System and method for traversing a NAT device with IPSec AH authentication

Information

  • Patent Grant
  • 10333919
  • Patent Number
    10,333,919
  • Date Filed
    Monday, April 9, 2018
    6 years ago
  • Date Issued
    Tuesday, June 25, 2019
    5 years ago
Abstract
A method for routing IP packets with IPSec AH authentication is disclosed. The method includes locating overlay edge routers between private domains and their associated NAT routers. Outbound packets from a source private domain are modified by its overlay edge router to include IPSec AH authorization data computed using IP source and destination addresses that match a packet's final source and destination IP address upon final NAT translation immediately prior to delivery to a host of a destination private domain.
Description
FIELD

Embodiments of the present invention relate to network security.


BACKGROUND

Internet Protocol security (IPSec) is a protocol suite that provides mechanisms for authenticating and encrypting data flowing within a network such as a Virtual Private Network (VPN).


Authentication Header (AH) and Encapsulating Security Payload (ESP) are wire-level protocols provided by IPSec to authenticate (AH) and encrypt (ESP) data. AH may be used in tunnel mode or transport mode.


Transport mode provides a secure connection between two endpoints as it encapsulates the payload portion of Internet Protocol (IP) packets sent over the secure connection. With tunnel mode, the entire IP packet is encapsulated thereby to provide a virtual secure hop between the two endpoints.



FIG. 1A shows the contents of an IP datagram 100 that has undergone IPSec AH authentication to include an AH header. FIG. 1B shows the components of the AH header 102 in greater detail. It will be seen that the AH Header 102 includes authentication data 104. The data 104 is usually a cryptographic hash-based message authentication code computed over nearly all fields of the original IP packet save for those that are modified in transit. The fields modified in transit include TTL and header checksum. FIG. 1 C shows the IP datagram 100 with the fields that are protected by AH Authentication shaded. The data 104 carries an integrity check value (ICV) which may be a MD5 or SHA-1 hash.


Network Address Translation (NAT) is a technology that is used to map a range of private addresses to and from a (usually) smaller set of public addresses. This reduces the demand for routable public IP space. NAT devices work by modifying IP headers associated with an IP datagram on the fly. In particular the source and/or destination IP addresses are changed. When a source or header IP address is changed, it forces a recalculation of the header checksum. This has to be done anyway, because the NAT device typically serves as one “hop” in the path from source to destination, and this requires the decrement of the TTL (Time To Live) field. However, as noted above since the TTL and header checksum fields are always modified in flight, AH knows to excludes them from coverage, but this does not apply to the IP addresses. These are included in the integrity check value, and any modification will cause the check to fail when verified by the recipient. FIG. 1D shows the IP datagram 100 with the fields that are modified by NAT shaded and FIG. 1E shows the IP datagram 100 with the fields that are broken by NAT shaded.


Because the ICV incorporates a secret key which is unknown by intermediate parties, the NAT router is not able to recalculate the ICV, making NAT incompatible with IPSec AH authentication.


SUMMARY

According to a first aspect of the invention, a method for routing IP packets with IPSec AH authentication is disclosed. The method includes locating overlay edge routers between private domains and their associated NAT routers. Outbound packets from a source private domain are modified by its overlay edge router to include IPSec AH authorization data computed using IP source and destination addresses that match a packet's final source and destination IP address upon final NAT translation immediately prior to delivery to a host of a destination private domain.


Other aspects of the invention will be apparent from the detailed description below.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A shows the contents of a IP packet.



FIG. 1B shows the IPSec AH Header in greater detail.



FIG. 1C shows the fields of the IP packet that are protected by IPSec AH authentications.



FIG. 1D shows the fields of the IP packet that are modified by a Network Address Translation (NAT) device.



FIG. 1E shoes the fields of the IP packet that are broken by NAT.



FIG. 2A shows a network setup for transmitted packets from a Host A to a Host B across NAT devices.



