1. Field of the Invention
This disclosure relates to systems of methods for locating arteriotomies. In some embodiments, the localization is used for therapeutic targeting (e.g., for targeting of high-intensity focused ultrasound).
2. Description of the Related Art
Certain medical procedures result in bleeding penetration wounds inside the body, for example via the insertion of devices into blood vessels and/or organs. Representative procedures include arterial and venous catheterization for cardiologic or radiologic interventional procedures, needle biopsy procedures, and minimally invasive surgery. Improved percutaneous catheterization techniques have enabled physicians to perform an ever-increasing number of diagnostic and therapeutic cardiovascular procedures using devices deployed through arteries and veins. The annual number of therapeutic and diagnostic catheterization procedures worldwide is over 14 million and it is continuously growing.
In the vast majority of these catheterization procedures, access to the vasculature is accomplished by percutaneous installation of an introducer sheath into the common femoral artery. The introducer sheath facilitates passage of a variety of diagnostic and therapeutic instruments and devices into the vessel and its tributaries. At the conclusion of the catheterization procedure, the introducer sheath is removed, leaving an arteriotomy that must be sealed. Arteriotomy hemostasis is most often (approximately two-thirds of all cases) achieved by the application of manual or mechanical compression (standard compression) on the puncture site until a stable clot forms. Several important limitations are associated with the use of standard compression. For example, a physician, nurse, or trained technician must apply digital pressure on the access site for up to 40 minutes. Patients must remain on bed rest for three or more hours so as not to disrupt clot formation in the arteriotomy. The most painful aspects of the catheterization procedure reported by patients are the standard compression procedure and lying immobile for hours. The aggressive use of anticoagulants and antiplatelet therapies to prevent thrombus formation during catheterization procedures has greatly increased the difficulty of sealing the access site using compression. Finally, complications occur, the most frequent of which are the formation of hematomas, pseudo-aneurysms, and/or arteriovenous fistulae.
Products for sealing arteriotomies based on newer technologies such as collagen plugs, sealants and mechanical suturing are being successfully marketed. However, these products are invasive, implant foreign materials, require skill and training to use, and can cause major complications. Accordingly, there is a need for improved systems and methods for sealing arteriotomies
One embodiment described herein includes an arteriotomy targeting catheter having an arteriotomy targeting aid coupled to the catheter and adapted to detect the location of an arteriotomy and one or more beacons coupled to the catheter proximal to the arteriotomy targeting aid. In one embodiment, the arteriotomy targeting aid comprises an inflatable balloon. In one embodiment, the balloon comprises an elastic polymeric material. In one embodiment, the soft elastic polymeric material is selected from the group consisting of one or more of a polyamide, a polyamide blend, a polyethylene, a polyethylene terephthalate, a polyurethane, a polyamide, and a polyamide blend. In one embodiment, the polyamide blend is PBAX. In one embodiment, the durometer of the balloon material is between 20 A and 90 D. In one embodiment, the durometer of the balloon material is between 80 A and 65 D. In one embodiment, the durometer of the balloon material is 90 A. In one embodiment, the arteriotomy targeting aid comprises a mechanical expansible device. In one embodiment, the arteriotomy targeting aid comprises an arteriotomy locating sensor. In one embodiment, the arteriotomy locating sensor comprises a temperature sensor. In one embodiment, the temperature sensor is a thermistor. In one embodiment, the arteriotomy locating sensor comprises a flow measurement sensor. In one embodiment, the arteriotomy locating sensor comprises an optical sensor. In one embodiment, the arteriotomy locating sensor comprises an impedance sensor. In one embodiment, the arteriotomy locating sensor comprises a Doppler sensor. In one embodiment, the beacon comprises an ultrasonic transmitter. In one embodiment, the beacon comprises a radio frequency transmitter. In one embodiment, the beacon comprises a magnetic field generator.
Another embodiment described herein includes a method of determining the location of a therapeutic site in a body, comprising inserting a catheter into the body, wherein the catheter comprises a targeting aid, and manipulating the catheter such that the targeting aid is adjacent to or at the therapeutic site. In one embodiment, the therapeutic site is an arteriotomy. In one embodiment, manipulating the catheter comprises moving the catheter until a Doppler signal from the targeting aid determines that the targeting aid is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises a temperature sensor and manipulating the catheter comprises moving the catheter until the temperature sensor indicates that it is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises a fluid flow detector and manipulating the catheter comprises moving the catheter until the fluid flow detector indicates that it is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises an optical sensor and manipulating the catheter comprises moving the catheter until the optical sensor indicates that it is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises a pressure sensor and manipulating the catheter comprises moving the catheter until the pressure sensor indicates that it is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises an impedance sensor and manipulating the catheter comprises moving the catheter until the impedance sensor indicates that it is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises a force detector and manipulating the catheter comprises moving the catheter until the force detector indicates that it is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises a mechanically expansive device and the method comprises expanding the mechanically expansive device and moving the catheter until the device is adjacent to or at the therapeutic site. In one embodiment, the targeting aid comprises an inflatable balloon and the method comprises inflating the balloon and moving the catheter until the balloon is adjacent to or at the therapeutic site. In one embodiment, the therapeutic site is an arteriotomy created by an introducer sheath inserted into an artery, inserting the catheter into the body comprises inserting the catheter and targeting aid through the lumen of the introducer sheath past the arteriotomy and into the artery, and manipulating the catheter comprises retracting the catheter such that the targeting aid approaches the arteriotomy. In one embodiment, the introducer sheath is retracted simultaneously with retraction of the catheter. In one embodiment, the targeting aid comprises an inflatable balloon and wherein the balloon is inflated after insertion of the catheter and prior to retracting the catheter. One embodiment further includes applying compression above the arteriotomy.
