filed Nov. 21, 2008;Ser. No. 12/275,242 entitled “Application Layer Device Agnostic Collector Utilizing ANSI C12.22,” filed Nov. 21, 2008;Ser. No. 12/275,252 entitled “Creating and Managing a Mesh Network,” filed Nov. 21, 2008; andSer. No. 12/275,257 entitled “System And Method For Operating Mesh Devices In Multi-Tree Overlapping Mesh Networks”, filed Nov. 21, 2008.

US Referenced Citations (274)
Number Name Date Kind
4132981 White Jan 1979 A
4190800 Kelly, Jr. et al. Feb 1980 A
4204195 Bogacki May 1980 A
4254472 Juengel et al. Mar 1981 A
4322842 Martinez Mar 1982 A
4396915 Farnsworth et al. Aug 1983 A
4425628 Bedard et al. Jan 1984 A
4638314 Keller Jan 1987 A
4749992 Fitzemeyer et al. Jun 1988 A
5138615 Lamport et al. Aug 1992 A
5216623 Barrett et al. Jun 1993 A
5311581 Merriam et al. May 1994 A
5432507 Mussino et al. Jul 1995 A
5459727 Vannucci Oct 1995 A
5515509 Rom May 1996 A
5546575 Potter et al. Aug 1996 A
5572438 Ehlers et al. Nov 1996 A
5608780 Gerszberg et al. Mar 1997 A
5684710 Ehlers et al. Nov 1997 A
5696695 Ehlers et al. Dec 1997 A
5717718 Rowsell et al. Feb 1998 A
5719564 Sears Feb 1998 A
5727057 Emery et al. Mar 1998 A
5767790 Jovellana Jun 1998 A
5844893 Gollnick et al. Dec 1998 A
5874903 Shuey et al. Feb 1999 A
5880677 Lestician Mar 1999 A
5892758 Argyroudis Apr 1999 A
5894422 Chasek Apr 1999 A
5896097 Cardozo Apr 1999 A
5896566 Averbuch et al. Apr 1999 A
5898387 Davis et al. Apr 1999 A
5898826 Pierce et al. Apr 1999 A
5914673 Jennings et al. Jun 1999 A
5919247 Van Hoff et al. Jul 1999 A
5933092 Ouellette et al. Aug 1999 A
5963146 Johnson et al. Oct 1999 A
5963457 Kanoi et al. Oct 1999 A
5987011 Toh Nov 1999 A
5991806 McHann, Jr. Nov 1999 A
6014089 Tracy et al. Jan 2000 A
6026133 Sokoler Feb 2000 A
6044062 Brownrigg et al. Mar 2000 A
6058355 Ahmed et al. May 2000 A
6073169 Shuey et al. Jun 2000 A
6075777 Agrawal et al. Jun 2000 A
6078785 Bush Jun 2000 A
6088659 Kelley et al. Jul 2000 A
6097703 Larsen et al. Aug 2000 A
6108699 Moiin Aug 2000 A
6124806 Cunningham et al. Sep 2000 A
6134587 Okanoue Oct 2000 A
6137423 Glorioso et al. Oct 2000 A
6150955 Tracy et al. Nov 2000 A
6195018 Ragle et al. Feb 2001 B1
6239722 Colton et al. May 2001 B1
6240080 Okanoue et al. May 2001 B1
6246677 Nap et al. Jun 2001 B1
6246689 Shavitt Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6300881 Yee et al. Oct 2001 B1
6304556 Haas Oct 2001 B1
6338087 Okanoue Jan 2002 B1
6366217 Cunningham et al. Apr 2002 B1
6400949 Bielefeld et al. Jun 2002 B1
6407991 Meier Jun 2002 B1
6415330 Okanoue Jul 2002 B1
6437692 Petite et al. Aug 2002 B1
6480505 Johansson et al. Nov 2002 B1
6535498 Larsson et al. Mar 2003 B1
6538577 Ehrke et al. Mar 2003 B1
6553355 Arnoux et al. Apr 2003 B1
6556830 Lenzo Apr 2003 B1
6577671 Vimpari Jun 2003 B1
6606708 Devine et al. Aug 2003 B1
6636894 Short et al. Oct 2003 B1
6653945 Johnson et al. Nov 2003 B2
6657552 Belski et al. Dec 2003 B2
6665620 Burns et al. Dec 2003 B1
6681110 Crookham et al. Jan 2004 B1
6681154 Nierlich et al. Jan 2004 B2
6687901 Imamatsu Feb 2004 B1
6691173 Morris et al. Feb 2004 B2
6697331 Riihinen et al. Feb 2004 B1
6710721 Holowick Mar 2004 B1
6711166 Amir et al. Mar 2004 B1