FIG. 2B shows the network setup of FIG. 2A modified by the creation of an overlay domain (OD) to facilitate packet transmission from the Host A to the Host B with IPsec AH authentication across the NAT devices, in accordance with one embodiment of the invention.



FIG. 3 shows steps by an overlay router to prepare an IP packet from transmission, in accordance with one embodiment of the invention.



FIG. 4 shows the fields of an IP packet as modified by the process of FIG. 3.



FIG. 5 shows the steps in created an integrity check value (ICV) in accordance with one embodiment of the invention.



FIG. 6 shows the IP datagram of FIG. 3 as modified by a router R2.



FIG. 7 shows a high-level block diagram for an overlay controller (OC), in accordance with one embodiment of the invention.



FIG. 8 shows a high-level block diagram of hardware for a router, in accordance with one embodiment of the invention.





DETAILED DESCRIPTION

In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details. In other instances, structures and devices are shown in block or flow diagram form only in order to avoid obscuring the invention.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearance of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.


Moreover, although the following description contains many specifics for the purposes of illustration, anyone skilled in the art will appreciate that many variations and/or alterations to the details are within the scope of the present invention. Similarly, although many of the features of the present invention are described in terms of each other, or in conjunction with each other, one skilled in the art will appreciate that many of these features can be provided independently of other features. Accordingly, this description of the invention is set forth without any loss of generality to, and without imposing limitations upon, the invention.


Broadly, embodiments of the present invention teach extending IPSec AH Authentication to NAT device so that IPSec AH authentication may be used to protect IP packets that traverse a NAT device.


To understand embodiments of the invention, consider the network setup 200 shown in FIG. 2 which will be used to illustrate how IP packets from a Host A within a private network 202 located behind a NAT router 204 can be encrypted with IPSec AH authentication and delivered to Host B within a private domain 206 located behind a NAT router 208 via an intermediate transport network 210 such as the Internet.


In one embodiment, an overlay domain is created to facilitate routing with the network setup 200. The overlay domain may include a plurality of overlay edge routers (OERs) each coupled to an overlay controller (OC). The overlay controller (OC) orchestrates secure overlay routing based on defined policy and control logic. Communications between the overlay controller (OC) and the overlay edge routers (OERs) are facilitated by an overlay protocol (OP) which runs over secure DTLS connections through a core transport network. Each overlay edge router (OER) is defines an edge not that is located at the boundary of the overlay domain. All overlay edge routers (OERs) connect directly with each other over the core transport network via IPSec tunnels.



FIG. 2A shows the network setup 200 with elements of the overlay domain. As will be seen said elements include overlay edge routers (OERs) R1, R2, and overlay controller (OC) 212. The overlay edge router (OER) R1 is positioned between the Host A and the NAT router 204, whereas the overlay edge router (OER) is positioned between the Host B and the NAT router 208. In use, the router R1 learns the private IP address (IPA) of the Host A and communicates it to the overlay controller (OC) 212 via the overlay protocol (OP). In a similar manner, the router R2 learns the private IPA of the Host B and communicates it to the overlay controller (OC) 212 via the overlay protocol (OP).



FIG. 3 is a workflow drawing showing the steps involved in the transmission of IP packets from the Host A to the Host B, in accordance with one embodiment based on the overlay domain shown in FIG. 2A. The steps is the workflow are performed by the router R1 Referring to FIG. 3, the steps include the following processing blocks:



300: R1 receives an IP packet bound for a target host device (Host B) from a source host device (Host A).



302: R1 determines the private IPA of the last hop overlay edge router (R1). This is done via the overlay protocol (OP) wherein the overlay controller (OC) communicates the same to R1 via a DTLS control channel established through the network 210.



304: R1 calculates the authentication data based on the public IP address of R1 and the private IP address R2. This is illustrated in FIG. 5 which shows the steps in produced the authentication data. Referring to FIG. 5 at block 500 the full IP packet with src IP address=public IPA of R1 and dst IP address=private IP address of R2 is received. At block 502 a hash function is used to transform the full IP packet in a hash digest or integrity check value (ICV) which is output at 504.