Another embodiment described herein includes a method of determining the location of a therapeutic site in a body relative to a therapeutic applicator, comprising inserting a targeting catheter into the body, identifying the location of the therapeutic site using the targeting catheter, and determining the position of the targeting catheter relative to the therapeutic applicator. In one embodiment, the therapeutic site is an arteriotomy. One embodiment further comprises aligning the therapeutic applicator with the therapeutic site based on the relative position of the targeting catheter. In one embodiment, determining the position of the targeting catheter relative to the therapeutic applicator comprises using triangulation. In one embodiment, the triangulation is based on magnetic fields. In one embodiment, the triangulation is based on acoustic signals. In one embodiment, the triangulation is based on an acoustic time-of-flight determination. In one embodiment, determining the position of the targeting catheter relative to the therapeutic applicator comprises transmitting an ultrasound signal from a transmitter located on the catheter to multiple receivers located on the therapeutic applicator. In one embodiment, the transmitter comprises a piezoelectric cylinder. In one embodiment, determining the position of the targeting catheter relative to the therapeutic applicator comprises determining the acoustic time-of-flight from the transmitter to the receivers. In one embodiment, determining the position of the targeting catheter relative to the therapeutic applicator comprises transmitting ultrasound signals from multiple transmitters located on the therapeutic applicator to a receiver located on the catheter.
Another embodiment described herein includes a method for sealing a vascular opening in a blood vessel, comprising transiently substantially occluding the blood vessel, applying energy adjacent to the vascular opening such that the opening is sealed, and removing the blood vessel occlusion. In one embodiment, the blood vessel is a femoral, brachial, or radial artery. In one embodiment, the blood vessel is transiently fully occluded. In one embodiment, occluding the blood vessel comprises applying compressive force to the blood vessel. In one embodiment, the compressive force is applied using an energy applicator that is used to apply the energy. In one embodiment, the compressive force is applied to the surface of skin located over the blood vessel. In one embodiment, applying energy adjacent to the vascular opening comprises directing energy from an energy applicator located on or near the surface of skin over the blood vessel. In one embodiment, applying energy to the vascular opening comprises energizing an energy applicator positioned inside a patient near the vascular opening. In one embodiment, the energy applied is acoustic energy. In one embodiment, the energy applied is high intensity focused ultrasound energy. In one embodiment, the energy applied is radio frequency energy. In one embodiment, the energy applied is microwave energy. In one embodiment, the energy applied is optical energy. In one embodiment, the optical energy comprises one or more of ultraviolet, visible, near-infrared, or infrared energy. In one embodiment, the energy is thermal energy. In one embodiment, the energy is cryogenic energy.
Another embodiment described herein includes a method for sealing a vascular opening in a blood vessel in a patient, comprising inserting a targeting catheter into the blood vessel, locating the vascular opening using the targeting catheter, aligning a therapeutic energy applicator relative to the targeting catheter, initiating a station keeping algorithm configured to detect relative motion between tissue in the vicinity of the vascular opening and the applicator, and applying energy from the applicator to tissue adjacent to the vascular opening to seal the opening. In one embodiment, inserting the targeting catheter comprises inserting the catheter through the vascular opening. In one embodiment, the vascular opening is created by insertion of an introducer sheath and inserting the targeting catheter comprises inserting the catheter through the sheath. In one embodiment, locating the vascular opening comprises manipulating the targeting catheter until a targeting aid on the catheter is adjacent to or at the vascular opening. In one embodiment, aligning the therapeutic energy applicator comprises detecting the position of the applicator relative to a beacon located on the catheter. In one embodiment, detecting the position of the applicator relative to the beacon comprises emitting an ultrasonic signal from the beacon to multiple receivers on the applicator. In one embodiment, the energy is high intensity focused ultrasound. One embodiment includes withdrawing the catheter from the blood vessel prior to applying energy from the applicator. In one embodiment, the targeting catheter remains in the patient's body during application of the energy. In one embodiment, the targeting catheter is removed from the patient's body prior to application of the energy. One embodiment includes applying pressure to the blood vessel to transiently partially or fully occlude the vessel prior to initiating station keeping.
Another embodiment described herein includes a method of detecting tissue movement relative to an ultrasound applicator, comprising emitting first ultrasonic pulses from at least three ultrasound transducers to a target point in the tissue, detecting first ultrasonic echoes with the ultrasound transducers, emitting second ultrasonic pulses from the ultrasound transducers, detecting second ultrasonic echoes with the ultrasound transducers, comparing the first and second ultrasonic echoes, and determining the amount of relative tissue movement using the comparison and directional vectors between the ultrasound transducers and the target point. In one embodiment, comparing the first and second ultrasonic echoes comprises determining time shifts between the echoes. In one embodiment, comparing the first and second ultrasonic echoes comprises determining phase differences between the echoes. In one embodiment, determining the amount of relative tissue movement comprises executing a recursive algorithm. In one embodiment, experimentally determining the directional vectors.
Another embodiment described herein includes a method of detecting tissue movement relative to an ultrasound applicator, comprising emitting a first ultrasonic pulse from a first ultrasound transducer to a target point in the tissue, detecting a first ultrasonic echo at a second and third ultrasound transducer, emitting a second ultrasonic pulse from either the second or third ultrasound transducer to the target point, detecting a second ultrasonic echo at the first ultrasound transducer and the non-transmitting second or third ultrasound transducer, comparing the echoes to previously recorded echoes, and determining the amount of relative tissue movement using the comparison and directional vectors between the ultrasound transducers and the target point. One embodiment includes detecting the first and second ultrasonic echoes at at least one additional ultrasound transducer. In one embodiment, comparing the echoes comprises determining time shifts between the detected echoes and the previously recorded echoes. In one embodiment, comparing the echoes comprises determining phase differences between the detected echoes and the previously recorded echoes. In one embodiment, determining the amount of relative tissue movement comprises executing a recursive algorithm. One embodiment includes experimentally determining the directional vectors.
Another embodiment described herein includes a method of detecting tissue movement relative to an ultrasound applicator, comprising emitting an ultrasonic pulse from a first ultrasound transducer to a target point in the tissue, detecting an ultrasonic echo at the first ultrasound transducer and at a second and third ultrasound transducer, comparing the echo to a previously recorded echo, and determining the amount of relative tissue movement using the comparison and directional vectors between the ultrasound transducers and the target point. One embodiment comprises detecting the ultrasonic echo at at least one additional ultrasound transducer. In one embodiment, comparing the echo comprises determining time shifts between the detected echo and the previously recorded echo. In one embodiment, comparing the echo comprises determining phase differences between the detected echo and the previously recorded echo. In one embodiment, determining the amount of relative tissue movement comprises executing a recursive algorithm. On embodiment includes experimentally determining the directional vectors.
