The present invention generally relates to communicating pollution information and, in particular, to a system and method for generating and transmitting pollution information through an integrated wireless communication network.
Regulation of allowable pollution discharges into the environment from pollution sources are governed by federal, state and/or local laws. Generally, the least strict pollution criteria are defined by federal law. Federal agencies typically enforce various federal pollution laws by requiring timely reporting of pollution discharges and violations of criteria, by requiring clean-up of the pollution discharges, and by requiring termination of the discharges from the pollution sources. Furthermore, state laws, local laws and/or company policies may set stricter criteria at specific locations. Such pollution criteria define limits of pollution sources that may, or are, polluting air, water and/or soil. Pollution discharges can include materials, chemicals, or even noise.
Detectors are used to detect the presence of pollution. Such detectors, placed in suitable locations, provide information that may be used to detect a violation of an applicable pollution criteria and provide data to ascertain the extent of the discharge. Or, detectors may be used to demonstrate compliance with applicable pollution criteria (in that failure to detect pollution discharges implies that the pollution source is operating in compliance with applicable pollution discharge regulations).
A threshold is defined in a pollution detector such that when pollution is detected at a level at least equal to the threshold, the pollution detector generates a signal and/or data indicating that pollution levels are exceeding the threshold. Data may include, but is not limited to, the level of pollution, times of detection and/or type of pollution detected.
However, such pollution detectors are often monitored on a periodic basis. Thus, data provided by such pollution detectors would indicate a pollution discharge after the initial discharge event. If the discharge is ongoing, serious pollution criteria violations may occur. If the discharge is ongoing and not reported in a timely manner, even from a low rate discharge that would not otherwise cause a criteria violation had the discharge been detected and remedied in a timely manner, very serious pollution violations may result. Regulatory agencies may impose expensive fines, require expensive clean-up measures, may require monitoring and/or may shut down the polluting facility.
Pollution detectors may be located in difficult to access locations. For example, pollution detectors configured to monitor water conditions may be submerged. Or, pollution detectors configured to monitor ground water conditions may be located deep inside a well. Or, pollution detectors configured to monitor air pollution may be located on high structures or seasonally inaccessible locations such as mountain tops. Or, pollution detectors configured to monitor air pollution may be placed on mobile equipment such as large earth movers at an ore mine. Such difficult to access pollution detectors may result in the untimely reporting of discharges and/or may result in increased monitoring expenses.
Also, if the data from the pollution detectors are manually collected, the data collection process may be labor intensive and expensive. Furthermore, data entry may also be time consuming and expensive. Accordingly, many hours of data collection and entry time may be required for even a relatively simple pollution detection system.
Thus, a heretofore unaddressed need exists in the industry for providing a pollution information communication system that more timely indicates the nature, location and/or other pertinent information associated with a pollution discharge. Also, there is a heretofore unaddressed need to provide a less expensive to monitor and a more conveniently accessed pollution information communication system.
Embodiments of the present invention overcomes the inadequacies and deficiencies of the prior art as discussed hereinabove. One embodiment of the present invention, a pollution message communication system, provides a system and method for communicating pollution information messages corresponding to detected pollution discharges and/or the presence of pollution by pollution detectors. The pollution message communication system employs a transceiver network with a plurality transceivers residing in a network. A plurality of transceivers are coupled to one of a plurality of pollution detectors each located at one of a plurality of locations. The transceivers each have unique identification codes. In one embodiment, transceivers broadcast and receive radio frequency (RF) signals. A site controller provides communications between the plurality of transceiver units and a pollution monitoring management controller residing in a pollution message system control center.
One embodiment of the present invention can also be viewed as providing a method for communicating pollution information messages. In this regard, the method can be broadly summarized by the following steps. Generating a pollution information message with a transceiver having at least an identification code uniquely assigned to the transceiver, and communicating the pollution information message from the transceiver to a network transceiver such that the pollution information message is communicated over an intermediate communication system to a pollution monitoring management controller.
Another embodiment of the present invention can be broadly summarized by the following steps. Receiving a pollution information message broadcasted from a transceiver having at least an identification code uniquely assigned to the transceiver, determining information relevant to the received pollution information message by associating the information with the identification code of the transceiver, and communicating the pollution information message and the relevant information, such as to a person.
Other features and advantages of the present invention will become apparent to one skilled in the art upon examination of the following detailed description, when read in conjunction with the accompanying drawings. It is intended that all such features and advantages be included herein within the scope of the present invention and protected by the claims.
The invention can be better understood with reference to the following drawings. The elements of the drawings are not necessarily to scale relative to each other, emphasis instead being placed upon clearly illustrating the principles of the invention. Furthermore, like reference numerals designate corresponding parts throughout the several views.
Overview of the Pollution Information Message System
In general, the present invention relates to a system and method for communicating pollution information messages that are transmitted from a transceiver, through a transceiver network, to a pollution monitoring management controller so that a discharge of pollution and/or the presence of pollution is detected and reported in a timely manner, as described in greater detail below. The pollution information message, in one embodiment, is generated in response to a detector that detects the presence of pollution.
In another embodiment, the pollution detector 204 is in continues communication with the transceiver 202 so that pollution information is provided on a real-time basis. Here, if no pollution is detected, or pollution levels are detected below a threshold, the information may demonstrate compliance with applicable pollution discharge regulations.
In one embodiment, in response to receiving a signal and/or data from the pollution detector 204, the transceiver 202 transmits a pollution information message via an RF signal 210 that is detected by transmitter station 212. Transmitter station 212, located on a suitable high point, such as a tower 120 (see also
Pollution Information Message Transceiver System Environment
For convenience of illustration, and for convenience of explaining the operation and functionality of the pollution information message system, only a single monitored facility 112 is illustrated on
A pollution information message system is configured to receive pollution information messages, in a manner described below, from hundreds, even thousands, of transceivers, depending upon the particular architecture in which the pollution information message system is implemented. Therefore, the explanation of the operation and functionality of the pollution information message system described below is limited to a small segment of the transceiver network 100 for convenience.
A pollution information message transmitted from any one of the transceivers 102a-102f is relayed to the pollution monitoring management controller 302 (
For example, transceivers 102a, 102b and 102c are illustrated as transmitting pollution information messages to transceiver station 116a via RF signals 118a, 118b and 118c, respectively. Similarly, transceivers 102d and 102e broadcast pollution information messages to transceiver station 116b via RF signals 118d and 118e, respectively. Thus, pollution detectors 114c and/or 114d may detect a presence of air pollution emissions 124 from the monitored facility 112. Accordingly, transceivers 102c and 102d, respectively, would then communicate pollution information messages to their respective receiving transceiver stations 116a and 116b.
A transceiver (not shown) in transceiver station 116a is illustrated as communicating a pollution information message to transceiver station 116b via signal 122a. The transceivers 102a-102e, and/or transceivers residing in the transceiver stations, may be identical to each other or may be configured to have different characteristics, such as different bandwidths, frequencies and/or signal broadcast strengths.
Each of the transceiver stations 116a and 116b detect broadcasted pollution information messages from a broadcasting transceiver 102a-102e, depending upon the strength of the broadcasted pollution information message and the distance of the transceiver stations 116a and 116b from the broadcasting transceiver. That is, a transceiver stations 116a and 116b detect broadcasted pollution information messages from any transceivers and/or any transceiver stations in its reception range. Preferably, transceiver stations 116a and 116b reside at a suitably elevated location, such as on a tower 120, high building, mountain top or the like to facilitate reception and transmission of pollution information messages. Pollution information messages from the transceivers 102a-102e are relayed by the transceiver stations 116a and 116b to the transceiver unit 106 via RF signals 122a-122b. Each transceiver station has a transceiver (network transceiver) configured to communicate pollution information messages with the transceivers 102a-102e, transceiver stations, and/or at least one transceiver unit 106.
In one embodiment, transceivers are configured to communicate directly with transceiver unit 106, assuming the broadcasting transceivers are within broadcasting range of the transceiver unit 106. For example, pollution detector 114f may detect a fluid discharge 126 from the monitored facility 122. Accordingly, transceiver 102f would broadcast a pollution information message, via signal 118f, directly to the transceiver unit 106.
The transceivers residing in the transceiver station may be the same as one of the transceivers 102a-102f, or be configured to have different characteristics such as different bandwidths, frequencies and/or signal broadcast strengths. In some applications, a unique identification code associated with the broadcasting transceiver station is added to the pollution information message.
For example, a pollution information message detected by the transceiver station 116a is relayed to the transceiver station 116b via RF signal 122a. The pollution information message is then relayed by the transceiver station 116b to the transceiver unit 106 via RF signal 122b. Similarly, a pollution information message detected by the transceiver station 116b is relayed to the transceiver unit 106 via RF signal 122b.
One embodiment of the pollution information message system employs transceivers that use standardized digital communication formats such that the information is communicated as packetized units of digital data. Other embodiments employ other suitable communication formats. Other suitable communication formats may be either digital or analog signals.
The transceiver unit 106 converts received pollution information messages into a suitable communication signal formatted for communication over a hardwire connection 108. In one embodiment, the transceiver unit 106 formats the received broadcasted RF pollution information messages into a standardized RS 232 signal. Another embodiment converts the received pollution information messages into a standardized RS 485 signal. The transceiver unit 106 may be configured to convert the received pollution information messages from the transceivers 102a-102f and/or transceiver stations 116a and 116b of the transceiver network 100 into any suitable signal for transmission over a hardwire interconnection, such as, but not limited to, a metallic conductor, a coaxial cable, an optical fiber cable or the like. In some applications, a unique identification code associated with the transceiver unit 106 is added to the pollution information message.