306: R1 adds the authentication data into the AH header portion of the IP Packet



308: R1 inserts the original IP and UDP headers into the IP packet. This means that the private IPA of R1 is the source IP address and the public IPA of R2 is the destination IP address as is shown in FIG. 4 which shows the IP packet 100 as modified by R1



310: R1 transmits the IP packet.


When the packet arrives at R2 it would have been modified through NAT so that its outer header will have the public IPA of R1 as the source and the private IPA of R2 as the destination. This can be seen from FIG. 6, which shows the IP packet as modified by NAT and received at the Host B. Thus, when the Host B computes the ICV based on the packet contents it would match the ICV computed at block 304.



FIG. 7 shows an example of hardware 700 that may be used to implement the overlay controller (OC), in accordance with one embodiment. The hardware 700 may includes at least one processor 702 coupled to a memory 704. The processor 703 may represent one or more processors (e.g., microprocessors), and the memory 704 may represent random access memory (RAM) devices comprising a main storage of the hardware, as well as any supplemental levels of memory e.g., cache memories, non-volatile or back-up memories (e.g. programmable or flash memories), read-only memories, etc. In addition, the memory 704 may be considered to include memory storage physically located elsewhere in the hardware, e.g. any cache memory in the processor 702, as well as any storage capacity used as a virtual memory, e.g., as stored on a mass storage device.


The hardware also typically receives a number of inputs and outputs for communicating information externally. For interface with a user or operator, the hardware may include one or more user input output devices 706 (e.g., a keyboard, mouse, etc.) and a display 708. For additional storage, the hardware 700 may also include one or more mass storage devices 710, e.g., a Universal Serial Bus (USB) or other removable disk drive, a hard disk drive, a Direct Access Storage Device (DASD), an optical drive (e.g. a Compact Disk (CD) drive, a Digital Versatile Disk (DVD) drive, etc.) and/or a USB drive, among others. Furthermore, the hardware may include an interface with one or more networks 712 (e.g., a local area network (LAN), a wide area network (WAN), a wireless network, and/or the Internet among others) to permit the communication of information with other computers coupled to the networks. It should be appreciated that the hardware typically includes suitable analog and/or digital interfaces between the processor 712 and each of the components, as is well known in the art.


The hardware 700 operates under the control of an operating system 714, and executes application software 716 which includes various computer software applications, components, programs, objects, modules, etc. to perform the techniques described above.


In general, the routines executed to implement the embodiments of the invention, may be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processors in a computer, cause the computer to perform operations necessary to execute elements involving the various aspects of the invention. Moreover, while the invention has been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments of the invention are capable of being distributed as a program product in a variety of forms, and that the invention applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution. Examples of computer-readable media include but are not limited to recordable type media such as volatile and non-volatile memory devices, USB and other removable media, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), flash drives among others.



FIG. 8 shows a block diagram of hardware 800 for routes R1 and R1, in accordance with one embodiment of the invention. Referring to FIG. 8, the hardware 800 includes a routing chip 804 coupled to a forwarding chip 808. The routing chip 804 performs functions such as path computations, routing table maintenance, and reachability propagation. Components of the routing chip include a CPU or processor 804, which is coupled to a memory 806. The memory stores instructions to perform the methods disclosed herein. The forwarding chip is responsible for packet forwarding along a plurality of line interfaces 810


Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that the various modification and changes can be made to these embodiments without departing from the broader spirit of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than in a restrictive sense.