Disclosed herein are systems and methods associated with an acoustic hemostasis device. This device, designed for rapid, noninvasive sealing of femoral arteriotomies using focused ultrasound technology, requires neither the prolonged application of pressure and immobilization associated with standard compression, nor implantation of any foreign material. Thus, this system has the potential to provide a superior method of arteriotomy closure. This system has been also described in U.S. Pat. No. 6,656,136, filed Oct. 25, 2000; co-pending U.S. application Ser. No. 10/671,417 filed Sep. 24, 2003; U.S. Pat. No. 6,719,694, filed Dec. 22, 2000; and U.S. Pat. No. 6,626,855, filed Nov. 22, 2000; all of which are incorporated herein by reference in their entirety.
Because of its unique properties in soft tissue, medical ultrasound can be brought to a tight focus at a distance from its source.
Animal and human studies have show that use of high-intensity focused ultrasound to locally heat punctures and lacerations in arterial and venous walls can affect rapid and durable sealing (acoustic hemostasis) of these wounds.
The acoustic hemostasis sealing mechanism relies not on blood coagulation, but rather on the formation of a thermally coagulated collagen cap that adheres to the external elastic lamina and thereby seals the arteriotomy. This method of arteriotomy closure is noninvasive, acts on collagen naturally present in the adventitial and perivascular tissues, is unaffected by periprocedural anticoagulation therapy, is effective over a spectrum of wound and vessel sizes, and occurs in a matter of seconds.
In some embodiments, successful acoustic hemostasis treatment is promoted by: (1) adequate compression of the arteriotomy to obviate bleeding, and the consequential convective heat loss, during energy delivery, and to approximate the edges of the arteriotomy; (2) accurate spatial targeting of the ultrasound energy on the arteriotomy site; and (3) sufficient ultrasound energy to coagulate (denature) native collagen in the adventitial and perivascular tissues. In some embodiments, the ultrasonic systems described herein are designed to satisfy each of these requirements over a diverse patient population and to do so while accommodating the varying skill levels of users.
In some embodiments, the ultrasonic system is intended for noninvasively sealing femoral arteriotomies and reducing time to hemostasis, ambulation and eligibility for hospital discharge in subjects who have undergone diagnostic or interventional catheterization procedures using an 8 French or smaller introducer sheath. However, the system may also be used for other purposes, with other subjects, and other catheterization procedures.
In some embodiments, the system and methods described herein may be used with other energy sources besides ultrasound sources. For example, in some embodiments, a radio frequency, microwave, optical, or thermal therapeutic applicator may be used. In some embodiments, the optical applicator may provide one or more of ultraviolet, visible, near-infrared, or infrared energy. In various embodiments, the thermal applicator may provide heating or cryogenic energy.
Histopathological examinations of extirpated ovine and porcine arteries treated with varying doses (i.e., intensity and duration of exposure) of focused ultrasound that exceeded the threshold dose for arteriotomy sealing were performed to elucidate the healing pathway subsequent to acoustic hemostasis. Generally, within 14 days post catheterization using a 5 F introducer sheath, the blood clots that form in the arteriotomy, adventitia and perivascular tissue were infiltrated with spindle-shaped transformed smooth muscle cells that produced collagen matrix. There was minimal to mild neointimal proliferation lining the lumen of the artery in the areas of trauma from the catheter puncture, and the neointima was covered by intact endothelium with no evidence of mural thrombus formation in the treated areas.
The arteries examined 30 days following the acoustic hemostasis procedure were completely healed. The neointima was well organized, covered by intact endothelium, and increased only a minimal amount from the thickness at 14 days post treatment. Neovascularization of the healed tissue and neointima was more prominent than at 14 days and appeared to be stabile by 60 days post treatment.
At 60 days following catheterization, the arteries were completely healed and quiescent. The neointima was stabile, covered with endothelium and no longer proliferating. There was no morphological evidence of vessel wall weakness resulting from the focused ultrasound exposure.
In some embodiments the ultrasonic systems described herein may be a compact, mobile, self-contained, therapeutic ultrasound system. In some embodiments the ultrasonic system comprises four major components: applicator, generator, targeting catheter, and disposable patient interface (DPI).
The applicator may be a handheld device that comprises an ergonomic plastic housing, a display with graphical user interface, and a multiplicity of transducers that facilitate treatment targeting, maintenance of proper arteriotomy compression during treatment, and delivery of focused ultrasound sufficient to seal the arteriotomy. As illustrated in
The generator may include a power supply; a central processing unit and operating system; and the hardware and software modules that enable the user interface, targeting, compression-monitoring, dosimetry, focused-ultrasound-energy-delivery and station-keeping functions. The generator may also provide a means to transport and maneuver the system, and to store the applicator when not in use.
The targeting catheter may include any catheter having one or more targeting aids for locating and targeting the arteriotomy. The targeting catheter may be placed down the lumen of the procedure introducer sheath or inserted in any other fashion into an artery containing an arteriotomy. In various embodiments, the targeting aid may include an inflatable balloon, force detectors, optical sensors, pressure sensors, impedance sensors, mechanically expansive devices, temperature sensors (e.g., thermisters), and/or Doppler sensors. In one embodiment, the targeting catheter features an arteriotomy locator beacon (e.g., a small ultrasound transducer) in addition to the targeting aid(s). The beacon may be used to determine the location of the beacon and/or targeting aids in reference to the therapeutic applicator. In one embodiment, the beacon is located in the catheter shaft and slightly proximal to a balloon and transmits ultrasonic pulses that serve to signal its position relative to the applicator.
The disposable patient interface, DPI, is a sterile, single-use, polymeric device that envelops the applicator and is designed to maintain the sterile field and serves as an acoustic coupling medium between the applicator and the patient's skin. Some examples of a suitable DPI are described in more detail in U.S. Application Publication No. 2005-0215901, filed Jan. 18, 2006, which is incorporated herein by reference in its entirety.
At block 100 in
In one embodiment, the targeting catheter 32 includes a sterile, single-use, balloon catheter that is placed down the lumen of the procedure introducer sheath.
In some embodiments, the catheter outside diameter is less than 4 French (1.33 mm). Thus, in some such embodiments, the beacon 36 is a micro-beacon with an outside diameter is less than 1.33 mm. In various embodiments, the beacon 36 may pass position information from inside human body to an external system using either an electromagnetic method or a mechanical (e.g. acoustic) method. Provided below is a description of an ultrasound beacon and an electromagnetic beacon suitable for use as described herein.
