1. Field of the Invention
This invention relates to systems and methods for transmitting video signals from a video camera, such as in a surveillance system, for example.
2. Description of the Prior Art
Coaxial cables are the traditional media used for transmission of video signals, such as in a surveillance system, for example. Each coaxial cable can only transmit signals from a single standard CCTV (closed circuit television) camera. Coaxial cable tends to be more expensive than standard twisted pair cable such as the type meeting Category 3, 5, 5e and 6 cabling standards, which contain four twisted pairs of wires. Thus, in accordance with the present invention disclosed herein, using the above-mentioned twisted pair cables has the additional cost savings of being able to transmit four video signals over a single cable.
In the current state of the art, there are two common solutions for transmitting multiple video signals from multiple CCTV cameras to multiple DVR (digital video recorder) inputs or multiple monitors. The first common method is to run a coaxial cable from each camera to each input of a DVR or monitor. The second common method is shown in
It is an object of the present invention to provide a system for transmitting video signals from multiple video cameras over a single, multiple pair, twisted pair cable.
It is another object of the present invention to provide a “T” connection between twisted pairs of wires and coaxial cables in a system for transmitting video signals from multiple video cameras over a single, multiple pair, twisted pair cable.
It is still another object of the present invention to provide a method for transmitting video signals from multiple video cameras in, for example, a surveillance system over a single, multiple pair, twisted pair cable.
It is a further object of the present invention to provide a twisted pair-to-coax balun “T” device for use in a system employing multiple video cameras, which allows the video signals from the cameras carried on coaxial cables to the balun “T” device to be transmitted over a single, multiple pair, twisted pair cable.
It is yet a further object of the present invention to provide a surveillance system which uses multiple video cameras which overcomes the inherent disadvantages of known surveillance systems.
In accordance with one form of the present invention, a video system for transmitting video signals from a plurality of video cameras includes a plurality of video cameras, where each video camera generates an unbalanced video signal. The video cameras are connected to a plurality of coaxial cables. Each coaxial cable carries an unbalanced video signal from the video camera to which it is connected.
The video system further includes a plurality of twisted pair-to-coax balun “T” devices. Each balun “T” device is connected to a respective coaxial cable of the plurality of coaxial cables, and receives the unbalanced video signal from a respective video camera. Each twisted pair-to-coax balun “T” device converts the unbalanced video signal from a respective video camera to a balanced video signal.
The video system of the present invention further includes at least one electrical cable containing multiple twisted pairs of wires interconnecting at least two balun “T” devices. The cable selectively receives on the twisted pairs of wires respective balanced video signals from the at least two balun “T” devices.
In accordance with the present invention, a method of transmitting video signals from a plurality of video cameras in a video system includes the step of generating by the plurality of video cameras unbalanced video signals. Another step in the method of the present invention is receiving the unbalanced video signals over coaxial cables by a plurality of twisted pair-to-coax balun “T” devices, where each twisted pair-to-coax balun “T” device includes a balun having an input and an output and a connector electrically coupled to the balun output.
A further step in the method of the present invention is converting the unbalanced video signal received by the respective “T” device to a balanced video signal and providing the balanced video signal on the connector. A further step in the method is connecting the connector to an electrical cable containing multiple twisted pairs of wires to receive on at least one of the twisted pairs of wires the respective balanced video signal from the corresponding twisted pair-to-coax balun “T” device to which the electrical cable is connected.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
“T” device formed in accordance with the present invention which is used in the system of the present invention shown in
“T” device formed in accordance with the present invention which is used in the system of the present invention shown in
This invention is a system 2, such as a surveillance system, and method that allow for multiple video cameras 4 to transmit their video signals over a single multi-pair, twisted pair cable 6. The system uses one or more twisted pair-to-coax balun “T” devices 8. The twisted pair-to-coax balun “T” devices 8 that enable this system 2 to work as required are an integral part of this invention. An example of such a system 2 formed in accordance with the present invention is shown in
An alternative embodiment of the present invention is shown in
There are several switches 40, 42 that form part of the “T” device 8 which are connected at one terminal thereof to one of the output legs 36, 38 of the balun 34. For example, and as shown in
A ground connection 54 could be added to the device 8 to provide surge protection of the outer shield of the coaxial cable 10 connected to the device 8 from a camera 4. An isolation device 56, such as a Sidactor or the like, may be added between an output leg 36, 38 of the balun 34 and the ground to prevent ground loops and still provide surge protection on the coaxial line 10. Differential surge protectors 58, such as by using Sidactors or the like, can be added between the corresponding wires or transmission lines 46, 52 of each pair 48 of wires or transmission lines 12 within the device 8 to protect the twisted pair cables 6 connected to the device 8 from electrical surges.