When transceivers (not shown) at other monitored facilities (not shown) are integrated into the transceiver network 100, a large network of transceivers will be able to communicate pollution information messages to the pollution monitoring management controller 302. For convenience of illustration, only one monitored facility 112 is illustrated in
A portion of the transceiver network 100 illustrated in
Site controller 104 is configured to communicate with any desired number of transceiver units. Furthermore, a plurality of site controllers can be deployed within a monitored area, thereby increasing the area of coverage of the transceiver network 100. There are no known limitations that would limit the number of transceivers in communication with the pollution monitoring control center 300 (
Site controller 104, in another embodiment, is configured to include other functionalities. Such functionalities may be implemented in a site controller without departing substantially from the operation and functionality of the invention. For example, a site controller 104 may be configured to transmit acknowledgment signals back to the transceiver initiating the pollution information message or another designated transceiver. Such an embodiment is particularly advantageous in indicating that a pollution information message has been received from a location of interest. In some applications, a unique identification code associated with the site controller 104 is added to the pollution information message.
Furthermore, for convenience of illustration, the site controller 104 and the transceiver unit 106 are illustrated as separate components coupled together via connection 108. In another embodiment, the transceiver unit 106 and the site controller 104 are incorporated into a single unit that performs substantially the same functionality of the transceiver unit 106 and the site controller 104. Alternatively, the transceiver unit 106 and site controller 104 may be conveniently included in the same housing. Such an alternative embodiment is particularly advantageous when it is desirable to centrally locate components to provide easy access and/or when it is desirable to enclose the devices in a single environmentally protective enclosure.
Each one of the transceivers, transceiver stations and transceiver units, have a unique identification code, such as a unique alpha-numeric identification code, a hexa-decimal code, or a like identification code. For example, transceiver 102b may have the unique identification code “102b”. When a pollution information message is relayed by the transceiver 102b to the pollution monitoring management controller 302 (
Furthermore, the pollution monitoring management controller 302 may specifically poll the transceiver 102b to provide information by broadcasting a signal, using the unique identification code “102b”, such that the transceiver 102b recognizes that it is instructed to broadcast the status information back to the pollution monitoring management controller 302. The pollution information message management controller 302, via site controller 104, instructs transceiver 106 to broadcast an information request signal to the transceiver 102b. Thus, transceiver unit 106 broadcasts an information request signal to transceiver station 116b. Transceiver station 116b broadcasts the information request signal to transceiver station 116a, which then broadcasts the information request signal to the transceiver 102b. Status information may include information of interest such as, but not limited to, the operational condition of the transceiver, the pollution detector, and/or their components. Furthermore, status information may include information regarding pollution detected by the pollution detector, such as but not limited to, current levels of detected pollution, type of detected pollution, nature of the detected pollution or other measured pollution related parameters. Such an embodiment is particularly advantageous in providing pollution information at desired intervals to, for example, but not limited to, form databases to perform scientific studies and/or to demonstrate compliance with relevant pollution regulations.
Similarly, the pollution monitoring management controller 302 is in communication with all of the individual transceivers of
For convenience of illustration, and for convenience of describing the operation and functionality of transceiver 202, the transceiver 202 is illustrated as coupled to a simplified pollution detector 204, via connection 218. Pollution detector 204 includes at least a detector unit 220 and interface unit 222. Detector unit 220 is configured to detect the presence of pollution. Such a detector unit 220, in one embodiment, is configured to detect particular types of pollution and/or to detect the level, quantity, magnitude or the like of the pollution.
For example, such a pollution detector unit 220 may be configured to detect nitrogen oxide (NOX) pollution in the air from a nearby power plant. Another embodiment of the detector unit 220 is configured to generate signals indicating detection of the specified pollutants when the level of the pollutant exceeds a predefined threshold. Other known pollution detectors known in the art of detecting pollution may be similarly coupled to a transceiver for integration into a pollution information message system. Detailed operations of these pollution detectors, and the associated components residing in the pollution detectors, are not described in detail herein other than to the extent necessary to understand the operation and functioning of these detectors when employed as part of a pollution information message system. Accordingly, any such pollution detector, when integrated into a pollution information message system, is intended to be disclosed herein and to be protected by the accompanying claims.
Pollution detector 204 includes an interface unit 222 coupled to the detector unit 220, via connection 224, and coupled to transceiver 202, via connection 218. Interface unit 222 receives pollution information from the detector unit 220 and processes the received information into a signal suitable for the transceiver 202. Thus, the detector unit 220 detects the presence of pollutants and the interface unit 222 configures the information from the detector unit 220 into a signal suitable for the transceiver 202. Then, the pollution information message is generated and transmitted by the transceiver 202. The interface unit 222 may be implemented using any suitable known interface device configured to receive information from a pollution detector and configured to generate a signal suitable for a transceiver employed in a pollution information message system. Other embodiments of the interface unit 222 may be specially fabricated and specially designed interface units manufactured specifically for integration into a pollution information message system. Detailed operation of the interface unit 222, and the associated components residing in the interface unit 222, is not described in detail herein other than to the extent necessary to understand the operation and functioning of the interface unit 222 and its components when employed as part of a pollution information message system. Accordingly, any such interface unit 222 is intended to be disclosed herein and to be protected by the accompanying claims.
Integrating the Pollution Information Message Transceiver System into a Pollution Information Message System Control Center
The pollution monitoring management controller 302 includes at least a processor 308, a memory 310 and an interface 312. Memory 310 includes at least a database 314 and the pollution message monitoring controller logic 316. Processor 308 is coupled to the memory 310 via connection 318 and is coupled to the interface 312 via connection 320.
When one of the plurality of transceivers residing in the transceiver network 100 transmits a pollution information message, the pollution monitoring management controller 302 receives the pollution information message and stores the received pollution information message into database 314 or in another suitable location in a memory. Processor 308 executes the pollution message monitoring controller logic 316 to appropriately store the received pollution information message into the database 314 or in another suitable location in a memory. In one embodiment, database 314 employs a look-up table.
The database 314 includes information of interest such as, but not limited to, the identification code of each the transceivers, the location of the transceiver, and the nature of the pollution information message. The nature of the pollution information message in some applications is determined by the type of pollution detection to which the transceiver is coupled to. For example, if the transceiver is coupled to a pollution detector configured to detect chemical “abc,” the database 314 would include information indicating that a pollution detector is coupled to the transceiver such that a pollution information message received from that transceiver would indicate the possible presence of a chemical “abc” detected by the pollution detector.
Other information of interest may also be included in the database 314. For example, but not limited to, information identifying the specific customer, customer's address and/or attributes of the customer's facility may be included within database 314. Also, individuals that should be contacted when a pollution information message is received may also be included in the database 314. The nature of the pollution detector that is monitored by the transceiver may also be included within the database 314. Such information pertaining to the nature of the detector includes, but is not limited to, make, model, manufacturer, manufacture date and/or components. Accordingly, any type of information of interest may be included within the database 314. Furthermore, information regarding attributes of the transceivers, the transceiver stations, the transceiver units and the site controllers, such as, but not limited to, make, model, manufacturer, manufacture date, components, identification codes and/or locations, may be included in database 314.
The pollution monitoring management controller 302 is illustrated as being coupled to the control console 322, via connection 324. Typically, the control room operators 304 interface with the various components residing in the pollution monitoring control center 300 via one or more control consoles 322. Information is displayed on a suitable interface device, such as a display screen 326. Thus, a control room operator 304, after determining a valid pollution information message is received, may take appropriate actions.
In another embodiment, the pollution monitoring management controller 302 is coupled to an automatic system, such as but not limited to, a system control and data acquisition (SCADA) system. Such an embodiment is advantageous in automatically monitoring and controlling a facility. For example, but not limited to, pollution may be monitored such that a value or gate in a piping system is operated upon detection of pollution.
Communication Between Site Controllers and the Pollution Monitoring Management Controller
As described above with reference to
Site controller 402 is communicating to interface 312 via a public switched telephone network (PSTN) 412, via connections 110 and 306. Thus, site controller 402 is configured to provide a suitable signal having pollution information that is provided to the PSTN 412. PSTN 412 receives the suitably configured pollution information from the site controller 402 and relays the information to the interface 312. Interface 312 converts the received pollution information from the PSTN 412 and reformats the pollution information into a suitable communication signal that is provided to processor 308 (
In one embodiment, when the pollution monitoring management controller 302 issues an acknowledgment signal, the interface 312 converts the acknowledgment signal into a suitable signal formatted for communication over the PSTN 412. The suitably formatted acknowledgment signal is then communicated through the PSTN 412 and is transmitted to the site controller 402 via connections 306 and 110. The site controller 402 then converts the received acknowledgment signal from the PSTN 412 into a suitably formatted signal for transmission out to the selected transceiver(s) as described above.
The components (not shown) residing in the interface 312 and the site controller 402 that are configured to transmit, receive and convert signals from the PSTN 412 are known in the art and, therefore, are not described in detail herein other than to the extent necessary to understand the operation and functioning of these components when employed as part of the interface 312 and the site controller 402. Such known components are too numerous to describe in detail herein, and that any configuration of such known components having the above-described functionality may be implemented in the interface 312 and the site controller 402 without departing substantially from the pollution information message system. Any such implementation of components configured to receive and convert communication signals from PSTN 412 are intended to be within the scope of this disclosure and to be protected by the accompanying claims.
Site controller 404 is communicating to interface 312 via a legacy utility communication system 414, via connections 110 and 306. Thus, site controller 404 is configured to provide a suitable signal having pollution information that is provided to the legacy utility communication system 414. The legacy utility communication system 414 is a known communication system employed by the electric utility or other responsible organization for the monitoring and/or control of an electric energy distribution system or transmission system.
The legacy utility communication system 414 is an integrated network of communication technologies that may include, but is not limited to, microwave communication systems, wire based communication systems, RF communications or fiber optics networks. Furthermore, these various communication systems are integrated into a composite communication system. Thus site controller 404 is configured to interface at convenient location on the legacy utility communication system 414 such that the site controller 404 provides the appropriately formatted information to the legacy utility communication system.
For example, site controller 404 may integrate into an existing fiber optics portion of the legacy utility communication system 414. In one embodiment, site controller 404 is configured to interface with a suitably configured fiber optics connector to provide interconnectivity directly to the fiber optics networks, or alternatively, is configured to communicate with various communication components that are associated with the communication of optical signals over the fiber optics network. Another embodiment of site controller 404 is configured to communicate with the microwave portions, the wire portions, or the RF portions of the legacy utility communication system 414.