An ultrasound beacon 36 may be made from piezo-ceramic material (e.g., one or more ultrasonic transducers). The ultrasound beacon 36 can either work in transmitter mode, in which the beacon 36 transmits an ultrasound wave when an RF electrical source is applied on its surface, or receiving mode, in which the beacon 36 generates an electrical RF signal when a mechanical wave hits its surface. An acoustic time of flight (ATOF) system may used to detect the beacon 36 position inside a human body (as described in more detail below with respect to block 204 of
In one embodiment, the beacon 36 in the ATOF system can be a piezo-ceramic tube, which may have an outside diameter of about 1 mm and produces an ultrasound wave around 1.3 MHz when using a hoop vibration mode. The beacon's 36 position on the catheter may be designed to be at a known and repeatable spatial relationship relative to the targeting aid 34 (e.g., a specified distance from the edge of a targeting balloon, which can be positioned to touch the arteriotomy when inflated inside the artery).
Although an ultrasonic beacon system has been described, it will be appreciated that any beacon system that can be fit into the desired biological system (e.g., artery) may be used to detect the position of the beacon, and consequently, the position of the targeting aid (e.g., balloon). For example, an electromagnetic sensor, such as microbars (available from Ascension Technology Corporation, Burlington, Vt.), and a 3D space tracking system may achieve the same result as an ultrasonic beacon used in conjunction with ATOF methods.
The beacon 36 may be electrically coupled to a cable 44, which may be strain relief mounted into the hub 42. There is optionally an electrical matching component or network 46 inside the hub that transforms an impedance to improve electrical efficiency of the system and/or pulse shape transmitted by the beacon. Additionally there may be an electrical connector 60 on the terminus end of the cable.
Syringes 48 and 50 and their associated valves 52 and 54 may be used for fluid (e.g., sterile saline) injection and removal (e.g., to prime the balloon prior to use and to inflate and deflate the balloon after it has been inserted into the artery). Alternatively, a multi-port device designed for one-handed operation may be used. For example, fluid management devices that are spring loaded may be used, permitting release of the balloon fill by pushing one button.
The system may also include pressure gauge 56 to monitor or control the pressure or volume in the balloon. Those of skill in the art will recognize that pressure gauge 56 may be representative of any component (or various components) that achieves the effect of monitoring or controlling the pressure or volume in the balloon. It may also be advantageous to provide for a pressure regulation or release when the artery is fully compressed. This ability protects both the arterial wall and the balloon from compressive damage and can facilitate a more accurate location of the beacon 36 at the arteriotomy site throughout the compression sequence.
An insertion tool 58 may be provided to facilitate insertion of the distal tip 37 of the catheter 32 into an introducer sheath already inserted into a patient's artery. The insertion tool 58 may have a tapered distal tip suitable to be inserted into and to open the hemostatic valve on the introducer sheath (see
Alternatively, the balloon 34 may be fabricated from stiff, essentially inelastic materials such as polyester or PET. These balloons hold an inflated shape more consistently than the polyurethane balloons and require/tolerate much higher inflation pressures. In some embodiments, unfold and refold characteristics may be tailored such that upon deployment, a smooth contact with the elements of the vessel is presented.
In some embodiments, the catheter may include a core tube 64. The core tube 64 may provide structural stiffness longitudinally, assuring integrity of the catheter assembly. In addition, the core tube 64 provides one or more internal lumens in which fluid can be transported to/from the balloon, and, with a diameter less than the overall body 66 diameter, provides a place where the deflated balloon may nest during insertion and removal. As depicted in the cross-sectional view of
Further describing the design, core tube 66 passes through the inside diameter of cylindrical beacon 36 and is terminated and interconnected at the hub 42 (see
Proximal to the beacon 36, the core tube 66 may be positioned within a body tube 70, which may have an about 1 mm outside diameter and be made from polyurethane. Use of polyurethane promotes thermal bonding and melding with a jacket that covers beacon 36.
Returning to the discussion of the flow chart in
At block 104 in
Next, at block 106 of
As noted, acoustic Time-of-Flight (ATOF) may be utilized to determine the position of the beacon 36 relative to the therapeutic applicator 20. In some alternative embodiments, a separate beacon is not included on the targeting catheter (for example, where the arteriotomy targeting aid is capable of ultrasound generation, such as when it is a Doppler beacon or a resistance heated PZT). In such embodiments, the targeting aid in effect also serves as the acoustic beacon. Accordingly, the ATOF methods described herein can also be used in these alternative embodiments.
The PZT element (either in beacon 36 or as part of the targeting aid 34) may be utilized as a highly localized sound source marker, easily visible in an ultrasound image or detected and localized in an Acoustic Time of Flight detection system. In one ATOF approach, the beacon transmits tone bursts of sound to receivers encircling the outer perimeter of the therapeutic applicator. The in-situ beacon is pulsed while each of the receivers independently measures the time for the pulse to arrive. When the time of flight to each receiver is known and the time has been converted to a distance between the beacon and the receiver, then the position of the beacon relative to the receivers can be calculated using triangulation. A minimum of three receivers may be used to calculate the X, Y and Z position of the beacon relative to the Therapeutic Applicator. If more than three sensors are used, the accuracy of the position calculation can be improved.
By continuously monitoring the position of the arteriotomy relative to the therapeutic applicator via ATOF, the user can adjust the position and orientation of the applicator such that the therapeutic energy source focus (e.g., laser, RF, ultrasound, or microwave) is located at the arteriotomy. In some embodiments, the user interface may provide a display to assist the user in appropriately adjusting the position and orientation of the applicator. The display may include graphical elements such as cross hairs or target circles as well as ultrasound images of the focal region. Those of skill in the art will appreciate many possibilities for providing feedback to a user to assist in aligning a therapeutic energy source with the arteriotomy locating sensor on the Targeting Catheter.
Target localization based on acoustic time of flight (ATOF) can provide accurate and robust position sensing of target location relative to the therapeutic ultrasound transducer. Direct X, Y and Z (i.e. three-dimensional) coordinate locations of the target can be provided without the need for image interpretation. Three-dimensional targeting information facilitates the use of an explicit user interface to guide operator actions. ATOF is less sensitive to variations in patient anatomy as compared to imaging techniques. ATOF can be accomplished with a relatively simple and inexpensive system compared to the complex imaging systems used by alternate techniques. In some embodiments, continuous tracking of the target in the presence of movement between the target and the external transducer may be provided. In some embodiments, ATOF allows use of system architectures that utilize a larger fraction of the patient contact area to generate therapeutic power (as contrasted with imaging based alternatives)—thus reducing the power density applied to the patient's skin.