Alternatively, some twisted pairs of wires within cable 6 can be used for video transmission, and other twisted pairs of wires within cable 6 for power. More specifically, two twisted pairs of wires of a four twisted pair cable 6 can be switched into the coaxial connections 32 through the balun 34 to carry video signals, and the other two twisted pairs of wires would be combined to carry power to a power cable 30 or directly to a power connector on the camera 4 in order to power the cameras, as described previously with respect to the video system shown in
Alternatively, the connection between the first or second connector 26, 28 and the exiting twisted pair of wires in cable 6 that corresponds to the twisted pair of wires that is connected through the “T” device 8 to the selected CCTV camera 4 can be opened to improve video quality. This can be accomplished by adding an extra bank 60 (also referred to herein as a transmission line switch group) of DPST switches 62 (or double pole, double throw (DPDT) switches) as shown in
Alternatively, a resistive load 64 can be added to the “T” device 8 farthest from the hub 14, as shown in
The twisted pair-to-coax balun “T” devices 8 allow the video cameras 4 to be connected to a multiple pair, twisted pair cable or cables 6 in a “daisy chain” configuration. Not only does the use of the devices 8 arranged in the configuration described reduce the quantity of cabling required in a multiple video camera system, such as a surveillance system, but their use also minimizes the need of the more expensive coaxial cable 10 and uses the less expensive, multiple twisted pair cables 6 to carry the video signals and/or power signals. Also, it should be noted that what is meant herein as a “single”, multiple pair, twisted pair cable 6 is the arrangement shown in
Accordingly, a video system 2 for transmitting video signals from a plurality of video cameras 4 formed in accordance with the present invention includes a plurality of video cameras 4, each video camera 4 generating an unbalanced video signal; a plurality of coaxial cables 10, each coaxial cable 10 being electrically coupled to a respective video camera 4 of the plurality of video cameras and carrying the unbalanced video signal from the respective video camera 4; a plurality of twisted pair-to-coax balun “T” devices 8, each balun “T” device 8 being electrically connected to a respective coaxial cable 10 of the plurality of coaxial cables and receiving the unbalanced video signal from a respective video camera 4, each twisted pair-to-coax balun “T” device 8 converting the unbalanced video signal from a respective video camera 4 to a balanced video signal; and at least one electrical cable 6 containing multiple twisted pairs of wires electrically interconnecting at least two twisted pair-to-coax balun “T” devices 8 of the plurality of twisted pair-to-coax balun “T” devices and selectively receiving on the twisted pairs of wires respective balanced video signals from the at least two twisted pair-to-coax balun “T” devices 8.
Preferably, each twisted pair-to-coax balun “T” device 8 of the video system 2 includes a coaxial connector 32 for electrical connection to a respective coaxial cable 10 coupled to a corresponding video camera 4 and receiving thereon an unbalanced video signal from the corresponding video camera 4; a first connector 26 and a second connector 28, the at least one electrical cable 6 containing multiple twisted pairs of wires being electrically connected to at least one of the first connector 26 and the second connector 28; a plurality of pairs 48 of first and second transmission lines 46, 52, each pair 48 of first and second transmission lines 46, 52 being electrically connected to the first connector 26 and the second connector 28; and a balun 34, the balun 34 including an input electrically coupled to the coaxial connector 32 and an output. The balun 34 converts the unbalanced video signal received by the twisted pair-to-coax balun “T” device 8 to a balanced video signal on the output. The output of the balun 34 includes a first leg 36 and a second leg 38. The first leg 36 is electrically coupled to the first transmission line 46 of at least one of the pairs 48 of first and second transmission lines 46, 52 of the plurality of pairs of transmission lines, and the second leg 38 is electrically coupled to the second transmission line 52 of the at least one of the pairs 48 of first and second transmission lines 46, 52 of the plurality of pairs of transmission lines.
Even more preferably, each twisted pair-to-coax balun “T” device 8 of the video system 2 further includes a first switch group 44 having at least one first switch 40, the at least one first switch 40 of the first switch group 44 being electrically interposed between and electrically connected to the first leg 36 of the balun output and the first transmission line 46 of the at least one of the pairs 48 of first and second transmission lines 46, 52; and a second switch group 50 having at least one second switch 42, the at least one second switch 42 of the second switch group 50 being electrically interposed between and electrically connected to the second leg 38 of the balun output and the second transmission line 52 of the at least one of the pairs 48 of first and second transmission lines 46, 52.
Furthermore, each of the at least one first switch 40 and the at least one second switch 42 respectively of the first switch group 44 and the second switch group 50 preferably includes a single pole, single or double throw switching device. Alternatively, the at least one first switch 40 of the first switch group 44 and the at least one second switch 42 of the second switch group 50 are ganged together to define a double pole, single or double throw switching device.
In another preferred form of the present invention, at least one of the twisted pair-to-coax balun “T” devices 8 of the video system 2 further includes at least one isolation device 56. The at least one isolation device 56 is electrically coupled to a ground potential and to at least one of the first leg 36 of the balun 34 and the second leg 38 of the balun 34. Furthermore, the at least one of the twisted pair-to-coax balun “T” devices 8 may further include at least one differential surge protection device 58. The at least one differential surge protection device 58 is electrically coupled to the first transmission line 46 of the at least one of the pairs 48 of first and second transmission lines 46, 52 and the second transmission line 52 of the at least one of the pairs 48 of first and second transmission lines 46, 52.
