System and method for transparently styling non-player characters in a multiplayer video game

Information

  • Patent Grant
  • 10118099
  • Patent Number
    10,118,099
  • Date Filed
    Tuesday, December 16, 2014
    10 years ago
  • Date Issued
    Tuesday, November 6, 2018
    6 years ago
Abstract
A system and method are provided for transparently styling non-player characters (“NPCs”) in multiplayer video games such that it is difficult to distinguish between human players and computer-controlled NPCs. NPCs may be styled to resemble human players in terms of both player profile attributes and gameplay actions such that players may not recognize NPCs as non-human, computer-controlled players. Additionally, or alternatively, NPCs and/or human players may be presented with a limited set of profile attributes that may reduce or eliminate the ability to distinguish between human players and NPCs, one or more profile attributes may be “anonymized,” and/or the ability to view player profiles of human players and/or NPCs may be disabled altogether. In certain gameplay sessions including real and/or practice gameplay sessions, human players may be prompted to select from among a predetermined set of playable characters having predefined profile attributes.
Description
FIELD OF THE INVENTION

The invention relates generally to video games, and more particularly to a system and method for transparently styling non-player characters in multiplayer video games such that it is difficult to distinguish between human players and computer-controlled non-player characters.


BACKGROUND OF THE INVENTION

Multiplayer video games have exploded in popularity due, in part, to services such as Microsoft's Xbox LIVE® and Sony's PlayStation Network® which enable gamers all over the world to play with or against one another. Generally, a multiplayer video game is a video game in which two or more players play in a gameplay session in a cooperative or adversarial relationship. At least one of the players may comprise a human player, while one or more other players may comprise either non-player characters and/or other human players.


A non-player character (“NPC”), which may also be referred to as a non-person character, a non-playable character, a bot, or other similar descriptor, is a character in a game that is not controlled by a human player. In multiplayer video games, an NPC is typically a character controlled by a computer through artificial intelligence.


Often times, when a player logs in to a game system or platform to play a multiplayer video game, the player may engage in a gameplay session in which he or she is matched with other players to play together (on the same team or as opponents). A given player may engage in multiple gameplay sessions during a login session. In addition, each gameplay session may be played with either the same or a different group of matched players.


In some instances, NPCs are used to fill gap(s) in a gameplay session. As an example, in a game that requires ten players to play together on a team, four NPCs may be selected to fill out the team if only six human players have joined. This situation often occurs in matches (games or contests) with novice or lower-skilled players. Unfortunately, NPCs are often easily identified as “generic” or non-human, computer-controlled players. Various indicators including unusual screen names (or gamer tags), incomplete or uncharacteristic player profiles (e.g., having statistics or other attributes that are missing or that do not resemble those of typical players), and idiosyncratic play (during actual gameplay) are each examples of indicators that may alert human players to the presence of one or more NPCs in a given gameplay session.


The use of NPCs in a gameplay session may result in a poor or unsatisfying player experience. Novice or lower-skilled players, for instance, may feel frustrated or discouraged if they continually play in matches filled with NPCs, or believe that they aren't enjoying a true multiplayer game experience. This may result in a decreased desire to continue playing the video game. These and other drawbacks exist with the current use of NPCs in multiplayer video games.


SUMMARY OF THE INVENTION

The invention addressing these and other drawbacks relates to a system and method for transparently styling NPCs in multiplayer video games such that it is difficult to distinguish between human players and computer-controlled NPCs.


Particularly, in some implementations, NPCs may be styled to resemble human players in terms of both player profile attributes and gameplay actions such that players may not recognize NPCs as non-human, computer-controlled players.


Additionally, or alternatively, NPCs and/or human players may be presented with a limited set of profile attributes that may reduce or eliminate the ability to distinguish between human players and NPCs, one or more profile attributes may be “anonymized,” and/or the ability to view (or otherwise access) player profiles of human players and/or NPCs may be disabled altogether. In some implementations, in certain gameplay sessions including, without limitation, a real gameplay session and/or a practice gameplay session (e.g., associated with a “practice” or “training” mode of a game), human players may be prompted to select from among a predetermined set of playable characters having predefined profile attributes (e.g., in-game items such as weapons, powers, skills, customizations, or other profile attributes). Other configurations may be implemented.


While aspects of the invention may be described herein with reference to various game levels or modes, characters, roles, game items, etc. associated with a First-Person-Shooter (FPS) game, it should be appreciated that any such examples are for illustrative purposes only, and are not intended to be limiting. The system and method described in detail herein may be used in any genre of multiplayer video game, without limitation.


Further, as used herein, the term “match” refers to a matching of two or more players, rather than a contest. For example, a potential match refers to a potential grouping of two or more players.


According to an aspect of the invention, a matchmaking application may identify one or more players that are waiting to be matched, such as players whose characters are waiting in a virtual game lobby to join a gameplay session. The gameplay session may comprise any type of gameplay session including, without limitation, a real gameplay session and/or a practice gameplay session (e.g., associated with a “practice mode” of a game).


In one implementation, a matching engine may generate one or more matches by grouping two or more of the identified players. The matching engine may use known or hereafter-developed matchmaking techniques to generate a match (e.g., interchangeably referred to herein as “matchmaking”) by grouping players in an effort to produce the most satisfying player experiences. Game profiles, player profiles, match variables, and other factors may be considered when generating matches.


In one implementation, a game profile may be generated for a gameplay session based on gameplay information. Gameplay information may describe various game characteristics of a gameplay session that may influence the quality of gameplay. For example, gameplay information may include, without limitation, a number of players, types of roles (e.g., snipers), types of in-game items used or purchased (e.g., weapons, vehicles, armor, custom suits, custom paint, tires, engine modifications, etc.), composition of teams (e.g., number and/or types of roles in each team), maps or game levels played (e.g., battle zones, racetracks, sporting arenas, etc.), duration of gameplay (e.g., how duration of a given gameplay session), player skill levels, player styles (e.g., aggressive, prefers to be a sniper, etc.), types of matches (e.g., team death match, capture the flag, etc.), and/or other information related to a gameplay session.


According to an aspect of the invention, a player profile may be generated for a player based on player information. Player information may describe various characteristics of a player, which may be used to assess whether the player will enjoy a given gameplay session, a match, and/or a game. For example, player information may comprise a variety of player attributes including, without limitation, screen name (or gamer tag), style of gameplay (e.g., aggressive), a role preference (e.g., an explicit indication by the player of such preference), a role actually played, a duration of gameplay sessions, a number of gameplay sessions played by in a given login session, in-game items used or purchased by the player, membership in a clan or team, preference to play with clan mates or friends, demographic information of the player (e.g., geographic location, gender, income level, etc.), win/loss records, scores, and/or other information that may be used to determine whether a player will enjoy a given gameplay session, a match, and/or a game.


According to an aspect of the invention, a player profile may further include a numerical value or other metric representative of the player's overall player skill. A player skill value may, for example, be determined according to historical player performance data represented (or conveyed) by one or more player profile attributes. For example, player profile attributes such as number of games played, winning percentage, highest score, lowest score, and the like may be used to determine a player skill value, which may be continually updated and stored over time.


Matches may additionally be based on one or more match variables associated with each player in a match. The one or more match variables may relate to at least one player's characteristic that may influence whether a player enjoys gameplay while placed in a match. For example, and without limitation, a match variable may include a latency between players (e.g., a delay time for data communication between players' gaming systems or platforms such that lower latency is preferentially matched), a player skill level, a team composition (e.g., a role played by each player of a potential match), a presence or absence of preferred players (e.g., clan members, friends, etc.), a time that a player has waited to be matched (e.g., a player having a longer wait time may be preferentially matched), a location of a player (e.g., players geographically close to one another may be preferentially matched), one or more explicit user preferences received from a player, and/or other match variables.


According to an aspect of the invention, a gap in a number of players required for a gameplay session may be identified. For example, in a gameplay session that requires a predetermined number of players to play on a team, gaps (or available player slots) may be identified if there are not enough human players identified to satisfy the predetermined number of players after passage of a predetermined time period.


According to an aspect of the invention, a determination may be made as to whether NPCs should be used to fill identified gaps (available player slots). This determination may be based on a myriad of factors.


For example, in one implementation, the matching engine may make a determination to utilize one or more NPCs if a requisite number of human players has not joined a gameplay session after a predetermined time period so as to not unnecessarily delay gameplay for one or more waiting human players. Additionally or alternatively, the determination to utilize one or more NPCs may be based on a skill level of the one or more waiting human players. In some implementations, human players may be made aware that NPCs may be used in a given match, even though it is not readily apparent which players are NPCs and which are human players.


In some implementations, human players may be provided with an option to fill one or more available player slots with NPCs. For example, in certain instances, a human player (e.g., the host of a multiplayer match) may designate whether available slots should be filled with NPCs, either with or without the other human players' knowledge. In other implementations, each human player may be provided the ability to indicate a preference as to whether available player slots should be filled with NPCs. A human player may indicate this preference, for example, in his or her player profile or through another interface.


In some implementations, the matching engine may elect to utilize NPCs if some threshold number of human players in the match indicate a willingness (or preference) to play with or against NPCs. For example, in some implementations, the matching engine may only utilize NPCs if all human players in the match indicate a willingness (or preference) to play with or against NPCs. Alternatively, the matching engine may utilize NPCs if a majority of players indicate a willingness (or preference) to play with NPCs, or if a majority of players do not oppose playing with or against NPCs.


According to an aspect of the invention, if a determination is made to forego the use of NPCs to fill identified gaps (available player slots), then human players that are waiting to be matched may continue to wait (e.g., in a virtual game lobby) to join a gameplay session until the requisite number of human players has been reached.


By contrast, if a determination is made that available slots will be filled with NPCs, an NPC management engine may select or generate NPCs to fill those slots. For instance, in some implementations, the NPC management engine may select and retrieve one or more NPCs from among a collection of pre-generated NPCs stored, for instance, in a database. Alternatively, the NPC management engine may generate one or more NPCs in real-time (“on the fly”) when or more gaps in a gameplay session are identified.


In other implementations, one or more human players may designate the types of NPCs to be utilized (e.g., a designated team captain from each team may “draft” one or more NPCs to fill empty slots on their respective teams, a designated “host” player may select the NPCs to fill all empty slots, etc.).


In many video games, players are able to view (or otherwise access) player profiles of other players and NPCs. As such, NPCs are often easily identified as “generic” or non-human, computer-controlled players based on things like unusual screen names (or gamer tags), and/or incomplete or uncharacteristic player profiles (e.g., having attributes, historical performance data, or other characteristics that are missing and/or do not resemble those of typical human players). As such, regardless of whether NPCs are selected or generated, or made available for selection by one or more human players, various implementations may be utilized to make it difficult to distinguish between human players and computer-controlled NPCs.


For example, in some implementations, NPCs may be styled to resemble human players in terms of both player profile attributes and gameplay actions such that players may not recognize NPCs as non-human, computer-controlled players. For instance, according to an aspect of the invention, an NPC profile engine may populate a NPC profile (either in real-time when an NPC is generated, or for later retrieval) with attributes and attribute values typical of other human players in a gameplay session. In other words, any player profile attributes that may exist for a human player may also be provided and displayable for an NPC, regardless of whether one or more of the NPC attributes may be populated with non-actionable (or dummy) data. In this regard, a human player that views or otherwise accesses a NPC player profile may be led to believe that the NPC is actually a human player. Various player profile attributes typical of human gamers, yet not necessarily needed for an NPC, may be created and displayed in an NPC player profile. In this regard, an NPC may appear human if its NPC player profile is viewed or accessed by human players.


A variety of known computational and/or statistical methods may be used to ensure that an NPC is generated (for current gameplay or later selection) having attributes and attribute values typical of other human players in a gameplay session. In one example, attribute values for an NPC may be generated in real-time based on the attribute values of one or more human players. In instances where more than one NPC is required to fill gaps in a gameplay session, NPCs may be generated or selected to have different player skill levels (or other player profile attribute values) that span the spectrum of the player skill levels of the human players. In this manner, multiple NPCs may behave differently during gameplay, thereby further conveying the appearance of being actual human players rather than computer-controlled characters behaving identically.


According to an aspect of the invention, NPCs may be further selected or generated according to a desired mix or balance of player roles or types for a given gameplay session. Other factors including, but not limited to, game profiles (described above) may be considered when selecting or generating NPCs for a gameplay session.