It should be recognized that while embodiments will be described wherein the beacon 36, as described above, transmits and the receivers 92 receive, the transmit and receive functions may be reversed or used in configurations wherein various or all sensors both transmit and receive.
It should also be recognized that it may be advantageous to provide for higher accuracy of position determination at and in the vicinity of the therapeutic target, while permitting lower resolution in locations off target. Such lower resolution may be adequate for providing navigation (positioning of the therapy transducer on the patient) guidance to the operator.
The transmitting beacon 36 may be “pinged” with a short burst of approximately 3 cycles. The frequency of the ultrasound burst requires a tradeoff between location sensitivity, signal attenuation, and dispersion angle. Higher frequencies help to improve the accuracy of the location data. At lower frequencies the signal may encounter less attenuation on its path to the receivers 92, which will generally produce a better signal to noise ratio. Also at lower frequencies, the transmitter will tend to distribute its energy over a wider angle for given transducer dimensions, which will allow the beam to spread out over a wider area to better reach the receivers 92 from a variety of locations in the targeting space. For an arteriotomy locator, in one embodiment, a frequency in the range of about 500 KHz to about 1 MHz is used, providing good resolution, low attenuation, and compatibility with isotropic transducers that can be inexpensively fabricated.
As noted above, the receiving sensors 92 may be placed in an array, or constellation, around the therapeutic transducer 90. A minimum of three elements may be used to allow the position of the beacon 36 to be calculated in 3 dimensions. Additional sensors can be used to improve the accuracy, robustness and sensitivity of the calculation. The analog signal from the receivers may be, after pre-amplification, converted to digital format for accurate signal processing. The rate at which the signal is digitized may influence the maximum accuracy, or precision, of the time of flight calculation. The precision is determined by the speed of sound in human tissue, which is approximately 1540 meters/second, and the rate at which digital samples are collected as follows.
Distance_per_sample(m)=speed_of_sound(m/s)/samples_per_second(1/s) Eq. A
For example, if the signal is digitized at 32 million samples per second, the precision of the measurement due to sampling will be 1540/32,000,000=0.048 millimeters.
The timing of the transmit pulse and the collection of data from the receivers 92 may be synchronized by controller electronics so that the time of flight can be measured. The receivers 92 can start counting samples at the same time the transmit burst begins. Each channel will then continue to count until it detects the arrival of the short ultrasound burst. Although the burst may be many digital samples in length, a specific sample within the received burst can be chosen as the “official” arrival time in order to achieve maximum accuracy.
There are several possible algorithms that the receivers 92 can employ to determine when they have detected the arrival of the ultrasound pulse. For example, detection of the peak amplitude of the received signal, correlation with the expected pulse shape, or first crossing of an amplitude above the noise floor could all produce a specific sample number that would be used as the detection point for arrival of the burst. While the sampling rate of the received signal may determine the precision of the measurement, the detection algorithm can influence the measurement's accuracy.
The size of the volume in which the beacon 36 can be detected will determine several design parameters of the system. For example, if the detection volume is a cylinder whose circular diameter is equal to the diameter of the ring of receivers 92 around the transducer 90 (a representative case for vascular sealing) and whose depth is the maximum depth of the arteriotomy then several parameters can be known. These dimensions define the maximum time over which the receiver's TOF detectors 92 must operate. This volume, along with the attenuation of the ultrasound signal in tissue at the chosen frequency will also determine the power required from the beacon and the sensitivity required from the receivers 92. For example, if the diameter of the ring of receivers 92 is 45 mm and the maximum depth required is 50 mm then the maximum distance from the beacon 36 to the farthest receiver will be:
Sqrt(452+502)=67.25 mm Eq. B
The maximum time of flight will be:
0.06725 m/1540 m/s=43.67 microseconds
When the time of flight to each receiver 92 is known and the time has been converted to a distance between the beacon 36 and the receiver 92, then the position of the beacon 36 relative to the receivers 92 can be calculated. A minimum of three receivers 92 can be used to calculate the X, Y and Z position of the beacon 36. If more than three sensors are available the accuracy of the position calculation can be improved in a number of ways. For example, if four sensors are available then the position can be calculated four times with different combinations of three sensors and the results could be averaged. Or, if more than three sensors are available, extra weight could be given to those with the best signal as determined by received amplitude or sharpness of the correlation result. These techniques are explained in more detail below.
To calculate the position of the beacon 36, a three dimensional coordinate system is defined within the space where the beacon 36 may lie relative to the receivers. In the application with the therapeutic transducer 90, the ring of receivers 92 would conveniently lie in the X,Y plane at the zero crossing of the Z axis (planar constellation of receivers 92). The Z axis extends into the body, perpendicular to the face of the transducer 90 and passes through the center of therapy. The coordinates of the beacon 36 can be calculated by solving a system of three equations with three unknowns. Let xi, yi and zi be the coordinates of the receivers 92 in the three dimensional coordinate space where i=1 through 3. Let di equal the distance from the receiver 92 to the beacon 36 based on the time of flight measurements. Let Xb, Yb and Zb be the coordinates of the beacon 36. Then,
(Xb−xi)2+(Yb−yi)2+(Zb−zi)2=di2(for i=1 through 3) Eq. C
There are a number of ways to solve eq. C well know to those skill in the art. These methods are discussed in greater detail below. Solutions that are computationally efficient are preferred, potentially allowing higher rates of position determinations and/or more computational time for other system functions.
In some embodiments, sensors, or transducers, for ATOF systems function with wide, and to the extent possible, uniform angular sensitivity so that pulses may be effectively sent and received to and from a variety of locations in the targeting space. In vascular sealing, where the transmitting beacon is mounted on a targeting aid positioned in the entry channel, a range of angular orientations with respect to the receiver constellation results from the fact that entry channels are inclined at various angles to the skin surface. These angles are typically between 30 and 70 degrees.
For such isotropy, transducers generally can be small with respect to the dimensions of their acoustic wavelength (e.g., less than one-half wavelength). Transducers are also preferably dimensionally small so that the phase difference (or time delay) across the sensor is small; a large phase difference will distort an accurate time measurement.