The legacy utility communication system 414 receives the suitably configured pollution information from the site controller 410 and relays the information to the interface 312. Interface 312 converts the received pollution information from the legacy utility communication system 414 and reformats the pollution information into a suitable communication signal that is provided to processor 308 (
In one embodiment, when the pollution monitoring management controller 302 issues an acknowledgment signal, the interface 312 converts the acknowledgment signal into a suitable signal formatted for communication over the legacy utility communication system 414. The suitably formatted acknowledgment signal is then communicated through the legacy utility communication system 414 and is transmitted to the site controller 404, via connections 306 and 110. The site controller 404 then converts the received acknowledgment signal from the legacy utility communication system 414 into a suitably formatted signal for transmission out to the selected transceiver(s) as described above.
The components (not shown) residing in the interface 312 and the site controller 404 that are configured to transmit, receive and convert signals from the legacy utility communication system 414 are known in the art and, therefore, are not described in detail herein other than to the extent necessary to understand the operation and functioning of these components when employed as part of the interface 312 and the site controller 404. Such known components are too numerous to describe in detail herein and that any configuration of such known components having the above-described functionality may be implemented in the interface 312 and the site controller 404 without departing substantially from the pollution information message system. Any such implementation of the components configured to receive and convert communication signals from the legacy utility communication system 414 are intended to be within the scope of this disclosure and to be protected by the accompanying claims.
Site controller 406 is communicating to interface 312 via a digital communication system 416, via connections 110 and 306. Thus, site controller 406 is configured to provide a suitable signal having pollution information that is provided to the digital communication system 416. The digital communication system 416 is a based communication system configured to communication information in a digital format. Non-limiting examples of such digitally based communications systems include digital subscriber loops (DSL), X.25, Internet protocol, (IP), Ethernet, Integrated services digital network (ISDN) and asynchronous transfer mode (ATM). Such digital communication systems may employ a PSTN, a frame relay based network and/or cable network. Furthermore, such digital communication systems may employ combinations of the above-described systems having a plurality of segments employing different technologies on each segment.
The digital communication system 416 receives the suitably configured pollution information from the site controller 406 and relays the information to the interface 312. Interface 312 converts the received pollution information from the digital communication system 416 and reformats the pollution information into a suitable communication signal that is provided to processor 308 (
In one embodiment, when the pollution monitoring management controller 302 issues an acknowledgment signal, the interface 312 converts the acknowledgment signal into a suitable signal formatted for communication over the digital communication system 416. The suitably formatted acknowledgment signal is then communicated through the digital communication system 416 and is transmitted to the site controller 406, via connections 306 and 110. The site controller 406 then converts the received acknowledgment signal from the digital communication system 416 into a suitably formatted signal for transmission out to the selected transceiver(s) as described above.
The components (not shown) residing in the interface 312 and site controller 406 that are configured to received and convert signals from the digital communication system 416 are known in the art and, therefore, are not described in detail herein other than to the extent necessary to understand the operation and functioning of these components when employed as part of the interface 312 and the site controller 406. Such well known components are too numerous to describe in detail herein, and that any configuration of such known components having the above-described functionality may be implemented in the interface 312 and the site controller 406 without departing substantially from the pollution information message system. Any such implementation of the components configured to receive and convert communication signals from the digital communication system are intended to be within the scope of this disclosure and to be protected by the accompanying claims.
Site controller 408 is communicating to interface 312 via a radio frequency (RF) communication system having at least a first transceiver 418 configured to broadcast RF signals 420 to transceiver 422. An alternative embodiment employs other mediums of broadcast signals, such as, but not limited to, microwave. Thus, site controller 408 is configured to provide a suitable signal having pollution information that is provided to the transceiver 418. The transceiver 418 receives the suitably configured pollution information from the site controller 408 and relays the information to transceiver 422. The transceiver 422 relays the information to the interface 312. Interface 312 converts the received pollution information from the transceiver 422 and reformats the pollution information into a suitable communication signal that is provided to processor 308 (
In one embodiment, when the pollution monitoring management controller 302 issues an acknowledgment signal, the interface 312 converts the acknowledgment signal into a suitable signal formatted for communication between transceivers 422 and 418. The suitably formatted acknowledgment signal is then communicated through the transceivers 422 and 418 and is transmitted to the site controller 408 via connections 306 and 110. The site controller 408 then converts the received acknowledgment signal from the transceivers 422 and 418 into a suitably formatted signal for transmission out to the selected transceiver(s) as described above.
The components (not shown) residing in the interface 312 and the site controller 408 that are configured to transmit, receive and convert signals from the transceivers 418 and 422 are known in the art and, therefore, are not described in detail herein other than to the extent necessary to understand the operation and functioning of these components when employed as part of the interface 312 and the site controller 408. Such known components are too numerous to describe in detail herein, and that any configuration of such known components having the above-described functionality may be implemented in the interface 312 and the site controller 408 without departing substantially from the pollution information message system. Any such implementation of the components configured to receive and convert communication signals from the transceivers 418 and 422 are intended to be within the scope of this disclosure and to be protected by the accompanying claims.
Site controller 410 is communicating to interface 312 via an Internet system 424, via connections 110 and 306. Thus, site controller 410 is configured to provide a suitable signal having pollution information that is provided to the Internet system 424. Internet system 424 receives the suitably configured pollution information from the site controller 410 and relays the information to the interface 312. Interface 312 converts the received pollution information from the Internet system 424 and reformats the pollution information into a suitable communication signal that is provided to processor 308 (
In one embodiment, when the pollution monitoring management controller 302 issues an acknowledgment signal, the interface 312 converts the acknowledgment signal into a suitable signal formatted for communication over the Internet system 424. The suitably formatted acknowledgment signal is then communicated through the Internet system 424 and is transmitted to the site controller 410 via connections 306 and 110. The site controller 410 then converts the received acknowledgment signal from the Internet system 424 into a suitably formatted signal for transmission out to the selected transceiver(s) as described above.
The components (not shown) residing in the interface 312 and the site controller 410 that are configured to transmit, receive and convert signals from the Internet system 424 are known in the art and, therefore, are not described in detail herein other than to the extent necessary to understand the operation and functioning of those components when employed as part of the interface 312 and the site controller 410. Such well known components are too numerous to describe in detail herein, and that any configuration of such known components having the above-described functionality may be implemented in the interface 312 and the site controller 410 without departing substantially from the pollution information message system. Any such implementation of components configured to receive and convert communication signals from the Internet system 424 are intended to be within the scope of this disclosure and to be protected by the accompanying claims.
Other embodiments of the site controllers and the interface 312 are configured to communicate with other communication networks or combination networks having a plurality of segments employing different communication technologies on each segment. For example, a site controller and a interface could be configured to communicate over satellite based communication systems. Another example includes a combination system that employs the PSTN 408 and the Internet system 412. Such a combination system would include an interface device to interface the PSTN 408 with the Internet system 412. There are no intended limitations with respect to the interfacing communication technology through which a site controller and an interface 312 (
One embodiment of the site controller and/or interface 312 employs a plurality of standardized components, and is configured to receive an interface card. The interface card is configured to provide connectivity to the communication system that is used by the pollution information message system to communicate over. Such an embodiment is particularly suited to implementing a mass produced pollution information message system.
Operation of the Pollution Monitoring Management Controller
When the pollution message monitoring controller logic 316 is implemented as software and stored in memory 310 (
The process starts at block 502 when the presence of pollution is detected by a pollution detector, as described above. At block 504, a transceiver is actuated in response to receiving a signal from the pollution detector such that a pollution information message is broadcasted over the transceiver network 100 (
At block 510, a determination is made whether or not other information should be provided. If no other information is provided at block 510 (the NO condition), the process returns to block 502. If other information should be provided to the control room operators 304 (the YES condition), the other information is provided to the control room operators 304 at block 512. As described above, such information may include, but is not limited to, the identification code of each the transceivers, the location of the transceiver, and the nature of the detected pollution.
At block 514, a determination is made whether or not other interested parties should be notified. If no other interested parties are to be notified at block 510 (the NO condition), the process returns to block 502. If other information should be provided to the control room operators 304 (the YES condition), the other information is provided to the control room operators 304 at block 516. For example, the pollution message monitoring controller logic 316 may determine that a company representative associated with a monitored facility, government regulatory authorities, or other individual(s) identified in the database 314 should be notified of the received >pollution information message. The process then returns to block 502 to await the next pollution event.
Transceiver Maintenance Feature
One embodiment described above employs transceivers configured to transmit pollution information messages back to the pollution monitoring management controller 302 (
One embodiment employing the above-described maintenance feature employs transceivers configured to periodically transmit status information to the pollution monitoring management controller 302 at predefined time intervals. Another embodiment employs transceivers configured to respond to a status information request generated by the pollution monitoring management controller 302. Here, logic residing in the pollution message monitoring controller logic 316 would perform a maintenance function wherein pre-selected transceivers are requested to provide status information. Another embodiment employs transceivers configured to generate periodic status reports to the pollution monitoring management controller 302 and are configured to respond to requests for status information from the pollution monitoring management controller 302. In yet another embodiment, all three types of the above-described transceivers are employed to communicate status information to the pollution monitoring management controller 302.
When a transceiver component that broadcast the status information fails, such as, but not limited to, the transceiver itself, the failure is detected by a loss of signal. Thus, in an embodiment employing a transceiver that is to provide an acknowledgment signal, or provide a status signal in response to a status information request, or is to provide periodic status information reports, the failure of the transceiver to respond or provide information at scheduled times and/or in response to a status inquiry, indicates a component failure.
Summarizing, the above-described embodiment includes a maintenance functionality such that the operational status of the transceivers residing in the transceiver network 100 (
Defining Transceiver Communication Paths
For convenience describing the operation and functionality of the transceiver network 100 (
In one embodiment, the communication path that a transceiver employs for broadcasting signals is predefined. For example, transceiver 102a in
In one embodiment, transmission paths for all transceivers are predetermined by the pollution monitoring management controller 302 (
In one embodiment, the communication paths are defined by using the identification codes associated with each transceiver, and identification codes assigned to the transceiver stations, transceiver units and site controllers. For example, if site controller 104 is defined by the identification code “104”, transceiver unit 106 is defined by the identification code “106”, transceiver station 116b is defined by the identification code “116b”, transceiver station 116a is defined by the identification code “116a”, and transceiver 102a is defined by the identification code “102a”, the path between the site controller 104 and transceiver 102a is simply defined by a code such as 104.106.116b.116a.102a (where each number corresponds to the component identification code). Other suitable codes are easily defined.