Additionally, or as an alternative to styling NPCs to resemble human players, NPCs and/or human players may be similarly styled by, for example, presenting each with a limited set of profile attributes that may reduce or eliminate the ability to distinguish between them. In such an implementation, a human player may understand that the match may comprise both NPC and human players, but it remains difficult to discern whether a particular player is human or NPC.


For example, the presentation of (or ability to view or otherwise access) human and NPC player profiles may be limited to certain profile attributes in an effort to obscure identifying information that may be used to discern a human player from an NPC. In other words, upon accessing a profile for either a human player or NPC, only one or more predetermined profile attributes may be made visible. The remaining profile attributes may be “blacked-out” (or otherwise obscured or redacted), or omitted altogether. In some implementations, a second player profile including only certain profile attributes may be generated “on the fly” for each human player or NPC in a match, with only the second player profiles being made accessible to each human player in the match. Other configurations may be implemented.


Additionally, or alternatively, one or more profile attributes may be “anonymized.” For example, in some implementations, human players' personalized screen names may be replaced with a relatively anonymous screen name, or other similar (generic) descriptor.


Additionally, or alternatively, in some implementations, in certain gameplay sessions including without limitation a real gameplay session and/or a practice gameplay session (e.g., associated with a “practice” or “training” mode of a game), human players may be prompted to select from among a predetermined set of playable characters having predefined profile attributes.


Further, in some implementations, various in-game features such as chat/communication features may be disabled altogether or limited to certain preset phrases, instructions, commands, and/or signals. In this regard, a lack of (or limited) communication between players in a gameplay session may prevent a human player from discovering that a teammate or opponent is a NPC based on a non-response, or an idiosyncratic or unusual response.


In some implementations of the invention, the ability to view (or otherwise access) player profiles of human players and/or NPCs may be disabled altogether.


According to an aspect of the invention, once one more NPCs have been selected or generated to fill gaps in a gameplay session, a gameplay session including the human players and NPC(s) may be initiated. During gameplay, an Artificial Intelligence (“AI”) engine may control an NPC's behavior (including gameplay actions) such that the NPC's gameplay more closely mimics the gameplay of the human players. As previously noted, idiosyncratic play by an NPC during actual gameplay may be an indicator that the character is an NPC and not a human player. By styling an NPC's gameplay tendencies to resemble that of a human player, the human players in the gameplay session may not recognize the NPC as a non-human, computer-controlled player.


In one implementation, the AI engine may analyze an NPC player profile to determine an appropriate skill level of play of the NPC. The AI engine may then analyze gameplay state information associated with one or more similarly-situated human players gathered over time to determine appropriate gameplay behavior for the NPC. In this regard, an NPC that is styled to play like a novice human player, for example, can actually play like a novice human player based on the past performance of other real, novice human players in similar game instances.


In one implementation, an NPC may be directed (or trained) by the AI engine to engage in gameplay behavior that might not typically be associated with that of an NPC. For example, an NPC may be directed to demonstrate behavior such as friendliness (e.g., an NPC that demonstrates sportsman-like conduct during gameplay might be someone that a human player would enjoy playing with again), helpfulness (e.g., an NPC may assist another player via shared strategies or other scenarios), or team-oriented behavior (e.g., an NPC may play toward a common goal).


In one implementation, a NPC may be afforded access to all game objects (e.g., weapons, powers, skills, etc.) that human players may access or earn during gameplay. Oftentimes, an NPC may be easy to identify because they typically only use a certain game object in a certain gameplay situation. By varying these types of “default” behaviors or actions, and enabling NPCs to use or access different game objects in different gameplay situations, NPCs may appear more human-like in their actions.


In various multiplayer matches, during a gameplay session, a human player may earn experience points, virtual currency, or some other accumulated virtual score/benefit that may allow the player to increase his or her level or status, or otherwise progress in the game (for example, by unlocking content or purchasing virtual goods).


In some implementations of the invention, an amount of experience points (or other accumulated virtual score/benefit) earned in a given multiplayer match may be based on the presence of NPCs in the match. For example, in some instances, an amount of experience points (or other accumulated virtual score/benefit) earned in a match with NPCs may be discounted by a predefined percentage or amount because the match included non-human, computer-controlled players.


In other implementations, only experience points (or other accumulated virtual score/benefit) relating to certain gameplay achievements will be affected. For example, killing an NPC opponent may earn less experience points (or other accumulated virtual score/benefit) than killing a human opponent.


In yet other implementations, no experience points (or other accumulated virtual score/benefit) may be awarded in a match with NPCs.


According to an aspect of the invention, the AI engine may monitor NPC gameplay performance in an effort to continually improve NPC performance, logic, strategy, and/or other NPC characteristics.


In some implementations, an NPC may be used over and over in multiple gameplay sessions, and the AI engine may fine tune the performance of the NPC each time so that it behaves in a manner more and more consistent with that of the human players in its gameplay sessions. In this regard, a plurality of NPCs may be created and fine-tuned for each skill level (e.g, beginner, advanced beginner, intermediate, expert, etc.) in a video game.


In implementations wherein an NPC is not saved or stored for later gameplay sessions, the AI engine may nonetheless fine tune one or more of the NPC's player profile attributes and save them in a template or model for later use when generating NPCs to fill gaps.


In one implementation, the AI engine may further consider human player satisfaction metrics when determining when, how, and to what extent NPC performance, logic, strategy, and/or other NPC characteristics may be refined.


For example, according to an aspect of the invention, one or more quality factors may be used to gauge whether gameplay associated with a given match was satisfying to one or more human players. Examples of quality factors may include, for example, a player quitting a match or gameplay session (indicating dissatisfaction), a duration of a game session (e.g., a longer duration may indicate greater satisfaction), a gameplay performance factor (e.g., a kill-to-death ratio in a shooter game, a lap time in a racing game, etc., where greater performance may indicate greater satisfaction), a player engagement factor (e.g., a speed of player input, a level of focus as determined from camera peripherals, etc., where greater engagement may indicate greater satisfaction), a competition level of a game (e.g., whether lopsided or not, where evenly matched games may indicate greater satisfaction), a biometric factor (e.g., facial expressions, pulse, body language, sweat, etc.), explicit feedback from a player (e.g., responses to a survey), and/or other observable metric related to gameplay. One or more of these quality factors may be used to determine whether an NPC's performance either contributed to, or took away from, a human player's enjoyment of a gameplay session.


These and other objects, features, and characteristics of the system and/or method disclosed herein, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and in the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary system for transparently styling NPCs, according to an implementation of the invention.



FIG. 2A illustrates an exemplary system configuration in which a server hosts a plurality of computer devices to facilitate a multiplayer game, according to an implementation of the invention.



FIG. 2B illustrates an exemplary system configuration in which a plurality of networked servers communicate with one another to facilitate a multiplayer game, according to an implementation of the invention.



FIG. 2C illustrates an exemplary system configuration in which a plurality of computer devices are networked together to facilitate a multiplayer game, according to an implementation of the invention.



FIG. 3 depicts an exemplary flowchart of processing operations for transparently styling NPCs in multiplayer video games, according to an implementation of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The invention described herein relates to a system and method for transparently styling NPCs in multiplayer video games, such that it is difficult to distinguish between human players and computer-controlled NPCs.


Exemplary System Architecture



FIG. 1 depicts an exemplary architecture of a system 100 which may include one or more computer systems 110, one or more servers 150, one or more databases 160, and/or other components.


Computer System 110


Computer system 110 may be configured as a gaming console, a handheld gaming device, a personal computer (e.g., a desktop computer, a laptop computer, etc.), a smartphone, a tablet computing device, and/or other device that can be used to interact with an instance of a video game.


Computer system 110 may include one or more processors 112 (also interchangeably referred to herein as processors 112, processor(s) 112, or processor 112 for convenience), one or more storage devices 114 (which may store a matchmaking application 120), one or more peripherals 140, and/or other components. Processors 112 may be programmed by one or more computer program instructions. For example, processors 112 may be programmed by matchmaking application 120 and/or other instructions (such as gaming instructions used to instantiate the game).


Depending on the system configuration, matchmaking application 120 (or portions thereof) may be part of a game application, which creates a game instance to facilitate gameplay. Alternatively or additionally, matchmaking application 120 may run on a device such as a server 150 to determine matches for users in an “online” game hosted by server 150.


Matchmaking application 120 may include instructions that program computer system 110. The instructions may include, without limitation, a matching engine 122, an NPC management engine 124, a NPC profile engine 126, an Artificial Intelligence (“AI”) engine 128, and/or other instructions 130 that program computer system 110 to perform various operations, each of which are described in greater detail herein. As used herein, for convenience, the various instructions will be described as performing an operation, when, in fact, the various instructions program the processors 112 (and therefore computer system 110) to perform the operation.


Peripherals 140


Peripherals 140 may be used to obtain an input (e.g., direct input, measured input, etc.) from a player. Peripherals 140 may include, without limitation, a game controller, a gamepad, a keyboard, a mouse, an imaging device such as a camera, a motion sensing device, a light sensor, a biometric sensor, and/or other peripheral device that can obtain an input from a player. Peripherals 140 may be coupled to a corresponding computer system 110 via a wired and/or wireless connection.


Server 150


Server 150 may include one or computing devices. Although not illustrated in FIG. 1, server 150 may include one or more physical processors programmed by computer program instructions. For example, server 150 may include all or a portion of matchmaking application 120 and therefore provide all or a portion of the operations of matchmaking application 120.


Although illustrated in FIG. 1 as a single component, computer system 110 and server 150 may each include a plurality of individual components (e.g., computer devices) each programmed with at least some of the functions described herein. In this manner, some components of computer system 110 and/or server 150 may perform some functions while other components may perform other functions, as would be appreciated. The one or more processors 112 may each include one or more physical processors that are programmed by computer program instructions. The various instructions described herein are exemplary only. Other configurations and numbers of instructions may be used, so long as the processor(s) 112 are programmed to perform the functions described herein.


Furthermore, it should be appreciated that although the various instructions are illustrated in FIG. 1 as being co-located within a single processing unit, in implementations in which processor(s) 112 includes multiple processing units, one or more instructions may be executed remotely from the other instructions.


The description of the functionality provided by the different instructions described herein is for illustrative purposes, and is not intended to be limiting, as any of instructions may provide more or less functionality than is described. For example, one or more of the instructions may be eliminated, and some or all of its functionality may be provided by other ones of the instructions. As another example, processor(s) 112 may be programmed by one or more additional instructions that may perform some or all of the functionality attributed herein to one of the instructions.


The various instructions described herein may be stored in a storage device 114, which may comprise random access memory (RAM), read only memory (ROM), and/or other memory. The storage device may store the computer program instructions (e.g., the aforementioned instructions) to be executed by processor 112 as well as data that may be manipulated by processor 112. The storage device may comprise floppy disks, hard disks, optical disks, tapes, or other storage media for storing computer-executable instructions and/or data.


The various components illustrated in FIG. 1 may be coupled to at least one other component via a network, which may include any one or more of, for instance, the Internet, an intranet, a PAN (Personal Area Network), a LAN (Local Area Network), a WAN (Wide Area Network), a SAN (Storage Area Network), a MAN (Metropolitan Area Network), a wireless network, a cellular communications network, a Public Switched Telephone Network, and/or other network. In FIG. 1, as well as in other drawing Figures, different numbers of entities than those depicted may be used. Furthermore, according to various implementations, the components described herein may be implemented in hardware and/or software that configure hardware.


The various databases 160 described herein may be, include, or interface to, for example, an Oracle™ relational database sold commercially by Oracle Corporation. Other databases, such as Informix™, DB2 (Database 2) or other data storage, including file-based, or query formats, platforms, or resources such as OLAP (On Line Analytical Processing), SQL (Structured Query Language), a SAN (storage area network), Microsoft Access™ or others may also be used, incorporated, or accessed. The database may comprise one or more such databases that reside in one or more physical devices and in one or more physical locations. The database may store a plurality of types of data and/or files and associated data or file descriptions, administrative information, or any other data.


Exemplary Multiplayer System Configurations



FIG. 2A illustrates an exemplary system configuration 200A in which a server hosts a plurality of computer devices to facilitate a multiplayer game, according to an implementation of the invention. In one implementation, one or more servers 150 may host a number of computer systems 110 (illustrated as computer systems 110A, 110B, . . . , 110N) via a network 102. Each computer system 110 may include one or more peripherals (illustrated as peripherals 140A, 140B, . . . , 140N). In this manner, one or more servers 150 may facilitate the gameplay of different players using different computer systems 110 and/or otherwise provide one or more operations of matchmaking application 120 (illustrated in FIG. 1).