Transducer Materials:
Materials for ATOF receivers and transmitters may generally be any of the materials used in diagnostic imaging. Because either transmit (here in the case of beacons on the targeting aid) or receive (in the case of the constellation of sensors) is, in many of the embodiments described here, the only function required, material selection may be optimized for specific transmit or receive characteristics.
Materials with various desirable characteristics may include but are not limited to:
Transducer Shapes:
A variety of transducer shapes may be used. Optimum configurations differ generally depending upon whether the transducer is mounted on the targeting catheter or those mounted on the applicator, viz the constellation. For the targeting catheter beacon, cylindrical piezoceramic elements may be used and offer a number of advantages.
a) Hoop Mode (0.75 MHz):
b) Wall Thickness Mode (8.5 MHz) (Side View)
c) Length Mode: (4.0 MHz)
Cylindrical transducers may also advantageously be used in multiples, where for example, two transducers are mounted on the distal end of a targeting aid to make up the beacon. More information regarding use of two-transducer configurations may be found in U.S. Pat. Nos. 5,515,853; 4,407,294; and 4,697,595, all of which are incorporated herein by reference in their entirety.
Spherical or partial-sphere shaped transducers also have advantages of excellent isotropy for beacon/TA applications. These transducers also present smooth, rounded surfaces compatible with insertion into the body. Alternatively, greater isotropy may be realized by operating the transducers at multiple frequencies where the nulls of the radiation pattern at one frequency are complimented by non-null sensitivity at another frequency.
For transducers used in the applicator mounted constellation and operated as receivers, planar structures may provide fabrication advantages and provide a substantially flat surface that readily couples to the patient's skin surface. It is noted that, for vascular sealing applications where the axis of therapy is approximately centered in the targeting space, high resolution of spatial localization of the targeting catheter is only needed in the vicinity of the center. Away from the center only rough estimates of targeting catheter are needed in order to provide the operator directional movement information.
ATOF Distance/Position Computation
Problem:
Find the (X, Y, Z) coordinates of a transmitter given the spatial coordinates of N receivers (e.g., N=8) and the distance measurements from each one. Let Xi, Yi, Zi be the receiver coordinates and Di the measured distances, where i=1 . . . N. In the case of a planar applicator face (see
Solution Based on Three Receivers:
A solution for (X, Y, Z) can be found using any three receivers, denoted here as 1, 2 and 3. The receivers are coplanar and arranged in a ring with 45 degree angles between them. The receiver closest to the projection of the transmitter onto the receivers plane can be denoted as receiver (1). The other two (2, 3) are the farthest from the projection, i.e. in an angle of 135 degrees from (1) in both directions. Receiver (1) may have the strongest signal.
The coordinates of the three receivers are: (X1, Y1, Z0), (X2, Y2, Z0) and (X3, Y3, Z0), respectively. The corresponding distance measurements are D1, D2 and D3. Assuming no error in the measurements, the following three equations can be solved for (X, Y, Z):
(X−X1)2+(Y−Y1)2+(Z−Z0)2=D12
(X−X2)2+(Y−Y2)2+(Z−Z0)2=D22
(X−X3)2+(Y−Y3)2+(Z−Z0)2=D32 (1)
These three quadratic equations reduce to two linear equations with unknowns (X, Y) if the first equation is subtracted from the second and the second from the third. The resulting equations are:
2(X2−X1)X+2(Y2−Y1)=b1
2(X3−X1)X+2(Y3−Y1)=b2 (2)
where,
b1=D12−D22+X22+Y22−X12−Y12
b2=D22−D32+X32+Y32−X22−Y22
These two equations can easily be solved for (X, Y). Z can then be found from any of the original three equations (a quadratic equation with one unknown).
Solution Based on N Receivers:
The solution for N receivers involves an iterative minimization process of an objective function that is based on the sum of square errors from the receivers and can be formulated as follows:
J(X,Y,Z)=Σ(Di−Li)2
where Σ is over all receivers i=1 . . . N, Di is the measured distance from the transmitter to the ith receiver, and:
Li=√(X−Xi)2+(Y−Yi)2+(Z−Zi)2
is the Euclidian distance from the transmitter location (X, Y, Z) to be found to the ith receiver. Note that no assumptions are made on the coplanarity of the receivers (i.e. the Zi are not necessarily equal).
Partially differentiating J(X, Y, Z) with respect to X, Y, Z gives the following three equations:
∂J/∂X=Σ2(Di−Li)(Xi−X)/Li
∂J/∂Y=Σ2(Di−Li)(Yi−Y)/Li
∂J/∂Z=Σ2(Di−Li)(Zi−Z)/Li (3)
Equating each of these equations to zero, yields:
X=Σ[Xi+Di(X−Xi)/Li]/N
Y=Σ[Yi+Di(Y−Yi)/Li]/N
Z=Σ[Zi+Di(Z−Zi)/Li]/N
The expressions (X−Xi)/Li, (Y−Yi)/Li and (Z−Zi)/Li are the cosine of the angles between the transmitter and ith receiver and its projection into the Y-Z, X-Z and Y-Z planes respectively. Therefore, the above equations can be written as:
X=Σ[Xi+Di Cos(θYZ)]/N
Y=Σ[Yi+Di Cos(θXZ)]/N
Z=Σ[Zi+Di Cos(θYZ)]/N (4)
The angles depend on the transmitter location (X, Y, Z). However, to a good approximation, it can be assumed that these angles will not vary by much between iterations. Therefore the angles from the (k−1)th iteration can be used in the kth iteration.
The algorithm can be stated as follows:
Returning to the discussion of the flow chart in
The use of additional transducers and sensors may be used to aid in compression measurement feedback to the user. An example of such transducers and sensors may include a Doppler transducer and a force sensor, each located in the applicator, to continuously interrogate the vascular blood flow and the applied compressive force, respectively. A compression algorithm resident in the generator may be used to analyze signals from the sensors and produce graphical feedback on the applicator display to enable the user to apply and maintain adequate compression of the arteriotomy (see compression indicator in
It is has been discovered that one can improve the efficiency of thermal energy vascular closure by administering the thermal energy (e.g. high intensity focused ultrasound) under conditions whereby all tissue blood flow related convective cooling can be eliminated; specifically bleeding which occurs in the introducer track and from the arterial (luminal) blood flow. Accordingly, one embodiment involves applying the therapeutic applicator with pressure of sufficient magnitude to cause the artery to be temporarily occluded during the dose (power-on) period of the thermal energy and perhaps continuing for a short period during all, or a portion of, the post-dose compression period. This treatment condition is termed “transient arterial occlusion” (TAO).