Such a system is described in detail in the commonly assigned patent entitled “MULTI-FUNCTION GENERAL PURPOSE TRANSCEIVER,” filed Mar. 18, 1999, and accorded U.S. Pat. No. 6,233,327B1, issued on May 15, 2001 and incorporated herein by reference in its entirety.
In one embodiment of the pollution information message system, failure of a transceiver or a transceiver component is detected in a manner described above. When such a failure is detected, communications with other transceivers may be disrupted if the failed transceiver or transceiver component is in the communication path of other transceivers. In such a situation, upon the detection of the failed transceiver or transceiver component, the pollution monitoring management controller 302 (
Similarly, the communication path for transceiver 102b would then be redefined such that transceiver 102b is communicating with transceiver 102c (assuming that transceiver 102c is sufficiently close to transceiver 102b to detect signals broadcasted from transceiver 102b). Thus, transceiver 102b would be in communication with the transceiver unit 106 through a newly defined path indicated by the signals 128b, 128a, 1118d and 122b (
Similarly, the communication path for transceiver 102a would then be redefined such that transceiver 102a is communicating with transceiver 102b (assuming that transceiver 102b is sufficiently close to transceiver 102a to detect signals broadcasted from transceiver 102a). Thus, transceiver 102a would be in communication with the transceiver unit 106 through a newly defined path indicated by the signals 128c, 128b, 128a, 118d and 122b (
One skilled in the art will appreciate that the possible communication paths in a transceiver network 100 are nearly limitless, and that such communication paths are easily redefined by the pollution monitoring management controller 302. The above described examples are intended to illustrate some of the alternative redefined communication paths to explain the operation and functionality of the maintenance feature of one embodiment of the pollution information message system.
Alternative Embodiments of the Pollution Information Message System
For convenience of describing the operation and functionality of the pollution monitoring management controller 302 (
Furthermore, the components illustrated as residing in the pollution monitoring management controller 302 may reside in alternative convenient locations outside of the pollution monitoring management controller 302 without adversely affecting the operation and functionality of the pollution information message system. Such components may even be integrated with other existing components residing in the pollution monitoring control center, thereby minimizing the cost of implementing a pollution information message system.
For example, the database 314 residing in the memory 310 (
Similarly, the pollution message monitoring controller logic 316 (
For convenience of describing the operation and functionality of the pollution monitoring management controller 302 (
One embodiment of the pollution information message system is configured to couple a plurality of transceivers to a plurality of mobile air pollution detectors. A detector is used to monitor each one of a fleet of vehicles such that total pollution of the entire fleet is monitored or pollution from an individual unit of the fleet is monitored. Another embodiment is configured to monitor individual vehicles and/or various components of the vehicle to detect pollution. Such an embodiment is desirable in applications where, for example, but not limited to, exhaust emission and fluid leakages are monitored on the vehicle.
Another embodiment employs a power line carrier (PLC) signal to communicate signals from pollution detectors such that a receiving transceiver generates a pollution information message. For example, but not limited to, detector unit 220 (
Transceiver 230 is coupled to the electric distribution network 228 at a suitable location. For convenience of illustration, transceiver 230 is illustrated as being coupled to an electrical outlet 232. Electrical outlet 232 is coupled to the electric distribution network 228 via wire 234. One embodiment employs a standard outlet spade-type connector (not shown) to couple the transceiver 230 to the electrical outlet 232. Another embodiment of the transceiver 230 is coupled to the outlet 232 with wire connections coupled at suitable connection points. Another embodiment of the transceiver 230 is coupled to another suitable location on the electric distribution network 234 such that the transceiver 230 is able to reliably receive signals from the detector unit 220.
Thus, when the detector unit 220 detects pollution, a PLC signal is communicated from the detector unit 220 to the transceiver 230 over the electric distribution network 228. Upon receiving a PLC signal having pollution information, the transceiver 226 generates and communicates a pollution information signal 236 in any one of the previously described manners. The communication of PLC signals, and the equipment that generates PLC signals, is known in the art, and is therefore not described in further detail other than to the extent necessary to understand the communication of PLC signals to a transceiver employed as part of a pollution monitoring management system.
Other detectors coupled to the electric distribution network may also be configured to generate PLC signals that are communicated to transceiver 226. Such an embodiment of pollution detection system employing detector units communicating to transceiver 230 with PLC signals is particularly advantageous when it is desirable to employ a pollution detection system within a facility having a distribution network 228 that can be conveniently accessed.
The embodiment of the pollution information message system was described herein to include a plurality of transceiver units configured to communicate based upon a predefined communication path specified by the pollution monitoring management controller 302. An alternative embodiment is configured to communicate with other special purpose systems that employ compatible transceivers. For example, a system for monitoring emergency, alarm, climate, or other conditions in a defined territory is disclosed in the co-pending commonly assigned non-provisional application entitled “SYSTEM FOR MONITORING CONDITIONS IN A RESIDENTIAL LIVING COMMUNITY,” filed Mar. 18, 1999, and accorded Ser. No. 09/271,517, incorporated herein by reference in its entirety. Another system for controlling electricity demand in a defined territory is disclosed in the co-pending commonly assigned non-provisional application entitled “SYSTEM AND METHOD FOR CONTROLLING POWER DEMAND OVER AN INTEGRATED WIRELESS NETWORK,” filed Aug. 15, 2001, and accorded Ser. No. 09/929,926, incorporated herein by reference in its entirety. The above applications describe a computerized system for monitoring power and/or other conditions in a defined territory using a network of transceivers communicating back to a remote facility via a plurality of repeaters and a central system (such as a site controller). The plurality of transceivers configured for monitoring power and/or other conditions in a defined territory are integrated with a plurality of transceivers for controlling customer premises appliances, thereby reducing overall facility, maintenance and installation costs by employing common units. For example, a transceiver controlling an air conditioning unit or a transceiver monitoring pollution (in accordance with the application Ser. No. 09/929,926) may be integrated to communicate through same transceiver stations, transceiver units and/or site controllers communication pollution information messages. The integrated system would simply recognize the transceiver communicating a pollution information message and appropriately route communications to and/or from that transceiver to the appropriate remote facility. One skilled in the art will appreciate that a pollution information message system described herein is interpretable into any other special purpose system or a multipurpose system based upon a network of similarly configured transceivers that communicate through common components.
It should be emphasized that the above-described embodiments of the present invention, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present invention and protected by the following claims.
This application is a continuation of U.S. Ser. No. 12/206,106, filed 8 Sep. 2008, now U.S. Pat. No. 7,739,378, which is a continuation of U.S. Ser. No. 10/021,100, filed 30 Oct. 2001, now U.S. Pat. No. 7,424,527; both of said patent applications are hereby incorporated by reference in their entireties as if fully set forth below.