In some instances, a given server 150 may be associated with a proprietary gameplay network system, such as, without limitation, Microsoft's Xbox LIVE® and Sony's PlayStation Network®, and/or another type of gameplay network system. In this implementation, a given computer system 110 may be associated with a particular type of gaming console. Other types of computer systems 110 using other types of gameplay networks may be used as well.



FIG. 2B illustrates an exemplary system configuration 200B in which a plurality of computer systems 110 are networked together to facilitate a multiplayer game, according to an implementation of the invention. Any one or more of the computer devices 110 may serve as a host and/or otherwise provide one or more operations of matchmaking application 120 (illustrated in FIG. 1).



FIG. 2C illustrates an exemplary system configuration 200C in which a computer system 110 is used by a plurality of users to facilitate a multiplayer game, according to an implementation of the invention. In an implementation, computer system 110 may be considered to host the multiplayer game and/or otherwise provide one or more operations of matchmaking application 120 (illustrated in FIG. 1).


Referring to FIGS. 2A-2C, in an implementation, a host may facilitate the multiplayer game and/or perform other operations described herein. In an implementation, at least some of these operations may also or instead be performed by an individual computer system 110. Furthermore, the illustrated system configurations are exemplary only and should not be viewed as limiting in any way. Other system configurations may be used as well, as would be appreciated by those having skill in the art.


Generating Matches


According to an aspect of the invention, matchmaking application 120 may identify one or more players that are waiting to be matched, such as players whose characters are waiting in a virtual game lobby to join a gameplay session. The gameplay session may comprise any type of gameplay session including, without limitation, a real gameplay session and/or a practice gameplay session (e.g., associated with a “practice” or “training” mode of a game).


In one implementation, a player may be added to a gameplay session immediately if there is an opening.


In one implementation, matching engine 122 may generate one or more matches by grouping two or more of the identified players. The number of players placed in each match may depend on a number of players waiting to be matched, a number of players needed for a game session (e.g., a number of players needed to form a team or start a match), a number of players that can be accommodated by a game session, and/or other information. Different matches may include different combinations of different players, which may include different numbers of players.


Matching engine 122 may use known or hereafter-developed matchmaking techniques to generate a match (e.g., interchangeably referred to herein as “matchmaking”) by grouping players in an effort to produce the most satisfying player experiences. Game profiles, player profiles, match variables, and other factors may be considered when generating matches.


Game Profiles


In one implementation, a game profile may be generated for a gameplay session based on gameplay information. Gameplay information may describe various game characteristics of a gameplay session that may influence the quality of gameplay. For example, gameplay information may include, without limitation, a number of players, types of roles (e.g., snipers), types of in-game items used or purchased (e.g., weapons, vehicles, armor, custom suits, custom paint, tires, engine modifications, etc.), composition of teams (e.g., number and/or types of roles in each team), maps or game levels played (e.g., battle zones, racetracks, sporting arenas, etc.), duration of gameplay (e.g., how duration of a given gameplay session), player skill levels, player styles (e.g., aggressive, prefers to be a sniper, etc.), types of matches (e.g., team death match, capture the flag, etc.), and/or other information related to a gameplay session.


A game profile may be specific for a given gameplay session (e.g., different game profiles may be associated with different gameplay sessions) and/or may be used to generate a broader game profile for a particular game (e.g., different games may be associated with different game profiles). In this manner, a given game or gameplay session may be characterized using a game profile.


Player Profiles


According to an aspect of the invention, a player profile may be generated for a player based on player information. Player information may describe various characteristics of a player, which may be used to assess whether the player will enjoy a given gameplay session, a match, and/or a game.


For example, player information may comprise a variety of player attributes including, without limitation, screen name (or gamer tag), style of gameplay (e.g., aggressive), a role preference (e.g., an explicit indication by the player of such preference), a role actually played, a duration of gameplay sessions, a number of gameplay sessions played by in a given login session, in-game items used or purchased by the player, membership in a clan or team, preference to play with clan mates or friends, demographic information of the player (e.g., geographic location, gender, income level, etc.), win/loss records, scores, and/or other attributes or information without limitation that may be used to determine whether a player will enjoy a given gameplay session, a match, and/or a game.


Information from a player profile may be indexed by time. For example, the foregoing player information may include all player information known about a player, a subset of all information (e.g., information related to the last day, week, month, previous “N” number of game sessions, login sessions, etc.). In this manner, a player profile may relate to all-time gameplay of the player, recent gameplay of the player, time of day (e.g., a player may be associated with different player profiles at different times of the day, such as having an aggressive play style during evening hours and a more relaxed play style during morning hours), and/or other subset.


According to an aspect of the invention, a player profile may include a numerical value or other metric representative of the player's overall player skill. A player skill value may, for example, be determined according to historical player performance data represented (or conveyed) by one or more player profile attributes. For example, player profile attributes such as number of games played, winning percentage, highest score, lowest score, and the like may be used to determine a player skill value. It should be appreciated that the number and type of player profile attributes used to determine a player skill value may vary depending on the type of video game. As an example, in a first-person-shooter game, numerical values associated with attributes such as Score Per Minute (“SPM”), Kill/Death Ratio (“KDR”), Win/Loss Ratio (“WLR”), or other attributes may be used to generate a player skill value for the player. The player skill value may be continually updated and stored over time.


Match Variables


Matches may additionally be based on one or more match variables associated with each player in a match. The one or more match variables may relate to at least one player's characteristic that may influence whether a player enjoys gameplay while placed in a match. For example, and without limitation, a match variable may include a latency between players (e.g., a delay time for data communication between players' gaming systems or platforms such that lower latency is preferentially matched), a player skill level, a team composition (e.g., a role played by each player of a potential match), a presence or absence of preferred players (e.g., clan members, friends, etc.), a time that a player has waited to be matched (e.g., a player having a longer wait time may be preferentially matched), a location of a player (e.g., players geographically close to one another may be preferentially matched), one or more explicit user preferences received from a player, and/or other match variables.


Identifying a Gap in a Number of Required Players


According to an aspect of the invention, a gap in a number of players required for a gameplay session may be identified. For example, in a gameplay session that requires a predetermined number of players to play on a team, gaps (or available player slots) may be identified if there are not enough human players identified to satisfy the predetermined number of players after passage of a predetermined time period.


Determining Whether to Fill Identified Gap(s) with NPCs


According to an aspect of the invention, the determination as to whether NPCs are used to fill identified gaps (available player slots) may be based on a myriad of factors.


For example, in one implementation, matching engine 122 may make a determination to utilize one or more NPCs if a requisite number of human players has not joined a gameplay session after a predetermined time period so as to not unnecessarily delay gameplay for one or more waiting human players. Additionally or alternatively, the determination to utilize one or more NPCs may be based on a skill level (e.g., beginner, intermediate, expert, etc.) of the one or more waiting human players. For example, if an average skill level of the waiting human players is less than a threshold skill level (e.g., less than an intermediate level), matching engine 122 may make the determination to utilize NPCs. In some implementations, human players may be made aware that NPCs may be used in a given match, even though it is not readily apparent which players are NPCs and which are human players.


In some implementations, human players may be provided with an option to fill one or more available player slots with NPCs. For example, in certain instances, a human player (e.g., the host of a multiplayer match) may designate whether available slots should be filled with NPCs, either with or without the other human players' knowledge. In other implementations, each human player may be provided the ability to indicate a preference as to whether available player slots should be filled with NPCs. A human player may indicate this preference, for example, in his or her player profile or through another interface.


In some implementations, matching engine 122 may elect to utilize NPCs if some threshold number of human players in the match indicate a willingness (or preference) to play with or against NPCs. For example, in some implementations, matching engine 122 may only utilize NPCs if all human players in the match indicate a willingness (or preference) to play with or against NPCs. Alternatively, matching engine 122 may utilize NPCs if a majority of players indicate a willingness (or preference) to play with NPCs, or if a majority of players do not oppose playing with or against NPCs.


Selecting or Generating NPCs to Fill Gaps


In some implementations, once a determination is made that available slots will be filled with NPCs, NPC management engine 124 may select or generate NPCs to fill those slots. For instance, in some implementations, NPC management engine 124 may select and retrieve one or more NPCs from among a collection of pre-generated NPCs stored, for instance, in database 160. Alternatively, NPC management engine 124 may generate one or more NPCs in real-time (“on the fly”) when or more gaps in a gameplay session are identified.


In other implementations, one or more human players may designate the types of NPCs to be utilized (e.g., a designated team captain from each team may “draft” one or more NPCs to fill empty slots on their respective teams, a designated “host” player may select the NPCs to fill all empty slots, etc.).


Styling NPCs and/or Human Players


In many video games, players are able to view (or otherwise access) player profiles of other players and NPCs. As such, NPCs are often easily identified as “generic” or non-human, computer-controlled players based on things like unusual screen names (or gamer tags), and/or incomplete or uncharacteristic player profiles (e.g., having attributes, historical performance data, or other characteristics that are missing and/or do not resemble those of typical human players).


Regardless of whether NPCs are selected or generated, or made available for selection by one or more human players, various implementations may be utilized to make it difficult to distinguish between human players and computer-controlled NPCs.


For example, in some implementations, NPCs may be styled to resemble human players in terms of both player profile attributes and gameplay actions such that players may not recognize NPCs as non-human, computer-controlled players.


Additionally, or alternatively, NPCs and/or human players may be similarly styled in a number of ways (described in greater detail below).


Styling NPCs to Resemble Human Players


According to an aspect of the invention, NPC profile engine 126 may populate a NPC profile (either in real-time when an NPC is generated, or for later retrieval) with attributes and attribute values typical of other human players in a gameplay session. In other words, any player profile attributes that may exist for a human player may also be provided and displayable for an NPC, regardless of whether one or more of the NPC attributes may be populated with non-actionable (or dummy) data. In this regard, a human player that views or otherwise accesses a NPC player profile may be led to believe that the NPC is actually a human player. Player profile attributes including demographic information (e.g., geographic location, gender, income level, etc.) may be created and displayed in an NPC player profile, along with player appearance preferences (e.g., player and weapon skins), membership in a “fake” clan or team, preference to play with clan mates or friends, win/loss records, scores, and/or other information typical of human gamers, yet not necessarily needed for a NPC. In this regard, an NPC may appear human if its NPC player profile is viewed or accessed by human players.


A variety of known computational and/or statistical methods may be used to ensure that an NPC is generated (for current gameplay or later selection) having attributes and attribute values typical of other human players in a gameplay session. In one example, attribute values for an NPC may be generated in real-time based on the attribute values of one or more human players. By way of non-limiting example, in a first-person-shooter video game, a single NPC may be needed to join four human players in order to field a team of five players required for a particular gameplay session. As a result of a matchmaking process, the four human players may comprise “beginner” players that have been matched together based on, for instance, similar player skill values (e.g., player skill values within a predetermined range, standard deviation, etc.), or other criteria. As an example, Player #1 may have a player skill value of 100, Player #2 may have a player skill value of 95, Player #3 may have a player skill value of 110, and Player #4 may have a player skill value of 90. As such, NPC profile engine 126 may generate a player skill level for the NPC commensurate with those of the four human players. For example, the NPC may be assigned a player skill level of 98.75 (or 99), which is an average of the player skill levels of the four human players. Alternatively, the NPC may be assigned a player skill level somewhere between 90 and 110, which represents the range of the player skill levels of the four players.


While the aforementioned, non-limiting example demonstrates how a single player profile attribute value (player skill level) may be calculated, it should be appreciated that similar calculations may be effectuated for each profile attribute for the NPC. For example, in the first-person-shooter game referenced above, the player skill value may be generated based on attributes such as Score Per Minute (“SPM”), Kill/Death Ratio (“KDR”), and Win/Loss Ratio (“WLR”). As such, NPC profile engine 126 may (via use of averages, ranges, or other known computational and/or statistical methods) populate the NPC player profile with numerical values (or other metrics) for each of the SPM, KDR, and WLR in addition to the player skill level. As such, a human player that views the NPC player profile will be able to view a set of metrics underlying (or supporting) the NPC's player skill level, thereby further giving the NPC the appearance of being a real (human) player.