In another preferred form of the present invention, the at least one of the twisted pair-to-coax balun “T” devices 8 of the video system 2 may include a transmission line switch group 60 having at least a first switch 62a and a second switch 62b. The at least first switch 62a of the transmission line switch group 60 is electrically coupled in series with the first transmission line 46 of the at least one of the pairs 48 of first and second transmission lines 46, 52, and the at least second switch 62b of the transmission line switch group 60 being electrically coupled in series with the second transmission line 52 of the at least one of the pairs 48 of first and second transmission lines 46, 52. The at least first switch 62a and the at least second switch 62b are operable to selectively allow and disallow respective balanced video signals to pass through the first transmission line 46 and the second transmission line 52, respectively, of the at least one of the pairs 48 of first and second transmission lines 46, 52.
Even more preferably, the at least first switch 62a of the transmission line switch group 60 of at least one of the twisted pair-to-coax balun “T” devices 8 of the video system 2 and the at least second switch 62b of the transmission line switch group 60 of the at least one of the twisted pair-to-coax balun “T” devices 8 are ganged together to define a double pole, single or double throw switching device. The at least first switch 62a and the at least second switch 62b of the transmission line switch group 60 of at least one of the twisted pair-to-coax balun “T” devices 8 is preferably electrically interposed respectively in the first transmission line 46 and the second transmission line 52 of the at least one of the pairs 48 of first and second transmission lines 46, 52 between the first connector 26 and the second connector 28.
In another form of the present invention, the at least one of the twisted pair-to-coax balun “T” devices 8 of the video system 2 further includes a resistive load 64. The resistive load 64 is electrically coupleable to one of the first connector 26 and the second connector 28. The resistive load 64 preferably includes a plurality of resistive devices 66. Each resistive device 66 has a selected impedance. A respective resistive device 66 of the plurality of resistive devices is electrically coupled between the first transmission line 46 and the second transmission line 52 of corresponding pairs 48 of first and second transmission lines 46, 52 when the resistive load 64 is electrically coupled to the at least one of the first connector 26 and the second connector 28.
In yet another form of the present invention, the video system 2 may additionally include a hub 14, the hub 14 being electrically coupled to at least one of the twisted pair-to-coax balun “T” devices 8; and at least another electrical cable 6a containing multiple twisted pairs of wires, the at least another electrical cable 6a electrically interconnecting the hub 14 to the at least one of the twisted pair-to-coax balun “T” devices 8.
Furthermore, the video system 2 of the present invention may include at least one of a monitor 20, a digital video recorder 16 and a multiplexer 22. The at least one of the monitor 20, digital video recorder 16 and multiplexer 22 is electrically coupled to the hub 14.
Additionally, each video camera 4 of the plurality of video cameras of the video system 2 may include a power input 68 for receiving a power signal. At least one of the twisted pairs of wires of the electrical cable 6 carries a power signal thereon. The power signal carried on the at least one of the twisted pairs of wires of the electrical cable 6 is provided to at least one of the two twisted pair-to-coax balun “T” devices 8. The at least one of the two twisted pair-to-coax balun “T” devices 8 provides the power signal to the power input 68 of a respective video camera 4 to which the at least one of the two twisted pair-to-coax balun “T” devices 8 is electrically coupled.
Furthermore, in accordance with the present invention, a method of transmitting video signals from a plurality of video cameras 4 in a video system 2 includes the steps of generating by the plurality of video cameras 4 unbalanced video signals; receiving the unbalanced video signals over coaxial cables 10 by a plurality of twisted pair-to-coax balun “T” devices 8, each twisted pair-to-coax balun “T” device 8 including a balun 34 having an input and an output and a connector 26, 28 electrically coupled to the balun output; converting the unbalanced video signal received by a respective twisted pair-to-coax balun “T” device 8 to a balanced video signal and providing the balanced video signal on the connector 26, 28; and electrically connecting the connector 26, 28 to an electrical cable 6 containing multiple twisted pairs of wires to receive on at least one of the twisted pairs of wires the respective balanced video signal from the corresponding twisted pair-to-coax balun “T” device 8 to which the electrical cable 6 is electrically connected.
Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention.
This application is related to U.S. Provisional Application Ser. No. 61/192,643, which was filed on Sep. 19, 2008, and is entitled “System and Method for Transmitting Video from Multiple Video Cameras Over a Single Multiple Pair, Twisted Pair Cable” and U.S. Provisional Application Ser. No. 61/196,650, which was filed on Oct. 20, 2008, and is entitled “System and Method for Transmitting Video from Multiple Video Cameras Over a Single Multiple Pair, Twisted Pair Cable”, the disclosure of each of which is hereby incorporated by reference and on which priority is hereby claimed.
Number | Date | Country | |
---|---|---|---|
61192643 | Sep 2008 | US | |
61196650 | Oct 2008 | US |