Number | Name | Date | Kind |
---|---|---|---|
3665475 | Gram | May 1972 | A |
3705385 | Batz | Dec 1972 | A |
3723876 | Seaborn, Jr. | Mar 1973 | A |
3742142 | Martin | Jun 1973 | A |
3848231 | Wootton | Nov 1974 | A |
3892948 | Constable | Jul 1975 | A |
3906460 | Halpern | Sep 1975 | A |
3914692 | Seaborn, Jr. | Oct 1975 | A |
3922492 | Lumsden | Nov 1975 | A |
3925763 | Wadhwani et al. | Dec 1975 | A |
4025315 | Mazelli | May 1977 | A |
4056684 | Lindstrom | Nov 1977 | A |
4058672 | Crager et al. | Nov 1977 | A |
4083003 | Haemmig | Apr 1978 | A |
4120452 | Kimura et al. | Oct 1978 | A |
4124839 | Cohen | Nov 1978 | A |
4135181 | Bogacki et al. | Jan 1979 | A |
4204195 | Bogacki | May 1980 | A |
4213119 | Ward et al. | Jul 1980 | A |
4277837 | Stuckert | Jul 1981 | A |
4278975 | Kimura et al. | Jul 1981 | A |
4284852 | Szybicki et al. | Aug 1981 | A |
4322842 | Martinez | Mar 1982 | A |
4345116 | Ash et al. | Aug 1982 | A |
4354181 | Spletzer | Oct 1982 | A |
4395780 | Gohm et al. | Jul 1983 | A |
4396910 | Enemark et al. | Aug 1983 | A |
4396915 | Farnsworth et al. | Aug 1983 | A |
4399531 | Grande et al. | Aug 1983 | A |
4406016 | Abrams et al. | Sep 1983 | A |
4417450 | Morgan, Jr. et al. | Nov 1983 | A |
4436957 | Mazza et al. | Mar 1984 | A |
4446454 | Pyle | May 1984 | A |
4446458 | Cook | May 1984 | A |
4454414 | Benton | Jun 1984 | A |
4468656 | Clifford et al. | Aug 1984 | A |
4488152 | Arnason et al. | Dec 1984 | A |
4495496 | Miller, III | Jan 1985 | A |
4551719 | Carlin et al. | Nov 1985 | A |
4611198 | Levinson et al. | Sep 1986 | A |
4621263 | Takenaka et al. | Nov 1986 | A |
4630035 | Stahl et al. | Dec 1986 | A |
4631357 | Grunig | Dec 1986 | A |
4665519 | Kirchner et al. | May 1987 | A |
4669113 | Ash et al. | May 1987 | A |
4670739 | Kelly, Jr. | Jun 1987 | A |
4692761 | Robinton | Sep 1987 | A |
4704724 | Krishnan et al. | Nov 1987 | A |
4707852 | Jahr et al. | Nov 1987 | A |
4731810 | Watkins | Mar 1988 | A |
4742296 | Petr et al. | May 1988 | A |
4757185 | Onishi | Jul 1988 | A |
4788721 | Krishnan et al. | Nov 1988 | A |
4792946 | Mayo | Dec 1988 | A |
4799059 | Grindahl et al. | Jan 1989 | A |
4800543 | Lyndon-James et al. | Jan 1989 | A |
4814763 | Nelson et al. | Mar 1989 | A |
4825457 | Lebowitz | Apr 1989 | A |
4829561 | Matheny | May 1989 | A |
4849815 | Streck | Jul 1989 | A |
4851654 | Nitta | Jul 1989 | A |
4856046 | Streck et al. | Aug 1989 | A |
4857912 | Everett, Jr. et al. | Aug 1989 | A |
4864559 | Perlman | Sep 1989 | A |
4875231 | Hara et al. | Oct 1989 | A |
4884123 | Dixit et al. | Nov 1989 | A |
4884132 | Morris et al. | Nov 1989 | A |
4897644 | Hirano | Jan 1990 | A |
4906828 | Halpern | Mar 1990 | A |
4908769 | Vaughan et al. | Mar 1990 | A |
4912656 | Cain et al. | Mar 1990 | A |
4918432 | Pauley | Apr 1990 | A |
4918690 | Markkula, Jr. et al. | Apr 1990 | A |
4918995 | Pearman et al. | Apr 1990 | A |
4924462 | Sojka | May 1990 | A |
4928299 | Tansky et al. | May 1990 | A |
4939726 | Flammer et al. | Jul 1990 | A |
4940976 | Gastouniotis et al. | Jul 1990 | A |
4949077 | Mbuthia | Aug 1990 | A |
4952928 | Carroll et al. | Aug 1990 | A |
4962496 | Vercellotti et al. | Oct 1990 | A |
4967366 | Kaehler | Oct 1990 | A |
4968970 | LaPorte | Nov 1990 | A |
4968978 | Stolarczyk | Nov 1990 | A |
4972504 | Daniel, Jr. et al. | Nov 1990 | A |
4973957 | Shimizu et al. | Nov 1990 | A |
4973970 | Reeser | Nov 1990 | A |
4977612 | Wilson | Dec 1990 | A |
4980907 | Raith et al. | Dec 1990 | A |
4987536 | Humblet | Jan 1991 | A |
4989230 | Gillig et al. | Jan 1991 | A |
4991008 | Nama | Feb 1991 | A |
4993059 | Smith et al. | Feb 1991 | A |
4998095 | Shields | Mar 1991 | A |
4999607 | Evans | Mar 1991 | A |
5007052 | Flammer | Apr 1991 | A |
5032833 | Laporte | Jul 1991 | A |
5038372 | Elms et al. | Aug 1991 | A |
5055851 | Sheffer | Oct 1991 | A |
5057814 | Onan et al. | Oct 1991 | A |
5061997 | Rea et al. | Oct 1991 | A |
5079768 | Flammer | Jan 1992 | A |
5086391 | Chambers | Feb 1992 | A |
5088032 | Bosack | Feb 1992 | A |
5091713 | Horne et al. | Feb 1992 | A |
5111199 | Tomoda et al. | May 1992 | A |
5113183 | Mizuno et al. | May 1992 | A |
5113184 | Katayama | May 1992 | A |
5115224 | Kostusiak et al. | May 1992 | A |
5115433 | Baran et al. | May 1992 | A |
5117422 | Hauptschein et al. | May 1992 | A |
5124624 | de Vries et al. | Jun 1992 | A |
5128855 | Hilber et al. | Jul 1992 | A |
5130519 | Bush et al. | Jul 1992 | A |
5130987 | Flammer | Jul 1992 | A |
5131038 | Puhl et al. | Jul 1992 | A |
5134650 | Blackmon | Jul 1992 | A |
5136285 | Okuyama | Aug 1992 | A |
5138615 | Lamport et al. | Aug 1992 | A |
5155481 | Brennan, Jr. et al. | Oct 1992 | A |
5159317 | Brav | Oct 1992 | A |
5159592 | Perkins | Oct 1992 | A |
5162776 | Bushnell et al. | Nov 1992 | A |
5170393 | Peterson et al. | Dec 1992 | A |
5177342 | Adams | Jan 1993 | A |
5189287 | Parienti | Feb 1993 | A |
5191192 | Takahira et al. | Mar 1993 | A |
5191326 | Montgomery | Mar 1993 | A |
5193111 | Matty et al. | Mar 1993 | A |
5195018 | Kwon et al. | Mar 1993 | A |
5197095 | Bonnet et al. | Mar 1993 | A |
5200735 | Hines | Apr 1993 | A |
5204670 | Stinton | Apr 1993 | A |
5212645 | Wildes et al. | May 1993 | A |
5216502 | Katz | Jun 1993 | A |
5221838 | Gutman et al. | Jun 1993 | A |
5223844 | Mansell et al. | Jun 1993 | A |
5224648 | Simon et al. | Jul 1993 | A |
5231658 | Eftechiou | Jul 1993 | A |
5235630 | Moody et al. | Aug 1993 | A |
5239294 | Flanders et al. | Aug 1993 | A |
5239575 | White et al. | Aug 1993 | A |
5241410 | Streck et al. | Aug 1993 | A |
5243338 | Brennan, Jr. et al. | Sep 1993 | A |
5245633 | Schwartz et al. | Sep 1993 | A |
5251205 | Callon et al. | Oct 1993 | A |
5252967 | Brennan et al. | Oct 1993 | A |
5253167 | Yoshida et al. | Oct 1993 | A |
5265150 | Helmkamp et al. | Nov 1993 | A |
5265162 | Bush et al. | Nov 1993 | A |
5266782 | Alanara et al. | Nov 1993 | A |
5272747 | Meads | Dec 1993 | A |
5276680 | Messenger | Jan 1994 | A |
5282204 | Shpancer et al. | Jan 1994 | A |
5282250 | Dent et al. | Jan 1994 | A |
5289165 | Belin | Feb 1994 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5291516 | Dixon et al. | Mar 1994 | A |
5295154 | Meier et al. | Mar 1994 | A |
5305370 | Kearns et al. | Apr 1994 | A |
5309501 | Kozik et al. | May 1994 | A |
5315645 | Matheny | May 1994 | A |
5317309 | Vercellotti et al. | May 1994 | A |
5319364 | Waraksa et al. | Jun 1994 | A |
5319698 | Glidewell et al. | Jun 1994 | A |
5319711 | Servi | Jun 1994 | A |
5323384 | Norwood et al. | Jun 1994 | A |
5325429 | Kurgan | Jun 1994 | A |
5329394 | Calvani et al. | Jul 1994 | A |
5331318 | Montgomery | Jul 1994 | A |
5334974 | Simms et al. | Aug 1994 | A |
5335265 | Cooper et al. | Aug 1994 | A |
5343493 | Karimullah | Aug 1994 | A |
5344068 | Haessig | Sep 1994 | A |
5345231 | Koo et al. | Sep 1994 | A |
5345595 | Johnson et al. | Sep 1994 | A |
5347263 | Carroll et al. | Sep 1994 | A |
5352278 | Korver et al. | Oct 1994 | A |
5354974 | Eisenberg | Oct 1994 | A |
5355278 | Hosoi et al. | Oct 1994 | A |
5355513 | Clarke et al. | Oct 1994 | A |
5365217 | Toner | Nov 1994 | A |
5371736 | Evan | Dec 1994 | A |
5382778 | Takahira et al. | Jan 1995 | A |
5383134 | Wrzesinski | Jan 1995 | A |
5383187 | Vardakas et al. | Jan 1995 | A |
5390206 | Rein et al. | Feb 1995 | A |
5406619 | Akhteruzzaman et al. | Apr 1995 | A |
5412192 | Hoss | May 1995 | A |
5412654 | Perkins | May 1995 | A |
5412760 | Peitz | May 1995 | A |
5416475 | Tolbert et al. | May 1995 | A |
5416725 | Pacheco et al. | May 1995 | A |
5418812 | Reyes et al. | May 1995 | A |
5420910 | Rudokas et al. | May 1995 | A |
5424708 | Ballesty et al. | Jun 1995 | A |
5430729 | Rahnema | Jul 1995 | A |
5432507 | Mussino et al. | Jul 1995 | A |
5438329 | Gastouniotis et al. | Aug 1995 | A |
5439414 | Jacob | Aug 1995 | A |
5440545 | Buchholz et al. | Aug 1995 | A |