In other implementations, NPC profile engine 126 may determine a player profile attribute value (or metric) for an NPC, and then use the determined attribute level (or metric) to retrieve pre-stored templates having associated player profile attribute values that support the determined attribute value. Continuing with the foregoing first-person-shooter example, NPC profile engine 126 may determine that the player skill level for the NPC is 98.75 (or 99), or within the range of 90 and 110, and then retrieve a pre-stored template having numerical values (or other metrics) for each of the SPM, KDR, and WLR that are consistent with a player having a player skill level of 98.75 (or 99), or within the range of 90 and 110. These templates may be generated and based on historical player performance data of multiple players over time, and updated.


In instances where more than one NPC is required to fill gaps in a gameplay session, NPCs may be generated or selected to have different player skill levels (or other player profile attribute values) that span the spectrum of the player skill levels of the human players. In this manner, multiple NPCs may behave differently during gameplay, thereby further conveying the appearance of being actual human players rather than computer-controlled characters behaving identically. Continuing once again with the first-person-shooter example above, if only three human players were available, and two NPCs were needed for a gameplay session, one NPC may be generated or selected to have a player skill level at or near the lower end of the range of player skill levels of the human players, while the other NPC may be generated or selected to have a player skill level at or near the higher end of the range of player skill levels of the human players.


According to an aspect of the invention, NPCs may be further selected or generated according to a desired mix or balance of player roles or types for a given gameplay session. As an example, in a first-person-shooter game in which five snipers and five run-and-gunners represent an optimal mix of player roles, NPC management engine 124 may select NPCs to fill gaps such that the desired combination of five snipers and five run-and-gunners is achieved to the extent possible. Other factors including, but not limited to game profiles (described above), may be considered when selecting or generating NPCs for a gameplay session.


Similarly Styling NPCs and Human Players


Additionally, or as an alternative to styling NPCs to resemble human players, NPCs and/or human players may be similarly styled by, for example, presenting each with a limited set of profile attributes that may reduce or eliminate the ability to distinguish between them. In such an implementation, a human player may understand that the match may comprise both NPC and human players, but it remains difficult to discern whether a particular player is human or NPC.


For example, the presentation of (or ability to view or otherwise access) human and NPC player profiles may be limited to certain profile attributes in an effort to obscure identifying information that may be used to discern a human player from an NPC. In other words, upon accessing a profile for either a human player or NPC, only one or more predetermined profile attributes may be made visible. The remaining profile attributes may be “blacked-out” (or otherwise obscured or redacted), or omitted altogether. In some implementations, a second player profile including only certain profile attributes may be generated “on the fly” for each human player or NPC in a match, with only the second player profiles being made accessible to each human player in the match. Other configurations may be implemented.


Additionally, or alternatively, one or more profile attributes may be “anonymized.” For example, in some implementations, human players' personalized screen names may be replaced with a relatively anonymous screen name such as “Friend,” “Enemy,” “Blue Team,” “Red Team,” “Player A,” “Player B,” “Player 1,” “Player 2,” or other similar (generic) descriptor.


Additionally, or alternatively, in some implementations, in certain gameplay sessions including without limitation a real gameplay session and/or a practice gameplay session (e.g., associated with a “practice” or “training” mode of a game), human players may be prompted to select from among a predetermined set of playable characters having predefined profile attributes (e.g., in-game items such as weapons, powers, skills, customizations, or other profile attributes).


Further, in some implementations, various in-game features such as chat/communication features may be disabled altogether or limited to certain preset phrases, instructions, commands, and/or signals. In this regard, a lack of (or limited) communication between players in a gameplay session may prevent a human player from discovering that a teammate or opponent is a NPC based on a non-response, or an idiosyncratic or unusual response.


In some implementations of the invention, the ability to view (or otherwise access) player profiles of human players and/or NPCs may be disabled altogether.


Other configurations may be implemented.


Gameplay Behavior


According to an aspect of the invention, once one more NPCs have been selected or generated to fill gaps in a gameplay session, and the NPCs and/or human players have been styled, a gameplay session including the human players and NPC(s) may be initiated.


During gameplay, AI engine 128 may control an NPC's behavior (including gameplay actions) such that the NPC's gameplay more closely mimics the gameplay of the human players. As previously noted, idiosyncratic play by an NPC during actual gameplay may be an indicator that the character is an NPC and not a human player. By styling an NPC's gameplay tendencies to resemble that of a human player, the human players in the gameplay session may not recognize the NPC as a non-human, computer-controlled player.


In one implementation, AI engine 128 may analyze an NPC player profile (as selected or generated in the manner described above) to determine an appropriate skill level of play of the NPC. AI engine 128 may then analyze gameplay state information associated with one or more similarly-situated human players gathered over time (e.g., and stored in database 160) to determine appropriate gameplay behavior for the NPC. In this regard, an NPC that is styled to play like a novice human player, for example, can actually play like a novice human player based on the past performance of other real, novice human players in similar game instances.


In one implementation, an NPC may be directed (or trained) by AI engine 128 to engage in gameplay behavior that might not typically be associated with that of an NPC. For example, an NPC may be directed to demonstrate behavior such as friendliness (e.g., an NPC that demonstrates sportsman-like conduct during gameplay might be someone that a human player would enjoy playing with again), helpfulness (e.g., an NPC may assist another player via shared strategies or other scenarios), or team-oriented behavior (e.g., an NPC may play toward a common goal).


In one implementation, a NPC may be afforded access to all game objects (e.g., weapons, powers, skills, etc.) that human players may access or earn during gameplay. Oftentimes, an NPC may be easy to identify because they typically only use a certain game object in a certain gameplay situation. By varying these types of “default” behaviors or actions, and enabling NPCs to use or access different game objects in different gameplay situations, NPCs may appear more human-like in their actions.


Gameplay Scoring Considerations


According to an aspect of the invention, in various multiplayer matches, a human player may earn experience points, virtual currency, or some other accumulated virtual score/benefit that may allow the player to increase his or her level or status, or otherwise progress in the game (for example, by unlocking content or purchasing virtual goods). As a non-limiting example, in a first-person-shooter game, a player may earn experience points for kills, kill assists, victories, playing a certain amount of time or number of matches, or any other gameplay-related achievement. Typically, the amount of experience points (or other accumulated virtual score/benefit) earned for a particular achievement is predefined.


In some implementations of the invention, an amount of experience points (or other accumulated virtual score/benefit) earned in a given multiplayer match may be based on the presence of NPCs in the match. For example, in some instances, an amount of experience points (or other accumulated virtual score/benefit) earned in a match with NPCs may be discounted by a predefined percentage or amount because the match included non-human, computer-controlled players.


In other implementations, only experience points (or other accumulated virtual score/benefit) relating to certain gameplay achievements will be affected. For example, killing an NPC opponent may earn less experience points (or other accumulated virtual score/benefit) than killing a human opponent.


In yet other implementations, no experience points (or other accumulated virtual score/benefit) may be awarded in a match with NPCs.


Feedback


According to an aspect of the invention, AI engine 128 may monitor NPC gameplay performance in an effort to continually improve NPC performance, logic, strategy, and/or other NPC characteristics.


In some implementations, an NPC may be used over and over in multiple gameplay sessions, and AI engine 128 may fine tune the performance of the NPC each time so that it behaves in a manner more and more consistent with that of the human players in its gameplay sessions. In this regard, NPC management engine 124 may, over time, have access to a plurality of NPCs (e.g., stored in database 160) that have been fine-tuned for each skill level (e.g, beginner, advanced beginner, intermediate, expert, etc.).


In implementations wherein an NPC is not saved or stored for later gameplay sessions, AI engine 128 may nonetheless fine tune one or more of the NPC's player profile attributes and save them in a template or model for later use by NPC management engine 124 and or NPC profile engine 126 when generating NPCs to fill gaps.


In one implementation, AI engine 128 may further consider human player satisfaction metrics when determining when, how, and to what extent NPC performance, logic, strategy, and/or other NPC characteristics may be refined. For example, according to an aspect of the invention, AI engine 128 may consider a level of satisfaction by one or more human players involved in a gameplay session. One or more quality factors used to gauge whether gameplay associated with a given match was satisfying may include observable metrics that indicate a human player's level of satisfaction with gameplay. Examples of quality factors include, without limitation, a player quitting a match or gameplay session while other players are still playing (indicating dissatisfaction), a duration of a game session (e.g., a longer duration may indicate greater satisfaction), a gameplay performance factor (e.g., a kill-to-death ratio in a shooter game, a lap time in a racing game, etc., where greater performance may indicate greater satisfaction), a player engagement factor (e.g., a speed of player input, a level of focus as determined from camera peripherals, etc., where greater engagement may indicate greater satisfaction), a competition level of a game (e.g., whether lopsided or not, where evenly matched games may indicate greater satisfaction), a biometric factor (e.g., facial expressions, pulse, body language, sweat, etc.), explicit feedback from a player (e.g., responses to a survey), and/or other observable metric related to gameplay. One or more of these quality factors may be used to determine whether an NPC's performance either contributed to, or took away from, a human player's enjoyment of a gameplay session.


Exemplary Flowchart



FIG. 3 depicts an exemplary flowchart of processing operations for transparently styling NPCs in multiplayer video games, according to an implementation of the invention. The various processing operations and/or data flows depicted in FIG. 3 are described in greater detail herein. The described operations may be accomplished using some or all of the system components (enabling all of the features and functionality) described in detail above and, in some implementations, various operations may be performed in different sequences and various operations may be omitted. Additional operations may be performed along with some or all of the operations shown in the depicted flow diagrams. One or more operations may be performed simultaneously. Accordingly, the operations as illustrated (and described in greater detail below) are exemplary by nature and, as such, should not be viewed as limiting.


Operation 302


In an operation 302, one or more human video game players that are waiting to be matched, such as players whose characters are waiting in a virtual game lobby to join a gameplay session, may be identified. In one implementation, a matching engine may use known or hereafter-developed matchmaking techniques to generate a match (e.g., interchangeably referred to herein as “matchmaking”) by grouping players in an effort to produce the most satisfying player experiences. Game profiles, player profiles, match variables, and other factors may be considered when generating matches.


Operation 304


In an operation 304, a gap in a number of players required for a gameplay session may be identified. For example, in a gameplay session that requires a predetermined number of players to play on a team, gaps (or available player slots) may be identified if there are not enough human players identified to satisfy the predetermined number of players after passage of a predetermined time period.


Operation 306


In an operation 306, a determination may be made as to whether NPCs should be used to fill identified gaps (available player slots). This determination may be based on a myriad of factors.


For example, in one implementation, the matching engine may make a determination to utilize one or more NPCs if a requisite number of human players has not joined a gameplay session after a predetermined time period so as to not unnecessarily delay gameplay for one or more waiting human players. Additionally or alternatively, the determination to utilize one or more NPCs may be based on a skill level of the one or more waiting human players. In some implementations, human players may be made aware that NPCs may be used in a given match, even though it is not readily apparent which players are NPCs and which are human players.


In some implementations, human players may be provided with an option to fill one or more available player slots with NPCs. For example, in certain instances, a human player (e.g., the host of a multiplayer match) may designate whether available slots should be filled with NPCs, either with or without the other human players' knowledge. In other implementations, each human player may be provided the ability to indicate a preference as to whether available player slots should be filled with NPCs. A human player may indicate this preference, for example, in his or her player profile or through another interface.


In some implementations, the matching engine may elect to utilize NPCs if some threshold number of human players in the match indicate a willingness (or preference) to play with or against NPCs. For example, in some implementations, the matching engine may only utilize NPCs if all human players in the match indicate a willingness (or preference) to play with or against NPCs. Alternatively, the matching engine may utilize NPCs if a majority of players indicate a willingness (or preference) to play with NPCs, or if a majority of players do not oppose playing with or against NPCs.


Operation 308


If the determination is made, in operation 306, to forego the use of NPCs to fill identified gaps (available player slots), then, in an operation 308, human players that are waiting to be matched may continue to wait (e.g., in a virtual game lobby) to join a gameplay session until the requisite number of human players has been reached.


Operation 310


By contrast, if the determination is made, in operation 306, that available slots will be filled with NPCs, an NPC management engine may, in an operation 310, select or generate NPCs to fill those slots. For instance, in some implementations, the NPC management engine may select and retrieve one or more NPCs from among a collection of pre-generated NPCs stored, for instance, in a database. Alternatively, the NPC management engine may generate one or more NPCs in real-time (“on the fly”) when or more gaps in a gameplay session are identified.