6711409 Zavgren, Jr. et al. Mar 2004 B1
6711512 Noh Mar 2004 B2
6714787 Reed et al. Mar 2004 B2
6718137 Chin Apr 2004 B1
6725281 Zintel et al. Apr 2004 B1
6728514 Bandeira et al. Apr 2004 B2
6751455 Acampora Jun 2004 B1
6751672 Khalil et al. Jun 2004 B1
6775258 van Valkenburg et al. Aug 2004 B1
6778099 Meyer et al. Aug 2004 B1
6785592 Smith et al. Aug 2004 B1
6826620 Davis et al. Nov 2004 B1
6829216 Nakata Dec 2004 B1
6829347 Odiaka Dec 2004 B1
6831921 Higgins Dec 2004 B2
6842706 Baraty Jan 2005 B1
6845091 Ogier et al. Jan 2005 B2
6865185 Patel et al. Mar 2005 B1
6882635 Eitan et al. Apr 2005 B2
6885309 Van Heteren Apr 2005 B1
6891838 Petite et al. May 2005 B1
6900738 Crichlow May 2005 B2
6904025 Madour et al. Jun 2005 B1
6904385 Budike, Jr. Jun 2005 B1
6909705 Lee et al. Jun 2005 B1
6963285 Fischer et al. Nov 2005 B2
6967452 Aiso et al. Nov 2005 B2
6970771 Preiss et al. Nov 2005 B1
6975613 Johansson Dec 2005 B1
6980973 Karpenko Dec 2005 B1
6982651 Fischer Jan 2006 B2
6985087 Soliman Jan 2006 B2
7000021 Radhakrishnan et al. Feb 2006 B1
7009379 Ramirez Mar 2006 B2
7009493 Howard et al. Mar 2006 B2
7016336 Sorensen Mar 2006 B2
7020701 Gelvin et al. Mar 2006 B1
7053853 Merenda et al. May 2006 B2
7054271 Brownrigg et al. May 2006 B2
7062361 Lane Jun 2006 B1
7064679 Ehrke et al. Jun 2006 B2
7072945 Nieminen et al. Jul 2006 B1
7102533 Kim Sep 2006 B2
7103086 Steed et al. Sep 2006 B2
7103511 Petite Sep 2006 B2
7106044 Lee, Jr. et al. Sep 2006 B1
7126494 Ardalan et al. Oct 2006 B2
7135956 Bartone et al. Nov 2006 B2
7143204 Kao et al. Nov 2006 B1
7145474 Shuey et al. Dec 2006 B2
7170425 Christopher et al. Jan 2007 B2
7174260 Tuff et al. Feb 2007 B2
7185131 Leach Feb 2007 B2
7200633 Sekiguchi et al. Apr 2007 B2
7209840 Petite et al. Apr 2007 B2
7215926 Corbett et al. May 2007 B2
7230544 Van Heteren Jun 2007 B2
7230931 Struhsaker Jun 2007 B2
7245938 Sobczak et al. Jul 2007 B2
7248861 Lazaridis et al. Jul 2007 B2
7250874 Mueller et al. Jul 2007 B2
7251570 Hancock et al. Jul 2007 B2
7271735 Rogai Sep 2007 B2
7274305 Luttrell Sep 2007 B1
7274975 Miller Sep 2007 B2
7277027 Ehrke et al. Oct 2007 B2
7289887 Rodgers Oct 2007 B2
7301476 Shuey et al. Nov 2007 B2
7304587 Boaz Dec 2007 B2
7308370 Mason, Jr. et al. Dec 2007 B2
7312721 Mason, Jr. et al. Dec 2007 B2
7317404 Cumeralto et al. Jan 2008 B2
7321316 Hancock et al. Jan 2008 B2
7327998 Kumar et al. Feb 2008 B2
7346463 Petite et al. Mar 2008 B2
7349766 Rodgers Mar 2008 B2
7366191 Higashiyama Apr 2008 B2
7379981 Elliott et al. May 2008 B2
7451019 Rodgers Nov 2008 B2
7546595 Wickham et al. Jun 2009 B1
7548907 Wall et al. Jun 2009 B2
7571865 Nicodem et al. Aug 2009 B2
7733224 Tran Jun 2010 B2
7743224 Wang Jun 2010 B2
7788491 Dawson Aug 2010 B1
7802245 Sonnier et al. Sep 2010 B2
7818758 de Bonet et al. Oct 2010 B2
7822944 Schuessler Oct 2010 B2
7847706 Ross et al. Dec 2010 B1
8051415 Suzuki Nov 2011 B2
8085686 Thubert et al. Dec 2011 B2
20010005368 Rune Jun 2001 A1
20010010032 Ehlers et al. Jul 2001 A1
20010038342 Foote Nov 2001 A1
20010046879 Schramm et al. Nov 2001 A1
20020012358 Sato Jan 2002 A1
20020051269 Margalit et al. May 2002 A1
20020066095 Yu May 2002 A1
20020110118 Foley Aug 2002 A1