5442553 | Parrillo | Aug 1995 | A |
5442633 | Perkins et al. | Aug 1995 | A |
5445287 | Center et al. | Aug 1995 | A |
5445347 | Ng | Aug 1995 | A |
5451929 | Adelman et al. | Sep 1995 | A |
5451938 | Brennan, Jr. | Sep 1995 | A |
5452344 | Larson | Sep 1995 | A |
5454024 | Lebowitz | Sep 1995 | A |
5455569 | Sherman et al. | Oct 1995 | A |
5465401 | Thompson | Nov 1995 | A |
5467074 | Pedtke | Nov 1995 | A |
5467082 | Sanderson | Nov 1995 | A |
5467345 | Cutler, Jr. et al. | Nov 1995 | A |
5468948 | Koenck et al. | Nov 1995 | A |
5471201 | Cerami et al. | Nov 1995 | A |
5473322 | Carney | Dec 1995 | A |
5475689 | Kay et al. | Dec 1995 | A |
5479400 | Dilworth et al. | Dec 1995 | A |
5481259 | Bane | Jan 1996 | A |
5481532 | Hassan et al. | Jan 1996 | A |
5484997 | Haynes | Jan 1996 | A |
5488608 | Flammer, III | Jan 1996 | A |
5493273 | Smurlo et al. | Feb 1996 | A |
5493287 | Bane | Feb 1996 | A |
5502726 | Fischer | Mar 1996 | A |
5504746 | Meier | Apr 1996 | A |
5506837 | Sollner et al. | Apr 1996 | A |
5508412 | Kast et al. | Apr 1996 | A |
5509073 | Monnin | Apr 1996 | A |
5513244 | Joao et al. | Apr 1996 | A |
5515419 | Sheffer | May 1996 | A |
5517188 | Carroll et al. | May 1996 | A |
5522089 | Kikinis et al. | May 1996 | A |
5528215 | Siu et al. | Jun 1996 | A |
5528507 | McNamara et al. | Jun 1996 | A |
5539825 | Akiyama et al. | Jul 1996 | A |
5541938 | Di Zenzo et al. | Jul 1996 | A |
5542100 | Hatakeyama | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5544322 | Cheng et al. | Aug 1996 | A |
5544784 | Malaspina | Aug 1996 | A |
5548632 | Walsh et al. | Aug 1996 | A |
5550358 | Tait et al. | Aug 1996 | A |
5550359 | Bennett | Aug 1996 | A |
5550535 | Park | Aug 1996 | A |
5553094 | Johnson et al. | Sep 1996 | A |
5555258 | Snelling et al. | Sep 1996 | A |
5555286 | Tendler | Sep 1996 | A |
5557320 | Krebs | Sep 1996 | A |
5557748 | Norris | Sep 1996 | A |
5562537 | Zver et al. | Oct 1996 | A |
5565857 | Lee | Oct 1996 | A |
5568535 | Sheffer et al. | Oct 1996 | A |
5570084 | Ritter et al. | Oct 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5572528 | Shuen | Nov 1996 | A |
5573181 | Ahmed | Nov 1996 | A |
5574111 | Brichta et al. | Nov 1996 | A |
5583850 | Snodgrass et al. | Dec 1996 | A |
5583914 | Chang et al. | Dec 1996 | A |
5587705 | Morris | Dec 1996 | A |
5588005 | Ali et al. | Dec 1996 | A |
5589878 | Cortjens et al. | Dec 1996 | A |
5590038 | Pitroda | Dec 1996 | A |
5590179 | Shincovich et al. | Dec 1996 | A |
5592491 | Dinkins | Jan 1997 | A |
5594431 | Sheppard et al. | Jan 1997 | A |
5596719 | Ramakrishnan et al. | Jan 1997 | A |
5596722 | Rahnema | Jan 1997 | A |
5602843 | Gray | Feb 1997 | A |
5604414 | Milligan et al. | Feb 1997 | A |
5604869 | Mincher et al. | Feb 1997 | A |
5606361 | Davidsohn et al. | Feb 1997 | A |
5608721 | Natarajan et al. | Mar 1997 | A |
5608786 | Gordon | Mar 1997 | A |
5613620 | Center et al. | Mar 1997 | A |
5615227 | Schumacher, Jr. et al. | Mar 1997 | A |
5615277 | Hoffman | Mar 1997 | A |
5617084 | Sears | Apr 1997 | A |
5619192 | Ayala | Apr 1997 | A |
5623495 | Eng et al. | Apr 1997 | A |
5625410 | Washino et al. | Apr 1997 | A |
5628050 | McGraw et al. | May 1997 | A |
5629687 | Sutton et al. | May 1997 | A |
5629875 | Adair, Jr. | May 1997 | A |
5630209 | Wizgall et al. | May 1997 | A |
5631554 | Briese et al. | May 1997 | A |
5636216 | Fox et al. | Jun 1997 | A |
5640002 | Ruppert et al. | Jun 1997 | A |
5644294 | Ness | Jul 1997 | A |
5655219 | Jusa et al. | Aug 1997 | A |
5657389 | Houvener | Aug 1997 | A |
5659300 | Dresselhuys et al. | Aug 1997 | A |
5659303 | Adair, Jr. | Aug 1997 | A |
5668876 | Falk et al. | Sep 1997 | A |
5673252 | Johnson et al. | Sep 1997 | A |
5673259 | Quick, Jr. | Sep 1997 | A |
5673304 | Connor et al. | Sep 1997 | A |
5673305 | Ross | Sep 1997 | A |
5682139 | Pradeep et al. | Oct 1997 | A |
5682476 | Tapperson et al. | Oct 1997 | A |
5689229 | Chaco et al. | Nov 1997 | A |
5691980 | Welles, II et al. | Nov 1997 | A |
5696695 | Ehlers et al. | Dec 1997 | A |
5699328 | Ishizaki et al. | Dec 1997 | A |
5701002 | Oishi et al. | Dec 1997 | A |
5702059 | Chu et al. | Dec 1997 | A |
5704046 | Hogan | Dec 1997 | A |
5704517 | Lancaster, Jr. | Jan 1998 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5706976 | Purkey | Jan 1998 | A |
5708223 | Wyss | Jan 1998 | A |
5708655 | Toth et al. | Jan 1998 | A |
5712619 | Simkin | Jan 1998 | A |
5712980 | Beeler et al. | Jan 1998 | A |
5714931 | Petite et al. | Feb 1998 | A |
5717718 | Rowsell et al. | Feb 1998 | A |
5719564 | Sears | Feb 1998 | A |
5722076 | Sakabe et al. | Feb 1998 | A |
5726534 | Seo | Mar 1998 | A |
5726544 | Lee | Mar 1998 | A |
5726634 | Hess et al. | Mar 1998 | A |
5726644 | Jednacz et al. | Mar 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5732074 | Spaur et al. | Mar 1998 | A |
5732078 | Arango | Mar 1998 | A |
5736965 | Mosebrook et al. | Apr 1998 | A |
5737318 | Melnik | Apr 1998 | A |
5740232 | Pailles et al. | Apr 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5742509 | Goldberg et al. | Apr 1998 | A |
5745849 | Britton | Apr 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5748619 | Meier | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5754227 | Fukuoka | May 1998 | A |
5757783 | Eng et al. | May 1998 | A |
5757788 | Tatsumi et al. | May 1998 | A |
5760742 | Branch et al. | Jun 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5764742 | Howard et al. | Jun 1998 | A |
5767791 | Stoop et al. | Jun 1998 | A |
5771274 | Harris | Jun 1998 | A |
5774052 | Hamm et al. | Jun 1998 | A |
5781143 | Rossin | Jul 1998 | A |
5790644 | Kikinis | Aug 1998 | A |
5790662 | Valerij et al. | Aug 1998 | A |
5790938 | Talarmo | Aug 1998 | A |
5796727 | Harrison et al. | Aug 1998 | A |
5798964 | Shimizu et al. | Aug 1998 | A |
5801643 | Williams et al. | Sep 1998 | A |
5812531 | Cheung et al. | Sep 1998 | A |
5815505 | Mills | Sep 1998 | A |
5818822 | Thomas et al. | Oct 1998 | A |
5822273 | Bary et al. | Oct 1998 | A |
5822309 | Ayanoglu et al. | Oct 1998 | A |
5822544 | Chaco et al. | Oct 1998 | A |
5825772 | Dobbins et al. | Oct 1998 | A |
5826195 | Westerlage et al. | Oct 1998 | A |
5828044 | Jun et al. | Oct 1998 | A |
5832057 | Furman | Nov 1998 | A |
5838223 | Gallant et al. | Nov 1998 | A |
5838237 | Revell et al. | Nov 1998 | A |
5838812 | Pare, Jr. et al. | Nov 1998 | A |
5841118 | East et al. | Nov 1998 | A |
5841764 | Roderique et al. | Nov 1998 | A |
5842976 | Williamson | Dec 1998 | A |
5844808 | Konsmo et al. | Dec 1998 | A |
5845230 | Lamberson | Dec 1998 | A |
5848054 | Mosebrook et al. | Dec 1998 | A |
5852658 | Knight et al. | Dec 1998 | A |
5854994 | Canada et al. | Dec 1998 | A |
5856974 | Gervais et al. | Jan 1999 | A |
5862201 | Sands | Jan 1999 | A |
5864772 | Alvarado et al. | Jan 1999 | A |
5870686 | Monson | Feb 1999 | A |
5872773 | Katzela et al. | Feb 1999 | A |
5873043 | Comer | Feb 1999 | A |
5874903 | Shuey et al. | Feb 1999 | A |
5875185 | Wang et al. | Feb 1999 | A |
5880677 | Lestician | Mar 1999 | A |
5883884 | Atkinson | Mar 1999 | A |
5883886 | Eaton et al. | Mar 1999 | A |
5884184 | Sheffer | Mar 1999 | A |
5884271 | Pitroda | Mar 1999 | A |
5886333 | Miyake | Mar 1999 | A |
5889468 | Banga | Mar 1999 | A |
5892690 | Boatman et al. | Apr 1999 | A |
5892758 | Argyrouis | Apr 1999 | A |
5892924 | Lyon et al. | Apr 1999 | A |
5896097 | Cardozo | Apr 1999 | A |
5897607 | Jenney et al. | Apr 1999 | A |
5898369 | Godwin | Apr 1999 | A |
5898733 | Satyanarayana | Apr 1999 | A |
5905438 | Weiss et al. | May 1999 | A |
5905442 | Mosebrook et al. | May 1999 | A |
5907291 | Chen et al. | May 1999 | A |
5907491 | Canada et al. | May 1999 | A |
5907540 | Hayashi | May 1999 | A |
5907807 | Chavez, Jr. et al. | May 1999 | A |
5909429 | Satyanarayana et al. | Jun 1999 | A |
5914656 | Ojala et al. | Jun 1999 | A |
5914672 | Glorioso et al. | Jun 1999 | A |