Claims
  • 1. A method for processing an Internet Protocol (IP) packet, the method comprising: receiving, by a first router within an overlay network, the IP packet from a source host device associated with a source domain, the IP packet bound for a destination host device associated with a destination domain;determining, by the first router, a private IP address of a second router within the overlay network, the second router being associated with the destination domain;calculating authentication data using a public IP address of an intermediate router associated with the source domain as a source IP address, and the private IP address of the second router as a destination IP address;modifying the IP packet to include the authentication data;generating an outer header for the modified IP packet, the outer header including a private IP address of the first router as a header source IP address, and the private IP address of the second router as a header destination IP address; andtransmitting, by the first router, the modified IP packet to the intermediate router.
  • 2. The method of claim 1, further comprising establishing the overlay network including the first router, the second router, and an overlay controller.
  • 3. The method of claim 2, wherein determining the private IP address of the second router includes receiving a message from the overlay controller over a secure channel that includes the private IP address of the second router.
  • 4. The method of claim 2, further comprising obtaining the public IP address of the second router via a peer to peer link through the overlay network.
  • 5. The method of claim 2, further comprising transmitting a private address of the first router to the overlay controller over a secure channel.
  • 6. The method of claim 2, further comprising receiving private IP addresses for all routers in the overlay network from the overlay controller.
  • 7. The method of claim 1, wherein the intermediate router includes a Network Address Translation (NAT) router.
  • 8. A non-transitory computer readable medium containing instructions that, in response to being executed by one or more processors, cause a first router in an overlay network to perform operations, the operations comprising: receive an Internet Protocol (IP) packet from a source host device associated with a source domain, the IP packet bound for a destination host device associated with a destination domain;determine a private IP address of a second router within the overlay network, the second router being associated with the destination domain;calculate authentication data using a public IP address of an intermediate router associated with the source domain as a source IP address, and the private IP address of the second router as a destination IP address;modify the IP packet to include the authentication data;generate an outer header for the modified IP packet, the outer header including a private IP address of the first router as a header source IP address, and the private IP address of the second router as a header destination IP address; andtransmit the modified IP packet to the intermediate router.
  • 9. The computer readable medium of claim 8, wherein determining the private IP address of the second router includes receiving a message from an overlay controller over a secure channel that includes the private IP address of the second router.
  • 10. The computer readable medium of claim 8, wherein the operations further comprise obtain the public IP address of the second router via a peer to peer link through the overlay network.
  • 11. The computer readable medium of claim 8, wherein the operations further comprise transmit a private address of the first router to an overlay controller over a secure channel.
  • 12. The computer readable medium of claim 8, wherein the operations further comprise receive private IP addresses for all routers in the overlay network from an overlay controller.
  • 13. A first router, comprising: one or more processors; andone or more non-transitory computer readable media containing instructions that, in response to being executed by the one or more processors, cause the first router to perform operations, the operations comprising: receive an Internet Protocol (IP) packet from a source host device associated with a source domain, the IP packet bound for a destination host device associated with a destination domain;determine a private IP address of a second router within the overlay network, the second router being associated with the destination domain;calculate authentication data using a public IP address of an intermediate router associated with the source domain as a source IP address, and the private IP address of the second router as a destination IP address;modify the IP packet to include the authentication data; andgenerate an outer header for the modified IP packet, the outer header including a private IP address of the first router as a header source IP address, and the private IP address of the second router as a header destination IP address; andtransmit the modified IP packet to the intermediate router.
  • 14. The first router of claim 13, further comprising the first router being configured to communicate with an overlay controller over a first secure channel, wherein the overlay controller communicates with the second router over a second secure channel.
  • 15. The first router of claim 14, wherein determining the private IP address of the second router includes receiving a message from the overlay controller over a secure channel that includes the private IP address of the second router.
  • 16. The first router of claim 14, wherein the operations further comprise obtain the public IP address of the second router via a peer to peer link through the overlay network.
  • 17. The first router of claim 14, wherein the operations further comprise transmit a private address of the first router to the overlay controller over the first secure channel.
  • 18. The first router of claim 14, wherein the operations further comprise receive private IP addresses for all routers in the overlay network from the overlay controller.
  • 19. The first router of claim 14, wherein the operations further comprise transmit a private address of the first router to an overlay controller over a secure channel.
  • 20. The first router of claim 14, wherein the first secure channel includes a datagram transport layer security (DTLS) channel.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. application Ser. No. 15/583,984, filed May 1, 2017, which is a Continuation of U.S. application Ser. No. 13/966,281, filed Aug. 13, 2013, which are incorporated herein by reference.