20020114303 Crosbie et al. Aug 2002 A1
20020186619 Reeves et al. Dec 2002 A1
20030001640 Lao et al. Jan 2003 A1
20030014633 Gruber Jan 2003 A1
20030037268 Kistler Feb 2003 A1
20030123481 Neale et al. Jul 2003 A1
20030207697 Shpak Nov 2003 A1
20040031030 Kidder et al. Feb 2004 A1
20040034773 Balabine et al. Feb 2004 A1
20040039817 Lee et al. Feb 2004 A1
20040081086 Hippelainen et al. Apr 2004 A1
20040113810 Mason, Jr. et al. Jun 2004 A1
20040117788 Karaoguz et al. Jun 2004 A1
20040125776 Haugli et al. Jul 2004 A1
20040138787 Ransom et al. Jul 2004 A1
20040140908 Gladwin et al. Jul 2004 A1
20040157613 Steer et al. Aug 2004 A1
20040193329 Ransom et al. Sep 2004 A1
20040268142 Karjala et al. Dec 2004 A1
20050027859 Alvisi et al. Feb 2005 A1
20050030968 Rich et al. Feb 2005 A1
20050055432 Rodgers Mar 2005 A1
20050058144 Ayyagari et al. Mar 2005 A1
20050065742 Rodgers Mar 2005 A1
20050172024 Cheifot et al. Aug 2005 A1
20050187928 Byers Aug 2005 A1
20050193390 Suzuki et al. Sep 2005 A1
20050195757 Kidder et al. Sep 2005 A1
20050228874 Edgett et al. Oct 2005 A1
20050249113 Kobayashi et al. Nov 2005 A1
20050251403 Shuey Nov 2005 A1
20050257215 Denby et al. Nov 2005 A1
20060056363 Ratiu et al. Mar 2006 A1
20060056368 Ratiu et al. Mar 2006 A1
20060098576 Brownrigg et al. May 2006 A1
20060111111 Ovadia May 2006 A1
20060130053 Buljore et al. Jun 2006 A1
20060167784 Hoffberg Jul 2006 A1
20060184288 Rodgers Aug 2006 A1
20060215583 Castagnoli Sep 2006 A1
20060215673 Olvera-Hernandez Sep 2006 A1
20060217936 Mason et al. Sep 2006 A1
20060271678 Jessup et al. Nov 2006 A1
20070001868 Boaz Jan 2007 A1
20070019598 Prehofer Jan 2007 A1
20070057767 Sun et al. Mar 2007 A1
20070063866 Webb Mar 2007 A1
20070063868 Borleske Mar 2007 A1
20070085700 Walters et al. Apr 2007 A1
20070087756 Hoffberg Apr 2007 A1
20070089110 Li Apr 2007 A1
20070101442 Bondurant May 2007 A1
20070103324 Kosuge et al. May 2007 A1
20070109121 Cohen May 2007 A1
20070136817 Nguyen Jun 2007 A1
20070139220 Mirza et al. Jun 2007 A1
20070147268 Kelley et al. Jun 2007 A1
20070169074 Koo et al. Jul 2007 A1
20070169075 Lill et al. Jul 2007 A1
20070169080 Friedman Jul 2007 A1
20070174467 Ballou et al. Jul 2007 A1
20070189249 Gurevich et al. Aug 2007 A1
20070200729 Borleske et al. Aug 2007 A1
20070205915 Shuey et al. Sep 2007 A1
20070206521 Osaje Sep 2007 A1
20070207811 Das et al. Sep 2007 A1
20070248047 Shorty et al. Oct 2007 A1
20070258508 Werb et al. Nov 2007 A1
20070266429 Ginter et al. Nov 2007 A1
20070271006 Golden et al. Nov 2007 A1
20070276547 Miller Nov 2007 A1
20070276985 Schuessler Nov 2007 A1
20080011864 Tessier et al. Jan 2008 A1
20080132185 Elliott et al. Jun 2008 A1
20080177678 Di Martini et al. Jul 2008 A1
20080283620 Knapp Nov 2008 A1
20080318547 Ballou et al. Dec 2008 A1
20090129575 Chakroaborty et al. May 2009 A1
20090132220 Chakroborty et al. May 2009 A1
20090134969 Veillette May 2009 A1
20090135677 Veillette May 2009 A1
20090136042 Veillette May 2009 A1
20090138777 Veillette May 2009 A1
20090201936 Dumet et al. Aug 2009 A1
20090310593 Sheynblat et al. Dec 2009 A1
20100061272 Veillette Mar 2010 A1
20100138660 Haynes et al. Jun 2010 A1
20100238917 Silverman et al. Sep 2010 A1