5914673 | Jennings et al. | Jun 1999 | A |
5917405 | Joao | Jun 1999 | A |
5917629 | Hortensius et al. | Jun 1999 | A |
5923269 | Shuey et al. | Jul 1999 | A |
5926101 | Dasgupta | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926529 | Hache et al. | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5933073 | Shuey | Aug 1999 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
5941363 | Partyka et al. | Aug 1999 | A |
5941955 | Wilby et al. | Aug 1999 | A |
5946631 | Melnik | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5949779 | Mostafa et al. | Sep 1999 | A |
5949799 | Grivna et al. | Sep 1999 | A |
5953319 | Dutta et al. | Sep 1999 | A |
5953371 | Rowsell et al. | Sep 1999 | A |
5953507 | Cheung et al. | Sep 1999 | A |
5955718 | Levasseur et al. | Sep 1999 | A |
5957718 | Cheng et al. | Sep 1999 | A |
5960074 | Clark | Sep 1999 | A |
5963146 | Johnson et al. | Oct 1999 | A |
5963452 | Etoh et al. | Oct 1999 | A |
5963650 | Simionescu et al. | Oct 1999 | A |
5966658 | Kennedy, III et al. | Oct 1999 | A |
5969608 | Sojdehei et al. | Oct 1999 | A |
5973756 | Erlin | Oct 1999 | A |
5974236 | Sherman | Oct 1999 | A |
5978364 | Melnik | Nov 1999 | A |
5978371 | Mason, Jr. et al. | Nov 1999 | A |
5978578 | Azarya et al. | Nov 1999 | A |
5986574 | Colton | Nov 1999 | A |
5987011 | Toh | Nov 1999 | A |
5987331 | Grube et al. | Nov 1999 | A |
5987421 | Chuang | Nov 1999 | A |
5991625 | Vanderpool | Nov 1999 | A |
5991639 | Rautiola et al. | Nov 1999 | A |
5994892 | Turino et al. | Nov 1999 | A |
5995022 | Plis et al. | Nov 1999 | A |
5995592 | Shirai et al. | Nov 1999 | A |
5995593 | Cho | Nov 1999 | A |
5997170 | Brodbeck | Dec 1999 | A |
5999094 | Nilssen | Dec 1999 | A |
6005759 | Hart et al. | Dec 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6005963 | Bolle et al. | Dec 1999 | A |
6018659 | Ayyagari et al. | Jan 2000 | A |
6021664 | Granato et al. | Feb 2000 | A |
6023223 | Baxter, Jr. | Feb 2000 | A |
6026095 | Sherer et al. | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6028857 | Poor | Feb 2000 | A |
6031455 | Grube et al. | Feb 2000 | A |
6032197 | Birdwell et al. | Feb 2000 | A |
6035213 | Tokuda et al. | Mar 2000 | A |
6035266 | Williams et al. | Mar 2000 | A |
6036086 | Sizer, II et al. | Mar 2000 | A |
6038491 | McGarry et al. | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6046978 | Melnik | Apr 2000 | A |
6054920 | Smith et al. | Apr 2000 | A |
6055561 | Feldman et al. | Apr 2000 | A |
6060994 | Chen | May 2000 | A |
6061604 | Russ et al. | May 2000 | A |
6064318 | Kirchner, III et al. | May 2000 | A |
6067017 | Stewart et al. | May 2000 | A |
6067030 | Burnett et al. | May 2000 | A |
6069886 | Ayerst et al. | May 2000 | A |
6073169 | Shuey et al. | Jun 2000 | A |
6073266 | Ahmed et al. | Jun 2000 | A |
6073840 | Marion | Jun 2000 | A |
6075451 | Lebowitz et al. | Jun 2000 | A |
6078251 | Landt et al. | Jun 2000 | A |
6084867 | Meier | Jul 2000 | A |
6087957 | Gray | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6094622 | Hubbard et al. | Jul 2000 | A |
6097703 | Larsen et al. | Aug 2000 | A |
6100816 | Moore | Aug 2000 | A |
6100817 | Mason, Jr. et al. | Aug 2000 | A |
6101427 | Yang | Aug 2000 | A |
6101445 | Alvarado et al. | Aug 2000 | A |
6108614 | Lincoln et al. | Aug 2000 | A |
6112983 | D'Anniballe et al. | Sep 2000 | A |
6115393 | Engel et al. | Sep 2000 | A |
6115580 | Chuprun et al. | Sep 2000 | A |
6119076 | Williams et al. | Sep 2000 | A |
6121593 | Mansbery et al. | Sep 2000 | A |
6121885 | Masone et al. | Sep 2000 | A |
6122759 | Ayanoglu et al. | Sep 2000 | A |
6124806 | Cunningham et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128551 | Davis et al. | Oct 2000 | A |
6130622 | Hussey et al. | Oct 2000 | A |
6133850 | Moore | Oct 2000 | A |
6137423 | Glorioso et al. | Oct 2000 | A |
6140975 | Cohen | Oct 2000 | A |
6141347 | Shaughnessy et al. | Oct 2000 | A |
6150936 | Addy | Nov 2000 | A |
6150955 | Tracy et al. | Nov 2000 | A |
6157464 | Bloomfield et al. | Dec 2000 | A |
6157824 | Bailey | Dec 2000 | A |
6163276 | Irving et al. | Dec 2000 | A |
6167239 | Wright et al. | Dec 2000 | A |
6172616 | Johnson et al. | Jan 2001 | B1 |
6173159 | Wright et al. | Jan 2001 | B1 |
6174205 | Madsen et al. | Jan 2001 | B1 |
6175922 | Wang | Jan 2001 | B1 |
6177883 | Jennetti et al. | Jan 2001 | B1 |
6178173 | Mundwiler et al. | Jan 2001 | B1 |
6181255 | Crimmins et al. | Jan 2001 | B1 |
6181284 | Madsen et al. | Jan 2001 | B1 |
6181981 | Varga et al. | Jan 2001 | B1 |
6185307 | Johnson, Jr. | Feb 2001 | B1 |
6188354 | Soliman et al. | Feb 2001 | B1 |
6188675 | Casper et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6192390 | Berger et al. | Feb 2001 | B1 |
6195018 | Ragle et al. | Feb 2001 | B1 |
6198390 | Schlager et al. | Mar 2001 | B1 |
6199068 | Carpenter | Mar 2001 | B1 |
6201962 | Sturniolo et al. | Mar 2001 | B1 |
6205143 | Lemieux | Mar 2001 | B1 |
6208247 | Agre et al. | Mar 2001 | B1 |
6208266 | Lyons et al. | Mar 2001 | B1 |
6212175 | Harsch | Apr 2001 | B1 |
6215404 | Morales | Apr 2001 | B1 |
6215440 | Geldart et al. | Apr 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6218958 | Eichstaedt et al. | Apr 2001 | B1 |
6218983 | Kerry et al. | Apr 2001 | B1 |
6219409 | Smith et al. | Apr 2001 | B1 |
6229439 | Tice | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6234111 | Ulman et al. | May 2001 | B1 |
6236332 | Conkright et al. | May 2001 | B1 |
6243010 | Addy et al. | Jun 2001 | B1 |
6246676 | Chen et al. | Jun 2001 | B1 |
6246677 | Nap et al. | Jun 2001 | B1 |
6246886 | Oliva | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6259369 | Monico | Jul 2001 | B1 |
6271752 | Vaios | Aug 2001 | B1 |
6275166 | del Castillo et al. | Aug 2001 | B1 |
6275707 | Reed et al. | Aug 2001 | B1 |
6286050 | Pullen et al. | Sep 2001 | B1 |
6286756 | Stinson et al. | Sep 2001 | B1 |
6288634 | Weiss et al. | Sep 2001 | B1 |
6288641 | Casais | Sep 2001 | B1 |
6295291 | Larkins | Sep 2001 | B1 |
6301514 | Canada et al. | Oct 2001 | B1 |
6304556 | Haas | Oct 2001 | B1 |
6305205 | Derks et al. | Oct 2001 | B1 |
6305602 | Grabowski et al. | Oct 2001 | B1 |
6307843 | Okanoue | Oct 2001 | B1 |
6308111 | Koga | Oct 2001 | B1 |
6311167 | Davis et al. | Oct 2001 | B1 |
6314169 | Schelberg, Jr. et al. | Nov 2001 | B1 |
6317029 | Fleeter | Nov 2001 | B1 |
6327245 | Satyanarayana et al. | Dec 2001 | B1 |
6329902 | Lee et al. | Dec 2001 | B1 |
6334117 | Covert et al. | Dec 2001 | B1 |
6351223 | DeWeerd et al. | Feb 2002 | B1 |
6356205 | Salvo et al. | Mar 2002 | B1 |
6357034 | Muller et al. | Mar 2002 | B1 |
6362745 | Davis | Mar 2002 | B1 |
6363057 | Ardalan et al. | Mar 2002 | B1 |
6363422 | Hunter et al. | Mar 2002 | B1 |
6366217 | Cunningham et al. | Apr 2002 | B1 |
6366622 | Brown et al. | Apr 2002 | B1 |
6369769 | Nap et al. | Apr 2002 | B1 |
6370489 | Williams et al. | Apr 2002 | B1 |
6373399 | Johnson et al. | Apr 2002 | B1 |
6380851 | Gilbert et al. | Apr 2002 | B1 |
6384722 | Williams | May 2002 | B1 |
6392692 | Monroe | May 2002 | B1 |
6393341 | Lawrence et al. | May 2002 | B1 |
6393381 | Williams et al. | May 2002 | B1 |
6393382 | Williams et al. | May 2002 | B1 |
6396839 | Ardalan et al. | May 2002 | B1 |
6400819 | Nakano et al. | Jun 2002 | B1 |
6401081 | Montgomery et al. | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6411889 | Mizunuma et al. | Jun 2002 | B1 |
6415155 | Koshima et al. | Jul 2002 | B1 |
6415245 | Williams et al. | Jul 2002 | B2 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6421354 | Godlewski | Jul 2002 | B1 |
6421731 | Ciotti, Jr. et al. | Jul 2002 | B1 |
6422464 | Terranova | Jul 2002 | B1 |
6424270 | Ali | Jul 2002 | B1 |
6424931 | Sigmar et al. | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6431439 | Suer et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6438575 | Khan et al. | Aug 2002 | B1 |