The following experiments were undertaken in order to demonstrate that the delivery of thermal dose in combination with TAO surprisingly did not adversely cause the lumen to be permanently occluded (e.g. the interior walls of the artery to be welded shut).
By monitoring the blood flow levels in the artery 28 while measuring the applied pressure, one can determine the optimal applied pressure and thereby maintain this pressure throughout the procedure.
In one embodiment, the pressure sensing capability of piezoelectric material in the ultrasound transducers located on the applicator may be used to monitor the pressure applied by the applicator. This method gives a direct measurement of the pressure at the surface of the applicator. This pressure can be correlated with typical pressures required to stop puncture track blood flow, maintain artery patency, partially occlude the artery, or fully occlude the artery. In other embodiments described above, the pressure may be monitored by sensors located on a targeting catheter (e.g., piezoelectric sensors that measure blood flow using Doppler effects).
The amount of pressure at the surface of the applicator transducers can be detected using impedance changes within the piezoelectric elements or a change in voltage at the element. This technique allows detection of pressure directly at the applicator face. In addition, uneven pressure may be detected by separately making measurements from multiple elements at different spatial locations. By using the existing piezoelectric elements in the therapeutic ultrasound array, no additional materials need to be added. Pressure at the surface of the applicator can be correlated to the occlusion status of the vessel and to the compression required to stop blood flow up the introducer track. The existing capability in the generator may be used to monitor power, voltage, current and phase.
Piezoelectricity is a property of certain classes of crystalline materials including natural crystals of Quartz, Rochelle Salt and Tourmaline as well as manufactured ceramics or polymer films such as Lead Zirconate Titanates (PZT) and polyvinylidene fluoride. When an electric field is applied to the materials, the material deforms depending on the orientation. Conversely, when a stress is applied, an electric field is produced in the material.
In one embodiment, the applicator design uses PZT to produce an ultrasound wave when excited electrically. Since PZT is a synthetic crystal structure, the material is naturally isotropic and therefore non-piezoelectric. PZT must go through a poling process where a high voltage is applied at elevated temperatures to orient the net effect of the material domains in one direction. During the poling process, the material expands in the direction of the electric field.
After the PZT has been poled, expansion or contraction of the material will create a build-up of charge at the poling electrodes. If the compression force is in the poling direction, then the voltage polarity detected is the same as the poling voltage. If a tensile force is applied, then the voltage polarity detected is the opposite of the poling voltage.
This piezoelectric effect can be used to detect the amount of pressure at the surface of the transducer. The magnitude of the voltage is related to the receiving constant (g) of the piezoelectric material as well as the magnitude of the stress applied (T) and thickness of the ceramic (t).
Voc=g*T*t (eq. 8)
where Voc is the open circuit voltage received at the element. Therefore, if a resistive load is connected to the terminals of the device, the charge created would be electrically dissipated. The shape of the signal at the piezoelectric element is dependent on the impulse of the stress and the time constant with the load. The amount of charge on the device is dependent on the voltage and element capacitance.
In order to test the significance of this effect, an Antares VF10-5 transducer (Siemens AG, Munich, Germany), 10× probe, and oscilloscope was used to detect the voltage produced by a stress. One element in the VF10-5 transducer was connected to the 10× probe. The 10× probe was connected to a Tektronix oscilloscope (Tektronix, Inc., Beaverton, Oreg.) that was set for a single shot trigger. The transducer face was then pressed onto a hard surface and released. Similarly, the transducer face was pressed with a thumb and released.
Although the experiment with the VF10-5 showed that pressure changes were detectable, the magnitude detected is dependent on impulse signal created by the impulsive load delivered.
Next, an experiment was conducted to detect the impedance of the therapeutic elements with and without a pressure at the face. A therapeutic applicator was placed in a water bath and a low voltage (3 V) CW signal at 2 MHz from the generator excited the elements of the transducer. The power, voltage, current and phase were monitored. Next, pressure was applied to the face of the transducer and the variables were again monitored. Phase changes on the order of 10 degrees were detected when the pressure was applied. Since the current and voltage waveforms were more in-phase with the application of a compressive stress, the power increased. A force balance can be applied to determine the relationship between pressure magnitude and amount of phase change.
Another means to monitor the status of the a vessel (open, partially occluded or fully occluded) is to use an acoustic Doppler system placed onto the patients skin to analyze vessel wall Doppler sounds to provide an indication of “proper” compression levels and on-location feedback. This measurement is useful since the compression of the artery will affect the Doppler sounds obtained from a transducer that is mounted perpendicular to the flow even though there is no flow signal. Turbulence and wall motion will be present which will yield different Doppler signals than when the arteries is either fully open or fully collapsed.
Returning to the discussion of the flowchart in
Accordingly, in anticipation of removing the targeting catheter 32, the ATOF targeting of the arteriotomy targeting aid 34 and beacon 36 may be replaced by station keeping of the arteriotomy site 30. This station keeping information may be displayed to the user through the same targeting user interface as depicted in
The purpose of station keeping is to track tissue motion. In one embodiment, at least three transducers may be used to track the motion of a common point. The motion may be tracked using a variety of techniques including traditional pulse-echo techniques as well as a pitch-catch sequence. The pitch-catch algorithm has several advantages when compared with conventional pulse-echo techniques. The acquisition time required to determine the motion is significantly reduced, thereby reducing the susceptibility to jitter, allowing the system to see faster movements, and allowing more time for therapy if interleaving is used. In addition, a greater amount of redundancy is achieved in less acquisition time for improved motion estimation. If the pitch-catch technique is allocated the same acquisition time as the conventional approach, the SNR of each acquisition is also increased, thereby increasing penetration and improving tracking ability. Finally, system complexity is reduced by reducing hardware requirements (e.g. transmit-receive switches).