In other implementations, one or more human players may designate the types of NPCs to be utilized (e.g., a designated team captain from each team may “draft” one or more NPCs to fill empty slots on their respective teams, a designated “host” player may select the NPCs to fill all empty slots, etc.).


Operation 312


Regardless of whether NPCs are selected or generated, or made available for selection by one or more human players, various implementations may be utilized to make it difficult to distinguish between human players and computer-controlled NPCs.


For example, in an operation 312, NPCs may be styled to resemble human players in terms of both player profile attributes and gameplay actions such that players may not recognize NPCs as non-human, computer-controlled players.


For example, according to an aspect of the invention, an NPC profile engine may populate a NPC profile (either in real-time when an NPC is generated, or for later retrieval) with attributes and attribute values typical of other human players in a gameplay session. In other words, any player profile attributes that may exist for a human player may also be provided and displayable for an NPC, regardless of whether one or more of the NPC attributes may be populated with non-actionable (or dummy) data. In this regard, a human player that views or otherwise accesses a NPC player profile may be led to believe that the NPC is actually a human player. Player profile attributes including demographic information (e.g., geographic location, gender, income level, etc.) may be created and displayed in an NPC player profile, along with player appearance preferences (e.g., player and weapon skins), membership in a “fake” clan or team, preference to play with clan mates or friends, win/loss records, scores, and/or other information typical of human gamers, yet not necessarily needed for a NPC. In this regard, an NPC may appear human if its NPC player profile is viewed or accessed by human players.


A variety of known computational and/or statistical methods may be used to ensure that an NPC is generated (for current gameplay or later selection) having attributes and attribute values typical of other human players in a gameplay session. Other factors including, but not limited to, game profiles and a desired mix or balance of player roles or types may be considered when selecting or generating NPCs for a gameplay session.


Additionally, or as an alternative to styling NPCs to resemble human players, NPCs and/or human players may be similarly styled in operation 312 by, for example, presenting each with a limited set of profile attributes that may reduce or eliminate the ability to distinguish between them. In such an implementation, a human player may understand that the match may comprise both NPC and human players, but it remains difficult to discern whether a particular player is human or NPC.


For example, the presentation of (or ability to view or otherwise access) human and NPC player profiles may be limited to certain profile attributes in an effort to obscure identifying information that may be used to discern a human player from an NPC. In other words, upon accessing a profile for either a human player or NPC, only one or more predetermined profile attributes may be made visible. The remaining profile attributes may be “blacked-out” (or otherwise obscured or redacted), or omitted altogether. In some implementations, a second player profile including only certain profile attributes may be generated “on the fly” for each human player or NPC in a match, with only the second player profiles being made accessible to each human player in the match. Other configurations may be implemented.


Additionally, or alternatively, one or more profile attributes may be “anonymized.” For example, in some implementations, human players' personalized screen names may be replaced with a relatively anonymous screen name, or other similar (generic) descriptor.


Additionally, or alternatively, in some implementations, in certain gameplay sessions including without limitation a real gameplay session and/or a practice gameplay session (e.g., associated with a “practice” or “training” mode of a game), human players may be prompted to select from among a predetermined set of playable characters having predefined profile attributes.


Further, in some implementations, various in-game features such as chat/communication features may be disabled altogether or limited to certain preset phrases, instructions, commands, and/or signals. In this regard, a lack of (or limited) communication between players in a gameplay session may prevent a human player from discovering that a teammate or opponent is a NPC based on a non-response, or an idiosyncratic or unusual response.


In some implementations of the invention, the ability to view (or otherwise access) player profiles of human players and/or NPCs may be disabled altogether.


Operation 314


Once one more NPCs have been selected or generated to fill gaps in a gameplay session, a gameplay session including the human players and NPC(s) may be initiated in an operation 314. During gameplay, an artificial intelligence (“AI”) engine may control an NPC's behavior (including gameplay actions) such that the NPC's gameplay more closely mimics the gameplay of the human players. By styling an NPC's gameplay tendencies to resemble that of a human player, the human players in the gameplay session may not recognize the NPC as a non-human, computer-controlled player.


In one implementation, the AI engine may analyze an NPC player profile (as selected or generated in the manner described above) to determine an appropriate skill level of play of the NPC. The AI engine may then analyze gameplay state information associated with one or more similarly-situated human players gathered over time (e.g., and stored in a database) to determine appropriate gameplay behavior for the NPC. In this regard, an NPC that is styled to play like a novice human player, for example, can actually play like a novice human player based on the past performance of other real, novice human players in similar game instances.


In one implementation, an NPC may be directed (or trained) by the AI engine to engage in gameplay behavior that might not typically be associated with that of an NPC. For example, an NPC may be directed to demonstrate behavior such as friendliness, helpfulness, or team-oriented behavior. Further, in some implementations, an NPC may be afforded access to all game objects (e.g., weapons, powers, skills, etc.) that human players may access or earn during gameplay.


Further, in various multiplayer matches, such as that initiated in operation 314, a human player may earn experience points, virtual currency, or some other accumulated virtual score/benefit that may allow the player to increase his or her level or status, or otherwise progress in the game (for example, by unlocking content or purchasing virtual goods).


In some implementations of the invention, an amount of experience points (or other accumulated virtual score/benefit) earned in a given multiplayer match may be based on the presence of NPCs in the match. For example, in some instances, an amount of experience points (or other accumulated virtual score/benefit) earned in a match with NPCs may be discounted by a predefined percentage or amount because the match included non-human, computer-controlled players.


In other implementations, only experience points (or other accumulated virtual score/benefit) relating to certain gameplay achievements will be affected. For example, killing an NPC opponent may earn less experience points (or other accumulated virtual score/benefit) than killing a human opponent.


In yet other implementations, no experience points (or other accumulated virtual score/benefit) may be awarded in a match with NPCs.


Operation 316


In an operation 316, the AI engine may monitor NPC gameplay performance in an effort to continually improve NPC performance, logic, strategy, and/or other NPC characteristics.


In some implementations, an NPC may be used over and over in multiple gameplay sessions, and the AI engine may fine tune the performance of the NPC each time so that it behaves in a manner more and more consistent with that of the human players in its gameplay sessions.


In implementations wherein an NPC is not saved or stored for later gameplay sessions, the AI engine may nonetheless fine tune one or more of the NPC's player profile attributes and save them in a template or model for later use when generating NPCs to fill gaps.


In one implementation, the AI engine 128 may further consider human player satisfaction metrics when determining when, how, and to what extent NPC performance, logic, strategy, and/or other NPC characteristics may be refined.


Other implementations, uses and advantages of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification should be considered exemplary only, and the scope of the invention is accordingly intended to be limited only by the following claims.