US Referenced Citations (48)
Number Name Date Kind
6963982 Brustoloni et al. Nov 2005 B1
7120930 Maufer et al. Oct 2006 B2
7143137 Maufer et al. Nov 2006 B2
7360083 Ragireddy et al. Apr 2008 B1
7366894 Kalimuthu et al. Apr 2008 B1
7519834 Dondeti et al. Apr 2009 B1
7606191 Breau et al. Oct 2009 B1
7620070 Maufer et al. Nov 2009 B1
7716369 Le Pennec et al. May 2010 B2
7848335 Kang et al. Dec 2010 B1
7860098 Biswas et al. Dec 2010 B1
7949785 Alkatib et al. May 2011 B2
8041824 Maeng Oct 2011 B1
8291119 Rao Oct 2012 B2
8776209 Kumar et al. Jul 2014 B1
20020133534 Forslow Sep 2002 A1
20030005103 Narad et al. Jan 2003 A1
20030076830 Asano Apr 2003 A1
20030108041 Aysan et al. Jun 2003 A1
20030233452 Maufer Dec 2003 A1
20030233568 Maufer et al. Dec 2003 A1
20040037260 Kakemizu et al. Feb 2004 A1
20040136356 Kuo Jul 2004 A1
20040205245 Le Pennec et al. Oct 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20050022017 Maufer et al. Jan 2005 A1
20050135359 Chang Jun 2005 A1
20060253701 Kim Nov 2006 A1
20060259583 Matsuura Nov 2006 A1
20070002857 Maher Jan 2007 A1
20070058644 Barhmbhatt et al. Mar 2007 A1
20080317011 Datta et al. Dec 2008 A1
20090022152 Henry et al. Jan 2009 A1
20090040942 Yang Feb 2009 A1
20090097490 Sanderson Apr 2009 A1
20090113203 Tsuge Apr 2009 A1
20090157901 Asati Jun 2009 A1
20100205313 Boire-Lavigne et al. Aug 2010 A1
20100232503 Morimoto et al. Sep 2010 A1
20110013637 Kue et al. Jan 2011 A1
20110016309 Motoyama et al. Jan 2011 A1
20120011589 Chen et al. Jan 2012 A1
20120106559 Kim May 2012 A1
20130133057 Yoon et al. May 2013 A1
20130294461 Zhou et al. Nov 2013 A1
20140075189 Abraham Mar 2014 A1
20140280839 Agrawal et al. Sep 2014 A1
20150359033 Stojanovski et al. Dec 2015 A1
Non-Patent Literature Citations (6)
Entry
McGrew et al., Cryptographic Algorithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload (ESP) and Authentication Header (AH), Aug. 2014, Internet Engineering Task Force (IETF), RFC 7321, pp. 1-11.
Manral, Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH), Apr. 2007, Network Working Group, Request for Comments: 4835. pp. 1-11.
Kent, IP Authentication Header, 1212005, Network Working Group, Request for Comments:4302, pp. 1-34.
Kent et al., IP Authentication Header, Nov. 1998, Network Working Group, Request for Comments: 2402, pp. 1-22.
BB. Aboba, et al., “IPsec-Network Address Translation (NAT) Compatibility Requirements”, Mar. 2004, Network Narking Group RFC: 3715, p. 1-18.
Steve Fried!, “An Illustrated Guide to IPsec”, Jun. 2008, Steve Friedl's Unixwiz.net Tech Tips, http://unixwiz.net/echtips/iguideipsec_html, p. 1-19.
Related Publications (1)
Number Date Country
20180302389 A1 Oct 2018 US
Continuations (2)
Number Date Country
Parent 15583984 May 2017 US
Child 15948988 US
Parent 13966281 Aug 2013 US
Child 15583984 US