20110066297 Saberi et al. Mar 2011 A1
Foreign Referenced Citations (10)
Number Date Country
10-070774 Mar 1998 JP
10-135965 May 1998 JP
WO 0054237 Sep 2000 WO
WO 0126334 Apr 2001 WO
WO 0155865 Aug 2001 WO
WO 2008027457 Mar 2008 WO
WO 2008033287 Mar 2008 WO
WO 2008033514 Mar 2008 WO
WO 2008092268 Aug 2008 WO
WO 2009067251 May 2009 WO
Non-Patent Literature Citations (65)
Entry
“AMRON Technologies Successfully Deploys Advanced Metering Solution for C&I Customers Using Bluetooth” [online], Sep. 2, 2004 [retrieved on Jan. 2, 2009], 3 pp., Retrieved from the Internet: http://www.techweb.com/showpressrelease?articleId=X234101&CompanyId=3.
Utility Intelligence, “Exclusive Distributors of Dynamic Virtual Metering” [online], Copyright 2004-2005 [retrieved on May 12, 2005], Retrieved from the Internet: http://www.empoweringutilities.com/hardware.html, 29 pp.
“AMRON Meter Management System” [online], [retrieved on May 12, 2005], 41 pp., Retrieved from the Internet: http://www.amronm5.com/products/.
International Search Report and Written Opinion for Application No. PCT/US08/12161, dated Mar. 2, 2009, 13 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13017, dated Mar. 18, 2009, 11 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13032, dated May 12, 2009, 14 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13026, dated Feb. 24, 2009, 9 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13029, dated Feb. 2, 2009, 8 pp.
Reexamination U.S. Appl. No. 90/008,011, filed Jul. 24, 2006, 75 pp.
Broch, Josh, et al., “A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proceedings of the Fourth Annual ACM/IEEE International Conference in Mobile Computing and Networking (MobiCom '98), Dallas, Texas, 13 pp., Oct. 25-30, 1998.
Broch, Josh, et al., “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks” [online], Mar. 13, 1998 [retrieved on Feb. 24, 2009], 31 pp., Retrieved from the Internet: http://tools.ietf.org/draft-ietf-manet-dsr-00.txt.
Katz, Randy H. and Brewer, Eric A., “The Case for Wireless Overlay Networks,” Electrical Engineering and Computer Science Department, University of California, Berkeley, 12 pp., 1996.
Johnson, David B., “Routing in Ad Hoc Networks of Mobile Hosts,” IEEE, pp. 158-163, 1995.
International Search Report and Written Opinion for Application No. PCT/US08/13027, dated Feb. 9, 2009, 6 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13023, dated Jan. 12, 2009, 10 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13019, dated Jan. 12, 2009, 13 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13025, dated Jan. 13, 2009, 7 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13018, dated Jan. 30, 2009, 9 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13020, dated Jan. 9, 2009, 8 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13028, dated Jan. 15, 2009, 9 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13021, dated Jan. 15, 2009, 11 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13016, dated Jan. 9, 2009, 7 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13024, dated Jan. 13, 2009, 9 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13022, dated Jan. 27, 2009, 10 pp.