Claims
  • 1. A computer-implemented method of transparently styling non-player characters in a multiplayer video game to resemble characters controlled by human players, the method being implemented in a computer system having one or more physical processors programmed with computer program instructions that, when executed by the one or more physical processors, cause the computer system to perform the method, the method comprising: identifying, by the computer system, one or more human players to be matched for a gameplay session of a multiplayer video game, wherein each human player has a player profile comprising a number of profile attributes, wherein the human players are matched by grouping two or more players to play together in the gameplay session based on at least one of each player's profile attributes, game profile information, or match variables, and wherein the gameplay session requires a predetermined number of required players;determining, by the computer system, whether the predetermined number of players required for the gameplay session is met by the identified human players;obtaining, by the computer system, one or more non-player characters to fill available spots in the gameplay session responsive to a determination that the predetermined number of players required for the gameplay session is not met by the identified human players, wherein each of the one or more non-player characters has a non-player character player profile comprising a number of profile attributes;determining, by the computer system, a subset of profile attributes common to the identified human player profiles and the non-player character player profiles; andpermitting, by the computer system, the display of only the determined subset of profile attributes when any identified human player profile or non-player character player profile is accessed.
  • 2. The method of claim 1, wherein identifying one or more human players to be matched for a gameplay session further comprises: prompting, by the computer system, each identified human player to select from among a predetermined set of playable characters having predefined player profiles prior to commencement of the gameplay session.
  • 3. The method of claim 1, wherein obtaining one or more non-player characters to fill available spots in the gameplay session further comprises: receiving an input selection of the one or more non-player characters from one of the identified human players.
  • 4. The method of claim 1, wherein obtaining one or more non-player characters to fill available spots in the gameplay session further comprises: generating or selecting, by the computer system, the one or more non-player characters.
  • 5. The method of claim 1, further comprising: anonymizing, by the computer system, at least one profile attribute of the determined subset of profile attributes by replacing an attribute value for the at least one profile attribute with a generic attribute value in each of the identified human player profiles and the non-player character player profiles.
  • 6. The method of claim 1, further comprising: limiting, by the computer system, communication between an identified human player and a non-player character to one or more predefined phrases, instructions, or commands during the gameplay session.
  • 7. The method of claim 1, further comprising: disabling, by the computer system, an ability of an identified human player to communicate with a non-player character during the gameplay session.
  • 8. The method of claim 1, further comprising: awarding, by the computer system, an identified human player with an in-game benefit for an achievement during the gameplay session that is a lesser percentage of what the identified human player would have received for the same achievement had no non-player characters been utilized during the gameplay session.
  • 9. The method of claim 1, wherein the gameplay session comprises a practice or training session.
  • 10. A system for transparently styling non-player characters in a multiplayer video game to resemble characters controlled by human players, the system comprising: one or more physical processors programmed with one or more computer program instructions which, when executed, cause the one or more physical processors to: identify one or more human players to be matched for a gameplay session of a multiplayer video game, wherein each human player has a player profile comprising a number of profile attributes, wherein the human players are matched by grouping two or more players to play together in the gameplay session based on at least one of each player's profile attributes, game profile information, or match variables, and wherein the gameplay session requires a predetermined number of required players;determine whether the predetermined number of players required for the gameplay session is met by the identified human players;obtain one or more non-player characters to fill available spots in the gameplay session responsive to a determination that the predetermined number of players required for the gameplay session is not met by the identified human players, wherein each of the one or more non-player characters has a non-player character player profile comprising a number of profile attributes;determine a subset of profile attributes common to the identified human player profiles and the non-player character player profiles; andpermit the display of only the determined subset of profile attributes when any identified human player profile or non-player character player profile is accessed.
  • 11. The system of claim 10, wherein, to identify one or more human players to be matched for a gameplay session, the one or more processors are further caused to: prompt each identified human player to select from among a predetermined set of playable characters having predefined player profiles prior to commencement of the gameplay session.
  • 12. The system of claim 10, wherein, to obtain one or more non-player characters to fill available spots in the gameplay session, the one or more processors are further caused to: receive an input selection of the one or more non-player characters from one of the identified human players.
  • 13. The system of claim 10, wherein, to obtain one or more non-player characters to fill available spots in the gameplay session, the one or more processors are further caused to: generate or select the one or more non-player characters.
  • 14. The system of claim 10, wherein the one or more processors are further caused to: anonymize at least one profile attribute of the determined subset of profile attributes by replacing an attribute value for the at least one profile attribute with a generic attribute value in each of the identified human player profiles and the non-player character player profiles.
  • 15. The system of claim 10, wherein the one or more processors are further caused to: limit communication between an identified human player and a non-player character to one or more predefined phrases, instructions, or commands during the gameplay session.
  • 16. The system of claim 10, wherein the one or more processors are further caused to: disable an ability of an identified human player to communicate with a non-player character during the gameplay session.
  • 17. The system of claim 10, wherein the one or more processors are further caused to: award an identified human player with an in-game benefit for an achievement during the gameplay session that is a lesser percentage of what the identified human player would have received for the same achievement had no non-player characters been utilized during the gameplay session.
  • 18. The system of claim 10, wherein the gameplay session comprises a practice or training session.
  • 19. A computer program product for transparently styling non-player characters in a multiplayer video game to resemble characters controlled by human players, the computer program product comprising: one or more tangible, non-transitory computer-readable storage devices;program instructions, stored on at least one of the one or more tangible, non-transitory computer-readable tangible storage devices that, when executed, cause a computer to: identify one or more human players to be matched for a gameplay session of a multiplayer video game, wherein each human player has a player profile comprising a number of profile attributes, wherein the human players are matched by grouping two or more players to play together in the gameplay session based on at least one of each player's profile attributes, game profile information, or match variables, and wherein the gameplay session requires a predetermined number of required players;determine whether the predetermined number of players required for the gameplay session is met by the identified human players;obtain one or more non-player characters to fill available spots in the gameplay session responsive to a determination that the predetermined number of players required for the gameplay session is not met by the identified human players, wherein each of the one or more non-player characters has a non-player character player profile comprising a number of profile attributes;determine a subset of profile attributes common to the identified human player profiles and the non-player character player profiles; andpermit the display of only the determined subset of profile attributes when any identified human player profile or non-player character player profile is accessed.
  • 20. A computer-implemented method of transparently styling non-player characters in a multiplayer video game to resemble characters controlled by human players, the method being implemented in a computer system having one or more physical processors programmed with computer program instructions that, when executed by the one or more physical processors, cause the computer system to perform the method, the method comprising: identifying, by the computer system, one or more human players to be matched for a gameplay session of a multiplayer video game, wherein each human player has a player profile comprising a number of player profile attributes, each player profile attribute having a value, wherein the human players are matched by grouping two or more players to play together in the gameplay session based on at least one of each player's profile attributes, game profile information, or match variables, and wherein the gameplay session requires a predetermined number of required players;determining, by the computer system, whether the predetermined number of players required for the gameplay session is met by the identified human players;selecting or generating, by the computer system, one or more non-player characters to fill available spots in the gameplay session responsive to a determination that the predetermined number of players required for the gameplay session is not met by the identified human players, wherein each of the one or more non-player characters has a player profile that includes at least every player profile attribute shared in common among the identified human players; andcontrolling, by the computer system, the one or more non-player characters during the gameplay session using artificial intelligence, such that gameplay behavior of the one or more non-player characters is modeled in part on historical performance of human players having values for player profile attributes substantially similar to the values of the player profile attributes of the identified human players.
US Referenced Citations (570)
Number Name Date Kind
4461301 Ochs Jul 1984 A
4908761 Tai Mar 1990 A
5031089 Liu Jul 1991 A
5058180 Khan Oct 1991 A
5365360 Torres Nov 1994 A
5371673 Fan Dec 1994 A
5432934 Levin Jul 1995 A
5442569 Osano Aug 1995 A
5493692 Theimer Feb 1996 A