6441723 | Mansfield, Jr. et al. | Aug 2002 | B1 |
6445291 | Addy et al. | Sep 2002 | B2 |
6456960 | Williams et al. | Sep 2002 | B1 |
6457038 | Defosse | Sep 2002 | B1 |
6462644 | Howell et al. | Oct 2002 | B1 |
6462672 | Besson | Oct 2002 | B1 |
6477558 | Irving et al. | Nov 2002 | B1 |
6483290 | Hemminger et al. | Nov 2002 | B1 |
6484939 | Blaeuer | Nov 2002 | B1 |
6489884 | Lamberson et al. | Dec 2002 | B1 |
6491828 | Sivavec et al. | Dec 2002 | B1 |
6492910 | Ragle et al. | Dec 2002 | B1 |
6496696 | Melnik | Dec 2002 | B1 |
6504357 | Hemminger et al. | Jan 2003 | B1 |
6504834 | Fifield | Jan 2003 | B1 |
6507794 | Hubbard et al. | Jan 2003 | B1 |
6509722 | Lopata | Jan 2003 | B2 |
6513060 | Nixon et al. | Jan 2003 | B1 |
6515586 | Wymore | Feb 2003 | B1 |
6519568 | Harvey et al. | Feb 2003 | B1 |
6532077 | Arakawa | Mar 2003 | B1 |
6538577 | Ehrke et al. | Mar 2003 | B1 |
6542076 | Joao | Apr 2003 | B1 |
6542077 | Joao | Apr 2003 | B2 |
6543690 | Leydier et al. | Apr 2003 | B2 |
6560223 | Egan et al. | May 2003 | B1 |
6574234 | Myer et al. | Jun 2003 | B1 |
6574603 | Dickson et al. | Jun 2003 | B1 |
6584080 | Ganz et al. | Jun 2003 | B1 |
6600726 | Nevo et al. | Jul 2003 | B1 |
6608551 | Anderson et al. | Aug 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6628965 | LaRosa et al. | Sep 2003 | B1 |
6653945 | Johnson et al. | Nov 2003 | B2 |
6654357 | Wiedeman | Nov 2003 | B1 |
6665278 | Grayson | Dec 2003 | B2 |
6671586 | Davis et al. | Dec 2003 | B2 |
6671819 | Passman et al. | Dec 2003 | B1 |
6674403 | Gray et al. | Jan 2004 | B2 |
6678255 | Kuriyan | Jan 2004 | B1 |
6678285 | Garg | Jan 2004 | B1 |
6691173 | Morris et al. | Feb 2004 | B2 |
6731201 | Bailey et al. | May 2004 | B1 |
6735630 | Gelvin et al. | May 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6751196 | Hulyalkar et al. | Jun 2004 | B1 |
6771981 | Zalewski et al. | Aug 2004 | B1 |
6775258 | van Valkenburg et al. | Aug 2004 | B1 |
6804532 | Moon et al. | Oct 2004 | B1 |
6816088 | Knoska et al. | Nov 2004 | B1 |
6826607 | Gelvin et al. | Nov 2004 | B1 |
6832251 | Gelvin et al. | Dec 2004 | B1 |
6842430 | Melnik | Jan 2005 | B1 |
6858876 | Gordon et al. | Feb 2005 | B2 |
6859831 | Gelvin et al. | Feb 2005 | B1 |
6888876 | Mason, Jr. et al. | May 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6900737 | Ardalan et al. | May 2005 | B1 |
6906636 | Kraml | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6922558 | Delp et al. | Jul 2005 | B2 |
6959550 | Freeman et al. | Nov 2005 | B2 |
6970434 | Mahany et al. | Nov 2005 | B1 |
7020701 | Gelvin et al. | Mar 2006 | B1 |
7027416 | Kriz | Apr 2006 | B1 |
7027773 | McMillin | Apr 2006 | B1 |
7053767 | Petite et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7064679 | Ehrke et al. | Jun 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7117239 | Hansen | Oct 2006 | B1 |
7181501 | Defosse | Feb 2007 | B2 |
7254372 | Janusz et al. | Aug 2007 | B2 |
7304587 | Boaz | Dec 2007 | B2 |
7349682 | Bennett, III et al. | Mar 2008 | B1 |
7424527 | Petite | Sep 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7484008 | Gelvin et al. | Jan 2009 | B1 |
7573813 | Melnik | Aug 2009 | B2 |
7653394 | McMillin | Jan 2010 | B2 |
7739378 | Petite | Jun 2010 | B2 |
20010002210 | Petite | May 2001 | A1 |
20010003479 | Fujiwara | Jun 2001 | A1 |
20010021646 | Antonucci et al. | Sep 2001 | A1 |
20010024163 | Petite | Sep 2001 | A1 |
20010034223 | Rieser et al. | Oct 2001 | A1 |
20010038343 | Meyer et al. | Nov 2001 | A1 |
20020002444 | Williams et al. | Jan 2002 | A1 |
20020012323 | Petite et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020016829 | Defosse | Feb 2002 | A1 |
20020019725 | Petite | Feb 2002 | A1 |
20020027504 | Davis et al. | Mar 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020032746 | Lazaridis | Mar 2002 | A1 |
20020061031 | Sugar et al. | May 2002 | A1 |
20020072348 | Wheeler et al. | Jun 2002 | A1 |
20020089428 | Walden et al. | Jul 2002 | A1 |
20020095399 | Devine et al. | Jul 2002 | A1 |
20020098858 | Struhsaker | Jul 2002 | A1 |
20020109607 | Cumeralto et al. | Aug 2002 | A1 |
20020136233 | Chen et al. | Sep 2002 | A1 |
20020158774 | Johnson et al. | Oct 2002 | A1 |
20020163442 | Fischer | Nov 2002 | A1 |
20020169643 | Petite et al. | Nov 2002 | A1 |
20020193144 | Belski et al. | Dec 2002 | A1 |
20030001754 | Johnson et al. | Jan 2003 | A1 |
20030023146 | Shusterman | Jan 2003 | A1 |
20030028632 | Davis | Feb 2003 | A1 |
20030030926 | Aguren et al. | Feb 2003 | A1 |
20030034900 | Han | Feb 2003 | A1 |
20030035438 | Larsson | Feb 2003 | A1 |
20030036822 | Davis et al. | Feb 2003 | A1 |
20030046377 | Daum et al. | Mar 2003 | A1 |
20030058818 | Wilkes et al. | Mar 2003 | A1 |
20030069002 | Hunter et al. | Apr 2003 | A1 |
20030073406 | Benjamin et al. | Apr 2003 | A1 |
20030078029 | Petite | Apr 2003 | A1 |
20030093484 | Petite | May 2003 | A1 |
20030133473 | Manis et al. | Jul 2003 | A1 |
20030169710 | Fan et al. | Sep 2003 | A1 |
20030185204 | Murdock | Oct 2003 | A1 |
20030210638 | Yoo et al. | Nov 2003 | A1 |
20040047324 | Diener | Mar 2004 | A1 |
20040053639 | Petite et al. | Mar 2004 | A1 |
20040090950 | Lauber et al. | May 2004 | A1 |
20040113810 | Mason, Jr. et al. | Jun 2004 | A1 |
20040131125 | Sanderford, Jr. et al. | Jul 2004 | A1 |
20040133917 | Schilling | Jul 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040228330 | Kubler et al. | Nov 2004 | A1 |
20050017068 | Zalewski et al. | Jan 2005 | A1 |
20050190055 | Petite | Sep 2005 | A1 |
20050195768 | Petite et al. | Sep 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050243867 | Petite | Nov 2005 | A1 |
20050270173 | Boaz | Dec 2005 | A1 |
20060095876 | Chandra | May 2006 | A1 |
20070112907 | Defosse | May 2007 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20090006617 | Petite | Jan 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090096605 | Petite | Apr 2009 | A1 |
20090215424 | Petite | Aug 2009 | A1 |
20090243840 | Petite et al. | Oct 2009 | A1 |
20100250054 | Petite | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
0483547 | May 1992 | EP |
0578041 | Jan 1994 | EP |
0663746 | Jul 1995 | EP |
0718954 | Jun 1996 | EP |
0740873 | Nov 1996 | EP |
0749259 | Dec 1996 | EP |
0749260 | Dec 1996 | EP |
0766489 | Apr 1997 | EP |
0768777 | Apr 1997 | EP |
0812502 | Dec 1997 | EP |
0825577 | Feb 1998 | EP |
0999717 | May 2000 | EP |
1096454 | May 2001 | EP |
2817110 | May 2002 | FR |
2229302 | Sep 1990 | GB |
2247761 | Mar 1992 | GB |
2262683 | Jun 1993 | GB |
2297663 | Aug 1996 | GB |
2310779 | Sep 1997 | GB |
2326002 | Dec 1998 | GB |
2336272 | Oct 1999 | GB |
2352004 | Jan 2001 | GB |
2352590 | Jan 2001 | GB |
60261288 | Dec 1985 | JP |
1255100 | Oct 1989 | JP |
11353573 | Dec 1999 | JP |
2000113590 | Apr 2000 | JP |
2001063425 | Mar 2001 | JP |
2001088401 | Apr 2001 | JP |
2001309069 | Nov 2001 | JP |
2001319284 | Nov 2001 | JP |
2001357483 | Dec 2001 | JP |
2002007672 | Jan 2002 | JP |
2002007826 | Jan 2002 | JP |
2002085354 | Mar 2002 | JP |
2002171354 | Jun 2002 | JP |
2001025431 | Apr 2001 | KR |
WO 9013197 | Nov 1990 | WO |
WO 9512942 | May 1995 | WO |
WO 9524177 | Sep 1995 | WO |
WO 9534177 | Dec 1995 | WO |
WO 9610307 | Apr 1996 | WO |
WO 9800056 | Jan 1998 | WO |
WO 9810393 | Mar 1998 | WO |
WO 9837528 | Aug 1998 | WO |
WO 9845717 | Oct 1998 | WO |
WO 9913426 | Mar 1999 | WO |
WO 0023956 | Apr 2000 | WO |
WO 0036812 | Jun 2000 | WO |
WO 0055825 | Sep 2000 | WO |
WO 0115114 | Mar 2001 | WO |
WO 0124109 | Apr 2001 | WO |
WO 0208725 | Jan 2002 | WO |
WO 0208866 | Jan 2002 | WO |
WO 02052521 | Jul 2002 | WO |
WO 03007264 | Jan 2003 | WO |
WO 03021877 | Mar 2003 | WO |
WO 04002014 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100250054 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12206106 | Sep 2008 | US |
Child | 12816266 | US | |
Parent | 10021100 | Oct 2001 | US |
Child | 12206106 | US |