International Search Report and Written Opinion for Application No. PCT/US08/13030, dated Jan. 9, 2009, 7 pp.
Hydro One Networks, Inc., Request for Proposal for Smart Metering Services, 16 pp., Mar. 4, 2005.
Trilliant Networks, “The Trilliant AMI Solution,” RFP SCP-07003, 50 pp., Mar. 22, 2007.
“ZigBee Smart Energy Profile Specification,” ZigBee Profile 0x0109, Revision 14, Document 075356r14, 202 pp., May 29, 2008.
Hubaux, J. P., et al. “Towards Mobile Ad-Hoc WANs: Terminodes,” 2000 IEEE, Wireless Communications and Networking Conference, WCNC, vol. 3, pp. 1052-1059, 2000.
Miklos, G., et al., “Performance Aspects of Bluetooth Scatternet Formation,” First Annual Workshop on Mobile and Ad Hoc Networking and Computing, MobiHOC 2000, pp. 147-148, 2000.
Eng, K. Y., et al. “BAHAMA: A Broadband Ad-Hoc Wireless ATM Local-Area Network,” 1995 IEEE International Conference on Communications, ICC '95 Seattle, ‘Gateway to Globalization’, vol. 2, pp. 1216-1223, Jun. 18-22, 1995.
Lee, David J. Y., “Ricocheting Bluetooth,” 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings, ICMMT 2000, pp. 432-435, 2000.
Lilja, Tore, “Mobile Energy Supervision,” Twenty-second International Telecommunications Energy Conference, 2000 INTELEC, pp. 707-712, 2000.
Parkka, Juha, et al., “A Wireless Wellness Monitor for Personal Weight Management,” Proceedings of the 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine, pp. 83-88, 2000.
Broch, J., et al., “Supporting Hierarchy and Heterogeneous Interfaces in Multi-Hop Wireless Ad Hoc Networks,” Proceedings of the Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN '99), pp. 370-375 (7 pp. with Abstract), Jun. 23-25, 1999.
Privat, G., “A System-Architecture Viewpoint on Smart Networked Devices,” Microelectronic Engineering, vol. 54, Nos. 1-2, pp. 193-197, Dec. 2000.
Jonsson, U., et al., “MIPMANET—Mobile IP for Mobile Ad Hoc Networks,” MobiHOC 2000, First Annual Workshop on Mobile and Ad Hoc Networking and Computing, pp. 75-85 (12 pp. with Abstract), 2000.
Kapoor, R., et al., “Multimedia Support Over Bluetooth Piconets,” First Workshop on Wireless Mobile Internet, pp. 50-55, Jul. 2001.
Sung-Yuan, K., “The Embedded Bluetooth CCD Camera,” TENCON, Proceedings of the IEEE Region 10 International Conference on Electrical and Electronic Technology, vol. 1, pp. 81-84 (5 pp. with Abstract), Aug. 19-22, 2001.
Lim, A., “Distributed Services for Information Dissemination in Self-Organizing Sensor Networks,” Journal of the Franklin Institute, vol. 338, No. 6, pp. 707-727, Sep. 2001.
Meguerdichian, S., et al., “Localized Algorithms in Wireless Ad-Hoc Networks: Location Discovery and Sensor Exposure,” ACM Symposium on Mobile Ad Hoc Networking & Computing, MobiHOC 2001, pp. 106-116, Oct. 2001.
Lilakiatsakun, W., et al. “Wireless Home Networks Based on a Hierarchical Bluetooth Scatternet Architecture,” Proceedings of the Ninth IEEE International Conference on Networks, pp. 481-485 (6 pp. with Abstract), Oct. 2001.
Jha, S., et al., “Universal Network of Small Wireless Operators (UNSWo),” Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 626-631 (7 pp. with Abstract), 2001.
International Search Report and Written Opinion for Application No. PCT/US2011/060694, dated Apr. 9, 2012, 10 pp.
International Search Report and Written Opinion for Application No. PCT/US2011/049227, dated Jan. 31, 2012, 9 pp.
International Search Report and Written Opinion for Application No. PCT/US12/22334, dated Apr. 9, 2012, 9 pp.
International Search Report and Written Opinion for Application No. PCT/US11/56620, dated Mar. 13, 2012, 8 pp.