5497186 Kawasaki Mar 1996 A
5530796 Wang Jun 1996 A
5539883 Allon Jul 1996 A
5561736 Moore Oct 1996 A
5563946 Cooper Oct 1996 A
5606702 Diel Feb 1997 A
5630129 Wheat May 1997 A
5685775 Bakoglu Nov 1997 A
5694616 Johnson Dec 1997 A
5706507 Schloss Jan 1998 A
5708764 Borrel Jan 1998 A
5726883 Levine Mar 1998 A
5736985 Lection Apr 1998 A
5736990 Barrus Apr 1998 A
5737416 Cooper Apr 1998 A
5745113 Jordan Apr 1998 A
5745678 Herzberg Apr 1998 A
5758079 Ludwig May 1998 A
5761083 Brown Jun 1998 A
5762552 Vuong Jun 1998 A
5768511 Galvin Jun 1998 A
5774668 Choquier Jun 1998 A
5793365 Tang Aug 1998 A
5825877 Dan Oct 1998 A
5828839 Moncreiff Oct 1998 A
5835692 Cragun Nov 1998 A
5860137 Raz Jan 1999 A
5877763 Berry Mar 1999 A
5878233 Schloss Mar 1999 A
5880731 Liles Mar 1999 A
5883628 Mullaly Mar 1999 A
5900879 Berry May 1999 A
5903266 Berstis May 1999 A
5903271 Bardon May 1999 A
5911045 Leyba Jun 1999 A
5920325 Morgan Jul 1999 A
5920692 Nguyen Jul 1999 A
5920848 Schutzer Jul 1999 A
5923324 Berry Jul 1999 A
5926100 Escolar Jul 1999 A
5933818 Kasravi Aug 1999 A
5938722 Johnson Aug 1999 A
5958014 Cave Sep 1999 A
5969724 Berry Oct 1999 A
5977979 Clough Nov 1999 A
5983003 Lection Nov 1999 A
5990887 Redpath Nov 1999 A
5990888 Blades Nov 1999 A
6006223 Agrawal Dec 1999 A
6008848 Tiwari Dec 1999 A
6009455 Doyle Dec 1999 A
6012096 Link Jan 2000 A
6014145 Bardon Jan 2000 A
6018734 Zhang Jan 2000 A
6021268 Johnson Feb 2000 A
6021496 Dutcher Feb 2000 A
6025839 Schell Feb 2000 A
6032129 Greef Feb 2000 A
6049819 Buckle Apr 2000 A
6058266 Megiddo May 2000 A
6059842 Dumarot May 2000 A
6067355 Lim May 2000 A
6069632 Mullaly May 2000 A
6070143 Barney May 2000 A
6076093 Pickering Jun 2000 A
6081270 Berry Jun 2000 A
6081271 Bardon Jun 2000 A
6088727 Hosokawa Jul 2000 A
6088732 Smith Jul 2000 A
6091410 Lection Jul 2000 A
6094196 Berry Jul 2000 A
6098056 Rusnak Aug 2000 A
6101538 Brown Aug 2000 A
6104406 Berry Aug 2000 A
6111581 Berry Aug 2000 A
6115718 Huberman Sep 2000 A
6134588 Guenthner Oct 2000 A
6138128 Perkowitz Oct 2000 A
6141699 Luzzi Oct 2000 A
6144381 Lection Nov 2000 A
6148294 Beyda Nov 2000 A
6148328 Cuomo Nov 2000 A
6157953 Chang Dec 2000 A
6177932 Galdes Jan 2001 B1
6179713 James Jan 2001 B1
6182067 Presnell Jan 2001 B1
6185614 Cuomo Feb 2001 B1
6195657 Rucker Feb 2001 B1
6199067 Geller Mar 2001 B1
6201881 Masuda Mar 2001 B1
6212494 Boguraev Apr 2001 B1
6212548 Desimone Apr 2001 B1
6216098 Clancey Apr 2001 B1
6222551 Schneider Apr 2001 B1
6226686 Rothschild May 2001 B1
6233583 Hoth May 2001 B1
6249779 Hitt Jun 2001 B1
6266649 Linden Jul 2001 B1
6271842 Bardon Aug 2001 B1
6271843 Lection Aug 2001 B1
6275820 Navin-Chandra Aug 2001 B1
6282547 Hirsch Aug 2001 B1
6293865 Kelly Sep 2001 B1
6301609 Aravamudan et al. Oct 2001 B1
6308208 Jung Oct 2001 B1
6311206 Malkin Oct 2001 B1
6314465 Paul Nov 2001 B1
6330281 Mann Dec 2001 B1
6334127 Bieganski Dec 2001 B1
6334141 Varma Dec 2001 B1
6336134 Varma Jan 2002 B1
6337700 Kinoe Jan 2002 B1
6345264 Breese Feb 2002 B1
6345287 Fong Feb 2002 B1
6349091 Li Feb 2002 B1
6351775 Yu Feb 2002 B1
6353449 Gregg Mar 2002 B1
6356297 Cheng Mar 2002 B1
6360254 Linden Mar 2002 B1
6363174 Lu Mar 2002 B1
6370560 Robertazzi Apr 2002 B1
6396513 Helfman May 2002 B1
6411312 Sheppard Jun 2002 B1
6418424 Hoffberg Jul 2002 B1
6418462 Xu Jul 2002 B1
6426757 Smith Jul 2002 B1
6445389 Bossen Sep 2002 B1
6452593 Challener Sep 2002 B1
6462760 Cox, Jr. Oct 2002 B1
6463078 Engstrom Oct 2002 B1
6466550 Foster Oct 2002 B1
6469712 Hilpert, Jr. Oct 2002 B1
6473085 Brock Oct 2002 B1
6473103 Bailey Oct 2002 B1
6473597 Johnson Oct 2002 B1
6476830 Farmer Nov 2002 B1
6499053 Marquette Dec 2002 B1
6501834 Milewski Dec 2002 B1
6505208 Kanevsky Jan 2003 B1
6509925 Dermler Jan 2003 B1
6525731 Suits Feb 2003 B1
6539415 Mercs Mar 2003 B1
6549933 Barrett Apr 2003 B1
6559863 Megiddo May 2003 B1
6567109 Todd May 2003 B1
6567813 Zhu May 2003 B1
6574477 Rathunde Jun 2003 B1
6580981 Masood Jun 2003 B1
6594673 Smith Jul 2003 B1
6601084 Bhaskaran Jul 2003 B1
6618751 Challenger Sep 2003 B1
6640230 Alexander Oct 2003 B1
6641481 Mai Nov 2003 B1
6645153 Kroll Nov 2003 B2
RE38375 Herzberg Dec 2003 E
6657617 Paolini Dec 2003 B2
6657642 Bardon Dec 2003 B1
6684255 Martin Jan 2004 B1
6717600 Dutta Apr 2004 B2
6734884 Berry May 2004 B1
6742032 Castellani May 2004 B1
6765596 Lection Jul 2004 B2
6781607 Benham Aug 2004 B1
6801930 Dionne Oct 2004 B1
6807562 Pennock Oct 2004 B1
6819669 Rooney Nov 2004 B2
6832239 Kraft Dec 2004 B1
6836480 Basso Dec 2004 B2
6845389 Sen Jan 2005 B1
6854007 Hammond Feb 2005 B1
6886026 Hanson Apr 2005 B1
6901379 Balter May 2005 B1
6941236 Huelsbergen Sep 2005 B2
6948168 Kuprionas Sep 2005 B1
RE38865 Dumarot Nov 2005 E
6970929 Bae Nov 2005 B2
6993596 Hinton Jan 2006 B2
7006616 Christofferson Feb 2006 B1
7028296 Irfan Apr 2006 B2
7031473 Morais Apr 2006 B2
7050868 Graepel May 2006 B1
7062533 Brown Jun 2006 B2
7089266 Stolte Aug 2006 B2
7124071 Rich Oct 2006 B2
7124164 Chemtob Oct 2006 B1
7139792 Mishra Nov 2006 B1
7143409 Herrero Nov 2006 B2
7159217 Pulsipher Jan 2007 B2
7185067 Viswanath Feb 2007 B1
7192352 Walker Mar 2007 B2
7209137 Brokenshire Apr 2007 B2
7230616 Taubin Jun 2007 B2
7240093 Danieli Jul 2007 B1
7249123 Elder Jul 2007 B2
7263511 Bodin Aug 2007 B2
7278108 Duarte Oct 2007 B2
7287053 Bodin Oct 2007 B2
7292870 Heredia Nov 2007 B2
7305438 Christensen Dec 2007 B2
7308476 Mannaru Dec 2007 B2
7314411 Lannert Jan 2008 B2
7328242 McCarthy Feb 2008 B1
7353295 Crow Apr 2008 B1
7376474 Graepel May 2008 B2
7383307 Kirkland Jun 2008 B2
7404149 Fox Jul 2008 B2
7426538 Bodin Sep 2008 B2
7427980 Partridge Sep 2008 B1
7428588 Berstis Sep 2008 B2
7429987 Leah Sep 2008 B2
7436407 Doi Oct 2008 B2
7439975 Hsu Oct 2008 B2
7443393 Shen Oct 2008 B2
7447996 Cox Nov 2008 B1
7467180 Kaufman Dec 2008 B2
7467181 McGowan Dec 2008 B2
7475354 Guido Jan 2009 B2
7478127 Creamer Jan 2009 B2
7484012 Hinton Jan 2009 B2
7503007 Goodman Mar 2009 B2
7506264 Polan Mar 2009 B2
7509388 Allen Mar 2009 B2
7515136 Kanevsky Apr 2009 B1
7525964 Astley Apr 2009 B2
7527191 Takayama May 2009 B2
7552177 Kessen Jun 2009 B2
7565650 Bhogal Jul 2009 B2
7571224 Childress Aug 2009 B2
7571389 Broussard Aug 2009 B2
7580888 Ur Aug 2009 B2
7590984 Kaufman Sep 2009 B2
7596596 Chen Sep 2009 B2
7617283 Aaron Nov 2009 B2
7640587 Fox Dec 2009 B2
7667701 Leah Feb 2010 B2
7698656 Srivastava Apr 2010 B2
7702730 Spataro Apr 2010 B2
7702784 Berstis Apr 2010 B2
7714867 Doi May 2010 B2
7719532 Schardt May 2010 B2
7719535 Tadokoro May 2010 B2
7734691 Creamer Jun 2010 B2
7737969 Shen Jun 2010 B2
7743095 Goldberg Jun 2010 B2
7747679 Galvin Jun 2010 B2
7765478 Reed Jul 2010 B2
7768514 Pagan Aug 2010 B2
7770114 Sriprakash Aug 2010 B2
7773087 Fowler Aug 2010 B2
7774407 Daly Aug 2010 B2
7780525 Walker Aug 2010 B2
7782318 Shearer Aug 2010 B2
7792263 D'Amora Sep 2010 B2
7792801 Hamilton, II Sep 2010 B2
7796128 Radzikowski Sep 2010 B2
7808500 Shearer Oct 2010 B2
7814152 McGowan Oct 2010 B2
7827318 Hinton Nov 2010 B2
7843471 Doan Nov 2010 B2
7844663 Boutboul Nov 2010 B2
7844673 Bostick Nov 2010 B2
7847799 Taubin Dec 2010 B2
7853594 Elder Dec 2010 B2
7856469 Chen Dec 2010 B2
7865393 Leason Jan 2011 B2
7873485 Castelli Jan 2011 B2
7882222 Dolbier Feb 2011 B2
7882243 Ivory Feb 2011 B2
7884819 Kuesel Feb 2011 B2
7886045 Bates Feb 2011 B2
7890623 Bates Feb 2011 B2
7893936 Shearer Feb 2011 B2
7904829 Fox Mar 2011 B2
7921128 Hamilton, II Apr 2011 B2
7940265 Brown May 2011 B2
7945620 Bou-Ghannam May 2011 B2
7945802 Hamilton, II May 2011 B2
7955171 Jorasch Jun 2011 B2
7970837 Lyle Jun 2011 B2
7970840 Cannon Jun 2011 B2
7985132 Walker Jul 2011 B2
7985138 Acharya Jul 2011 B2
7990387 Hamilton, II Aug 2011 B2
7996164 Hamilton, II Aug 2011 B2
8001161 Finn Aug 2011 B2
8004518 Fowler Aug 2011 B2
8005025 Bodin Aug 2011 B2
8006182 Bates Aug 2011 B2
8013861 Hamilton, II Sep 2011 B2
8018453 Fowler Sep 2011 B2
8018462 Bhogal Sep 2011 B2
8019797 Hamilton, II Sep 2011 B2
8019858 Bauchot Sep 2011 B2
8022948 Garbow Sep 2011 B2
8022950 Brown Sep 2011 B2
8026913 Garbow Sep 2011 B2
8028021 Reisinger Sep 2011 B2
8028022 Brownholtz Sep 2011 B2
8037416 Bates Oct 2011 B2
8041614 Bhogal Oct 2011 B2
8046700 Bates Oct 2011 B2
8051462 Hamilton, II Nov 2011 B2
8055656 Cradick Nov 2011 B2
8056121 Hamilton, II Nov 2011 B2
8057307 Berstis Nov 2011 B2
8062130 Smith Nov 2011 B2
8063905 Brown Nov 2011 B2
8070601 Acharya Dec 2011 B2
8082245 Bates Dec 2011 B2
8085267 Brown Dec 2011 B2
8089481 Shearer Jan 2012 B2
8092288 Theis Jan 2012 B2
8095881 Reisinger Jan 2012 B2
8099338 Betzler Jan 2012 B2
8099668 Garbow Jan 2012 B2
8102334 Brown Jan 2012 B2
8103640 Lo Jan 2012 B2
8103959 Cannon Jan 2012 B2
8105165 Karstens Jan 2012 B2
8108774 Finn Jan 2012 B2
8113959 De Judicibus Feb 2012 B2
8117551 Cheng Feb 2012 B2
8125485 Brown Feb 2012 B2
8127235 Haggar Feb 2012 B2
8127236 Hamilton, II Feb 2012 B2
8128487 Hamilton, II Mar 2012 B2
8131740 Cradick Mar 2012 B2
8132235 Bussani Mar 2012 B2
8134560 Bates Mar 2012 B2
8139060 Brown Mar 2012 B2
8139780 Shearer Mar 2012 B2
8140340 Bhogal Mar 2012 B2
8140620 Creamer Mar 2012 B2
8140978 Betzler Mar 2012 B2
8140982 Hamilton, II Mar 2012 B2
8145676 Bhogal Mar 2012 B2
8145725 Dawson Mar 2012 B2
8149241 Do Apr 2012 B2
8151191 Nicol, II Apr 2012 B2
8156184 Kurata Apr 2012 B2
8165350 Fuhrmann Apr 2012 B2
8171407 Huang May 2012 B2
8171408 Dawson May 2012 B2
8171559 Hamilton, II May 2012 B2
8174541 Greene May 2012 B2
8176421 Dawson May 2012 B2
8176422 Bergman May 2012 B2
8184092 Cox May 2012 B2
8184116 Finn May 2012 B2
8185450 McVey May 2012 B2
8185829 Cannon May 2012 B2
8187067 Hamilton, II May 2012 B2
8199145 Hamilton, II Jun 2012 B2
8203561 Carter Jun 2012 B2
8214335 Hamilton, II Jul 2012 B2
8214433 Dawson Jul 2012 B2
8214750 Hamilton, II Jul 2012 B2
8214751 Dawson Jul 2012 B2
8217953 Comparan Jul 2012 B2
8219616 Dawson Jul 2012 B2
8230045 Kawachiya Jul 2012 B2
8230338 Dugan Jul 2012 B2
8233005 Finn Jul 2012 B2
8234234 Shearer Jul 2012 B2
8234579 Do Jul 2012 B2
8239775 Beverland Aug 2012 B2
8241131 Bhogal Aug 2012 B2
8245241 Hamilton, II Aug 2012 B2
8245283 Dawson Aug 2012 B2
8265253 D'Amora Sep 2012 B2
8310497 Comparan Nov 2012 B2
8334871 Hamilton, II Dec 2012 B2
8360886 Karstens Jan 2013 B2
8364804 Childress Jan 2013 B2
8425326 Chudley Apr 2013 B2
8442946 Hamilton, II May 2013 B2
8506372 Chudley Aug 2013 B2
8514249 Hamilton, II Aug 2013 B2
8554841 Kurata Oct 2013 B2
8607142 Bergman Dec 2013 B2
8607356 Hamilton, II Dec 2013 B2
8624903 Hamilton, II Jan 2014 B2
8626836 Dawson Jan 2014 B2
8692835 Hamilton, II Apr 2014 B2
8721412 Chudley May 2014 B2
8827816 Bhogal Sep 2014 B2
8838640 Bates Sep 2014 B2
8849917 Dawson Sep 2014 B2
8911296 Chudley Dec 2014 B2
8992316 Smith Mar 2015 B2
9083654 Dawson Jul 2015 B2
9152914 Haggar Oct 2015 B2
9205328 Bansi Dec 2015 B2
9286731 Hamilton, II Mar 2016 B2
9299080 Dawson Mar 2016 B2
9364746 Chudley Jun 2016 B2
9525746 Bates Dec 2016 B2
9583109 Kurata Feb 2017 B2
9682324 Bansi Jun 2017 B2
9764244 Bansi Sep 2017 B2
9789406 Marr Oct 2017 B2
9808722 Kawachiya Nov 2017 B2
20010032240 Malone Oct 2001 A1
20010049301 Masuda Dec 2001 A1
20020002514 Kamachi Jan 2002 A1
20020007319 Yu Jan 2002 A1
20020026388 Roebuck Feb 2002 A1
20020035480 Gordon Mar 2002 A1
20020035593 Salim Mar 2002 A1
20020043568 Hess Apr 2002 A1
20020065870 Baehr-Jones May 2002 A1
20020090995 Haga Jul 2002 A1
20020095586 Doyle Jul 2002 A1
20020096831 Nakayama Jul 2002 A1
20020097856 Wullert Jul 2002 A1
20020116466 Trevithick Aug 2002 A1
20020124137 Ulrich Sep 2002 A1
20020130904 Becker Sep 2002 A1
20020135618 Maes Sep 2002 A1
20020169665 Hughes Nov 2002 A1
20020184373 Maes Dec 2002 A1
20020184391 Phillips Dec 2002 A1
20020188688 Bice Dec 2002 A1
20030008712 Poulin Jan 2003 A1
20030014297 Kaufman Jan 2003 A1
20030032476 Walker Feb 2003 A1
20030050977 Puthenkulam Mar 2003 A1
20030055892 Huitema Mar 2003 A1
20030056002 Trethewey Mar 2003 A1