Supplementary European Search Report for Application No. EP 08 84 2449, dated Nov. 29, 2011, 5 pp.
Lin, Shen, et al., “A Wireless Network Based on the Combination of Zigbee and GPRS” [online], [retrieved on Feb. 16, 2012], IEEE International Conference on Networking, Sensing and Control, Apr. 6-8, 2008, 4 pp., Retrieved From the Internet: http://ieeexplore.ieee.org/xpls/abs—all.jsp?arnumber=4525223.
Telegesis, “ZigBee Gateway Makes Your Meter Smart” [online], 2005 [retrieved on Feb. 16, 2012], 1 p., Retrieved From the Internet: http://www.telegesis.com/downloads/general/SSV%20IP%20gateway%20case%20study.pdf.
Supplementary European Search Report for Application No. EP 09 81 1849, dated Dec. 13, 2011, 9 pp.
Gerla, Mario, et al., Multicasting Protocols for High-Speed, Wormhole-Routing Local Area Networks, ACM SIGCOMM Computer Communication Review, vol. 26, No. 4, Oct. 4, 1996, pp. 184-193.
International Search Report and Written Opinion for Application No. PCT/US2011/049277, dated Jan. 31, 2012, 9 pp..
International Search Report and Written Opinion for Application No. PCT/US11/21167, dated Mar. 21, 2012, 8 pp.
“UCAIug Home Area Network System Requirements Specification, A Work Product of the OpenHAN Task Force Formed by the SG Systems Working Group Under the Open Smart Grid (OpenSG) Technical Committee of the UCA® International Users Group, Version 2.0,” 157 pp., Aug. 30, 2010.
“ZigBee Smart Energy Profile Specification,” ZigBee Profile: 0x0109, Revision 15, Dec. 1, 2008, Document 075345r15 (SEP Document), 244 pp.
Edison Electric Institute (EEI), “Uniform Business Practices for Unbundled Electricity Metering, vol. Two,” Dec. 5, 2000, 196 pp., www.naesb.org/pdf/ubp120500.pdf.
“ZigBee Smart Energy Profile Specification,” ZigBee Profile: 0x0109, Revision 16, Version 1.1, Document 075356r16ZB, 332 pp., Mar. 23, 2011.
“ZigBee Over-the-Air Upgrading Cluster,” ZigBee Alliance, Document 095264r18, Revision 18, Version 1.0, 63 pp., Mar. 14, 2010.
IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),” IEEE Computer Society, 323 pp., Sep. 8, 2006.
IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Computer Society, 679 pp., Oct. 1, 2003.
“ZigBee Cluster Library Specification,” ZigBee Alliance, Document 075123r02ZB, 420 pp., May 29, 2008.
Liu, Ryan, et al., “A Survey of PEV Impacts on Electric Utilities,” EEE PES Innovative Smart Grid Technologies Conference, Anaheim, California, 8 pp., Jan. 17-19, 2011.
“Utility/Lab Workshop on PV Technology and Systems,” DTE Energy DER Technology Adoption, DEW Analysis of Renewable, PEV & Storage, Tempe, Arizona, 36 pp., Nov. 8-9, 2010.
“Network Device: Gateway Specification,” ZigBee Alliance, ZigBee Document 075468r35, Revision 35, Version No. 1.0, 301 pp., Mar. 23, 2011.
Related Publications (1)
Number Date Country
20090134969 A1 May 2009 US
Provisional Applications (30)
Number Date Country
60989957 Nov 2007 US
60989967 Nov 2007 US
60989958 Nov 2007 US
60989964 Nov 2007 US
60989950 Nov 2007 US
60989953 Nov 2007 US
60989975 Nov 2007 US
60989971 Nov 2007 US
60989966 Nov 2007 US
60989959 Nov 2007 US
60989961 Nov 2007 US
60989962 Nov 2007 US
60989951 Nov 2007 US
60989955 Nov 2007 US
60989952 Nov 2007 US
61989954 Nov 2007 US
60992312 Dec 2007 US
60992313 Dec 2007 US
60992315 Dec 2007 US
61025279 Jan 2008 US
61025270 Jan 2008 US
61025276 Jan 2008 US
61025282 Jan 2008 US
61025271 Jan 2008 US
61025287 Jan 2008 US
61025278 Jan 2008 US
61025273 Jan 2008 US
61025277 Jan 2008 US
61050538 May 2008 US
61094116 Sep 2008 US