20030076353 Blackstock Apr 2003 A1
20030101343 Eaton May 2003 A1
20030112952 Brown Jun 2003 A1
20030135621 Romagnoli Jul 2003 A1
20030141977 Brown Jul 2003 A1
20030145128 Baird Jul 2003 A1
20030149675 Ansari Aug 2003 A1
20030177187 Levine Sep 2003 A1
20030195957 Banginwar Oct 2003 A1
20030210265 Haimberg Nov 2003 A1
20040014514 Yacenda Jan 2004 A1
20040054667 Kake Mar 2004 A1
20040059781 Yoakum Mar 2004 A1
20040078432 Manber Apr 2004 A1
20040078596 Kent Apr 2004 A1
20040088303 Elder May 2004 A1
20040097287 Postrel May 2004 A1
20040103079 Tokusho May 2004 A1
20040113756 Mollenkopf Jun 2004 A1
20040127277 Walker Jul 2004 A1
20040128181 Zurko Jul 2004 A1
20040172339 Snelgrove Sep 2004 A1
20040174392 Bjoernsen Sep 2004 A1
20040186886 Galli et al. Sep 2004 A1
20040205134 Digate Oct 2004 A1
20040210627 Kroening Oct 2004 A1
20040228291 Huslak Nov 2004 A1
20040244006 Kaufman Dec 2004 A1
20040260771 Gusler et al. Dec 2004 A1
20050015571 Kaufman Jan 2005 A1
20050021484 Bodin Jan 2005 A1
20050027696 Swaminathan Feb 2005 A1
20050043097 March Feb 2005 A1
20050050137 Bodin Mar 2005 A1
20050060368 Wang Mar 2005 A1
20050071428 Khakoo Mar 2005 A1
20050071462 Bodin Mar 2005 A1
20050080859 Lake Apr 2005 A1
20050085296 Gelb Apr 2005 A1
20050091380 Gonen Apr 2005 A1
20050097440 Lusk May 2005 A1
20050132009 Solie Jun 2005 A1
20050138108 Galvin Jun 2005 A1
20050149620 Kirkland Jul 2005 A1
20050165893 Feinberg Jul 2005 A1
20050216346 Kusumoto Sep 2005 A1
20050223075 Swearingen et al. Oct 2005 A1
20050246711 Berstis Nov 2005 A1
20050277472 Gillan Dec 2005 A1
20060003305 Kelmar Jan 2006 A1
20060004659 Hutchison Jan 2006 A1
20060026253 Kessen Feb 2006 A1
20060031322 Kessen Feb 2006 A1
20060031326 Ovenden Feb 2006 A1
20060036688 McMahan Feb 2006 A1
20060121990 O'Kelley Jun 2006 A1
20060128460 Muir Jun 2006 A1
20060129643 Nielson Jun 2006 A1
20060155813 Dietz et al. Jul 2006 A1
20060161852 Chen Jul 2006 A1
20060178968 Jung Aug 2006 A1
20060184260 Graepel Aug 2006 A1
20060190591 Bobde Aug 2006 A1
20060252526 Walker Nov 2006 A1
20070026934 Herbrich Feb 2007 A1
20070066403 Conkwright Mar 2007 A1
20070073582 Jung Mar 2007 A1
20070087799 Van Luchene Apr 2007 A1
20070106526 Jung May 2007 A1
20070111789 van Deursen May 2007 A1
20070112624 Jung May 2007 A1
20070112706 Herbrich May 2007 A1
20070117623 Nelson May 2007 A1
20070117636 Takahashi May 2007 A1
20070130001 Jung Jun 2007 A1
20070168444 Chen Jul 2007 A1
20070168447 Chen Jul 2007 A1
20070180040 Etgen Aug 2007 A1
20070218997 Cho Sep 2007 A1
20070265718 Graepel Nov 2007 A1
20070298867 Huang Dec 2007 A1
20080019353 Foote Jan 2008 A1
20080059304 Kimsey Mar 2008 A1
20080064467 Reiner Mar 2008 A1
20080113815 Weingardt May 2008 A1
20080120558 Nathan May 2008 A1
20080126350 Shoemaker May 2008 A1
20080155019 Wallace Jun 2008 A1
20080176655 James Jul 2008 A1
20080207329 Wallace Aug 2008 A1
20080242420 Graepel Oct 2008 A1
20080254893 Patel Oct 2008 A1
20080270605 Berstis Oct 2008 A1
20080270916 Chen Oct 2008 A1
20080301405 Kaufman Dec 2008 A1
20090005172 Shibahara Jan 2009 A1
20090075738 Pearce Mar 2009 A1
20090113448 Smith Apr 2009 A1
20090118006 Kelly May 2009 A1
20090209335 Pearce Aug 2009 A1
20090253494 Fitch Oct 2009 A1
20090280909 McEniry Nov 2009 A1
20090325711 Bronstein Dec 2009 A1
20100131864 Bokor May 2010 A1
20100169800 Lance Jul 2010 A1
20100173701 Van Luchene Jul 2010 A1
20100173713 Van Luchene Jul 2010 A1
20100192173 Mizuki Jul 2010 A1
20100267450 McMain Oct 2010 A1
20100306672 McEniry Dec 2010 A1
20110092279 Pilip Apr 2011 A1
20110190063 Kajii Aug 2011 A1
20120190456 Rogers Jul 2012 A1
20130260876 Margalith Oct 2013 A1
20130266927 Mann Oct 2013 A1
20130296046 Mianji Nov 2013 A1
20140004955 Nahari Jan 2014 A1
20140004960 Soti Jan 2014 A1
20140011595 Muller Jan 2014 A1
20140162763 Kim Jun 2014 A1
20140162781 Butler Jun 2014 A1
20140342808 Chowdhary Nov 2014 A1
20140344725 Bates Nov 2014 A1
20140349753 Imai Nov 2014 A1
20150038233 Rom Feb 2015 A1
20150051000 Henn Feb 2015 A1
20150310698 Polis Oct 2015 A1
20160001181 Marr Jan 2016 A1
20160001182 Marr Jan 2016 A1
20160001186 Marr Jan 2016 A1
20160005270 Marr Jan 2016 A1
20160191671 Dawson Jun 2016 A1
Foreign Referenced Citations (99)
Number Date Country
768367 Mar 2004 AU
2005215048 Oct 2011 AU
2143874 Jun 2000 CA
2292678 Jul 2005 CA
2552135 Jul 2013 CA
1334650 Feb 2002 CN
1202652 Oct 2002 CN
1141641 Mar 2004 CN
1494679 May 2004 CN
1219384 Sep 2005 CN
1307544 Mar 2007 CN
100407675 Jul 2008 CN
100423016 Oct 2008 CN
100557637 Nov 2009 CN
101001678 May 2010 CN
101436242 Dec 2010 CN
101801482 Dec 2014 CN
668583 Aug 1995 EP
0627728 Sep 2000 EP
0717337 Aug 2001 EP
1207694 May 2002 EP
1209849 May 2002 EP
0679977 Oct 2002 EP
0679978 Mar 2003 EP
0890924 Sep 2003 EP
1377902 Aug 2004 EP
0813132 Jan 2005 EP
1380133 Mar 2005 EP
1021021 Sep 2005 EP
0930584 Oct 2005 EP
0883087 Aug 2007 EP
1176828 Oct 2007 EP
2076888 Jul 2015 EP
2339938 Oct 2002 GB
2352154 Jul 2003 GB
H11191097 Apr 1999 JP
11191097 Jul 1999 JP
3033956 Apr 2000 JP
3124916 Jan 2001 JP
2001119403 Apr 2001 JP
3177221 Jun 2001 JP
2001204973 Jul 2001 JP
3199231 Aug 2001 JP
2001230883 Aug 2001 JP
3210558 Sep 2001 JP
3275935 Feb 2002 JP
3361745 Jan 2003 JP
3368188 Jan 2003 JP
3470955 Sep 2003 JP
3503774 Dec 2003 JP
2004062539 Feb 2004 JP
3575598 Jul 2004 JP
3579823 Jul 2004 JP
3579154 Oct 2004 JP
3701773 Oct 2005 JP
3777161 Mar 2006 JP
3914430 Feb 2007 JP
3942090 Apr 2007 JP
3962361 May 2007 JP
4009235 Sep 2007 JP
4225376 Dec 2008 JP
4653075 Dec 2010 JP
5063698 Aug 2012 JP
5159375 Mar 2013 JP
5352200 Nov 2013 JP
5550720 Jul 2014 JP
2015002839 Jan 2015 JP
5734566 Jun 2015 JP
20020038229 May 2002 KR
20030039019 May 2003 KR
117864 Aug 2004 MY
55396 Dec 1998 SG
424213 Mar 2001 TW
527825 Apr 2003 TW
200836091 Sep 2008 TW
200937926 Sep 2009 TW
201002013 Jan 2010 TW
201009746 Mar 2010 TW
201024997 Jul 2010 TW
201028871 Aug 2010 TW
0060444 Oct 2000 WO
0062231 Oct 2000 WO
0137162 May 2001 WO
0201455 Jan 2002 WO
0203645 Jan 2002 WO
2002073457 Sep 2002 WO
20020087156 Oct 2002 WO
03044755 May 2003 WO
03049459 Jun 2003 WO
03058518 Jul 2003 WO
2004086212 Oct 2004 WO
2005079538 Sep 2005 WO
2007101785 Sep 2007 WO
2008037599 Apr 2008 WO
2008074627 Jun 2008 WO
2008095767 Aug 2008 WO
2009037257 Mar 2009 WO
2009104564 Aug 2009 WO
2010096738 Aug 2010 WO
Non-Patent Literature Citations (36)
Entry
Office Action dated Mar. 24, 2017 for U.S. Appl. No. 14/712,514.
Office Action dated Jan. 20, 2017 for U.S. Appl. No. 14/712,566.
Notice of Allowance dated Jun. 14, 2017 for U.S. Appl. No. 14/712,566; (pp. 1-9).
Office Action dated Feb. 13, 2017 for U.S. Appl. No. 14/712,541.
Office Action dated Aug. 7, 2017 for U.S. Appl. No. 14/712,541; (pp. 1-16).
Office Action dated Oct. 19, 2017 for U.S. Appl. No. 14/712,514; (pp. 1-12).
Office Action dated Mar. 14, 2018 for U.S. Appl. No. 14/712,541 (pp. 1-16).
Office Action dated Mar. 14, 2018 for U.S. Appl. No. 15/703,757.
Duong et al; “A dynamic load sharing algorithm for massivly multiplayer online games” published Sep. 28, 2003-Oct. 1, 2003.http://ieeexplore.ieee.org/ieI5/8945/28322/01266179.pdf?tp=&arnumber- =1266179&isnumber=28322http://ieeexplore.ieee.org/xpl/absprintf.jsp?arnumb- er=1266179.
“A multi-server architecture for distributed virtual walkthrough” http://delivery.acm.org/10.1145/590000/585768/p163-ng.pdf?key1=585768&key-2=0554824911&coll=GUIDE&dl=GUIDE&CFID=41712537&CFTOKEN=50783297.
Mauve, M., Fischer, S., and Widmer, J. 2002. A generic proxy system for networked computer games. In Proceedings of the 1st Workshop on Network and System Support for Games (Braunschweig, Germany, Apr. 16-17, 2002). NetGames '02. ACM, New York, NY, 25-28. DOI=http://doi.acm.org/10.1145/566500.566504.
IBM developer Works, OptimalGrid—autonomic computing on the Grid, James H. Kaufman; Tobin J. Lehman; Glenn Deen; and John Thomas, Jun. 2003.
IBM, Transcoding: Extending e-business to new environments, Britton et al., Sep. 22, 2000.
Lee et al., “A Self-Adjusting Data Distribution Mechanism for Multidimensional Load Balancing in Multiprocessor-Based Database Systems,” Information Systems vol. 19, No. 7, pp. 549-567, 1994.
Ma et al., “A Scalable Parallel Cell-Projection Volume Rendering Algorithm for Three-Dimensional Unstructured Data”, IEEE 1997, pp. 1-10.
Feng et al., “A Parallel Hierarchical Radiosity Algorithm for Complex Scenes,” Proceedings IEEE Symposium on Parallel Rendering (PRS) '97), IEEE Computer Society Technical Committee on Computer Graphics in cooperation with ACM SIGGRAPH pp. 71-79, 1997.
Hassen et al., “A Task-and Data-Parallel Programming Language Based on Shared Objects,” ACM Transactions on Programming Languages and Systems, vol. 20, No. 6, Nov. 1998, pp. 1131-1170.
Andert, “A Simulation of Dynamic Task Allocation in a Distributed Computer System,” Proceedings of the 1987 Winter Simulation Conference, 1987, pp. 1-9.
Supplementary European Search from the European Patent Office for EP05723458.5, dated Jul. 19, 2010.
International Search Report as Published as WO2005/079538 in corresponding international application No. PCT/US2005/005550, dated Jul. 5, 2006.
K. Loesing et al., “Privacy-aware presence management in instant messaging systems”, Distributed & Mobile Syst. Group, Otto-Friedrich-Univ. Germany, Proceedings. 20th International Parallel and Distributed Processing Symposium Rhodes Island, Greece; (IEEE Cat. No. 06TH8860), 2006, 8 pp.
Y. Zhao et al., “A 3D virtual shopping mall that has the intelligent virtual purchasing guider and cooperative purchasing functionalities”, CSCWD 2004—8th International Conference on Computer Supported Cooperative Work in Design—Proceedings, 2004, p. 381-385.
V. Stojanovic, “Virtual boutique—try clothes on-line”, 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No. 01EX517), 2001, pt. 2, p. 802-3 vol. 2.
Roaming Virtual World Is a Real Trip; [Final Edition] Leslie Walker. The Washington Post. Washington, D.C.: Mar. 30, 2006.
E-Entrepreneurship: Learning in a Simulated Environment Salim Jiwa, Dawn Lavelle, Arjun Rose. Journal of Electronic Commerce in Organizations. Hershey: Jul.-Sep. 2005. vol. 3, Iss. 3.
Kautz, H., B. Selman, M. Shah.. “Referral Web: Combining Social Networks and Collaborative Filtering”. Communications of the ACM, vol. 40, No. 3, Mar. 1997.
Schwartz, M. F., D. C. M. Wood. “Discovering shared interests among people using graph analysis of global electronic mail traffic”. Department of Computer Science, University of Colorado, Boulder CO. Oct. 1992.
Wellman, B. “For a social network analysis of computer networks: a sociological perspective on collaborative work and virtual community”. Proceedings of the 1996 conference on ACM SIGCPR/SIGMIS. 1-11.
Qureshi, S. “Supporting electronic group processes: a social perspective”. Proceedings of the 1995 ACM SIGCPR Conference on Supporting teams, groups, and learning inside the IS function. ACM Press. 24-34.
Ackerman, M.S., B. Starr. “Social activity indicators: interface components for CSCW systems”. Proceedings of the 8th ACM Symposium on User Interface and Software Technology. ACM Press. 159-168, Nov. 14-17, 1995.
Garton, L., C. Haythornthwaite, B. Wellman. “Studying on-line social networks in Doing Internet Research”, Jun. 1997.
Srivastava, Jaidepp, Robert Cooley, Mukund Deshpande, Pang-Ning Tan. “Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data”. SIGKDD Explorations, vol. 1, Issue 2. Jan. 2000. 12-23.
Wang, Y. “Web Mining and Knowledge Discovery of Usage Patterns”. CS748T Project (Part I) Feb. 2000.
Sack, W. “Conversation Map: a content-based Usenet newsgroup browser”. Proceedings of the 2000 International Conference on Intelligent User Interfaces. ACM Press. 233-240.
Feldman, R. “Mining unstructured data”. Tutorial notes for ACK SIGKDD 1999. ACM Press. 182-236.
“Universally Unique Identifier”, 2006 (http://en.wikipedia.org/wiki/UUID).
Related Publications (1)
Number Date Country
20160166935 A1 Jun 2016 US