The overlapping beam pattern of at least three ultrasound transducers can be used to track the motion in three dimensions. In this case, a unit vector from the transducer to the coordinate system of the interrogated point describes the beam direction and sensitivity to specific types of movement. If the interrogated point moves relative to the transducer, then a certain amount of movement will be detected by each transducer depending on the unit vector. In this case, the amount of motion detected at one transducer is described as:
motionk=akx·δx+aky·δy+akx·δz (9)
where δx, δy, and δz are the small movements of the point from the original position in three dimensions, and akx, aky, and akz are the unit vector components for the kth transducer. The amount of motion can be calculated by measuring the amount of movement from at least two other transducers and realizing that the motion detected in ultrasound is related to a time shift:
where tk is the time difference between the first signal and the next signal, and ctissue is the velocity of sound in tissue. The factor of two occurs in equation (10) due to the time required for the ultrasound pulse to travel out and back from the interrogation point. The time difference tk is determined by fitting a previous or reference pulse to the current pulse. A correlation technique is typically used to determine the best fit. Therefore, the system can be described by combining equations (9) and (10) to obtain:
If the time differences are known as well as the unit vectors given the system configuration, then the amount of motion can be determined. If the system has multiple transducers, then redundancy exists in the system and multiple solutions can be calculated.
In the pitch-catch approach, instead of transmitting and receiving on the same transducer, energy is transmitted by only one transducer and the backscatter is detected by the other transducers. For example, if a three transducer system is used, the transmit event might occur on transducer 1 with transducer 2 and 3 detecting the backscatter. A second transmit might occur on transducer 2 with transducer 1 and 3 detecting the backscatter. In this case, the motion detected is a combination of the unit vectors from the transmit and receive transducers.
motionk=(akx+amx)·δx+(aky+amy)·δy+(akz+ams)·δz (12)
where the directional vector is the summation of the unit vector components for the kth and mth transducers. Another interesting result of equation 12 is the lack of identification of the transmit and receive transducers. In other words, reciprocity exists in equation (12). The kth transducer could either be the transmitter or receiver and the motion detected is the same amount.
Similar to the conventional pulse-echo approach, the amount of motion detected is related to the time shift in the receive pulse. However, in this case the factor of two is eliminated because the pulse is not going out and coming back; rather it is detected by the path between the transmitter and receiver which is already represented in the directional vector.
motionk=tk·ctissue (13)
Equations (12) and (13) can be combined to show the relationship between the time shift and the motion of the interrogation point.
In this case, the transmit might occur on transducer 1 and detection on transducers 2 and 3. This would yield t1 and t2. A second transmit might occur on transducer 2 and detection could occur on transducer 1 and 3. In this case, t1 and t3 are determined; however, note that only t3 is required to allow for equation (14) to be solved for the movement. The extra t1 measured time could be used to improve the estimate (SNR) or just discarded.
Compared to the conventional approach, only two transmit events are required to solve for the movement in equation 14. Therefore, the amount of time to acquire and calculate a movement has decreased by 33%. This extra time can be used to increase the acquisition rate and detect faster movements. This extra time may also be dedicated for therapy.
The pitch-catch method also has the advantage for reducing the hardware required. For example, in the three transducer system, two transducers require a transmit/receive architecture with the other transducer only requiring a receive architecture. In the conventional case, all three transducers need a transmit/receive architecture.
In the case of more than three transducers, the pitch-catch approach offers the possibilities of motion estimation redundancy with only one transmit. For example, if the system has five transducers, then transmitting on one transducer yields the possibility of four different solutions. This redundancy allows for better motion estimation through averaging techniques or solution selection given the signal quality. In the conventional approach, at least four transmit events are required for this amount of redundancy in a five transducer system.
In some embodiments, the pulse-echo and pitch-catch approach may be combined in a hybrid approach to yield an even faster acquisition. In this case, equation (14) becomes:
In this case, the system has transmitted on transducer 1 and received on all three transducers. Acquisition time is decreased by 67% when compared to the conventional approach with three transducers.
In order to evaluate the performance of the pitch-catch technique, a fixture with three 6 mm ultrasonic pistons was design and tested. The fixture was coupled to an agar phantom and pitch-catch data was acquired and motion estimation was calculated off-line. A Panametrics 5072PR pulser was used as the transmitter and a Metrotek MR101 receiver was used.
As discussed above, movement relative to tissue is determined by comparing a reference signal to a present signal. The phase difference between these signals helps determine the amount of movement of the transducer or tissue. Unfortunately, this motion estimation is a simplification of the actual movement. Accordingly, such algorithms have the potential of significant error if the transducer or tissue moves by large amounts or if the transducer is tipped or tilted. Thus, in some embodiments, a recursive algorithm is used to determine the movement. Results show that the recursive algorithm tracks movement due to rotation much better than the simplified version. The error for translational movement is also reduced from approximately 5% to less than 2%. There are several benefits of using the recursive algorithm approach. The motion estimation due to elevation or roll rotation is significantly improved, especially in the depth dimension. In addition, the standard deviation of the motion estimation is reduced from approximately 5% to less than 2%. No simplification of the acoustic formulas is required to track movement. Furthermore, only a small amount of iterations are required for the system to reach equilibrium
In some embodiments, a conventional pulse-echo approach may be utilized for station keeping. The overlapping beam pattern of at least three transducers can be used to track the motion in three dimensions. In this case, a unit vector from the transducer to the coordinate system of the interrogated point describes the beam direction and sensitivity to specific types of movement. If an interrogated point moves relative to the transducer, then a certain amount of movement will be detected by each transducer depending on the unit vector. In this case, the amount of motion detected at one transducer is described as:
motionk=akx·Δx+aky·Δy+akz·Δz (16)
where δx, δy, and δz are the small movements of the point from the original position in three dimensions, and akx, aky, and akz are the unit vector components for the kth transducer. The amount of motion can be calculated by measuring the amount of movement from at least two other transducers and realizing that the motion detected in ultrasound is related to a time shift:
where tk is the time difference between the first signal and the next signal, and ctissue is the velocity of sound in tissue. The factor of two occurs in equation (17) due to the time required for the ultrasound pulse to travel out and back from the interrogation point. The time difference tk is determined by fitting a previous or reference pulse to the current pulse. A correlation technique is typically used to determine the best fit. Therefore, the system can be described by combining equations (16) and (17) to obtain:
If the time differences are known as well as the unit vectors given the system configuration, then the amount of motion can be determined. If the system has multiple transducers, then redundancy exists in the system and multiple solutions can be calculated.
A recursive approach may also be used with convention pulse-echo techniques. In the recursive approach, instead of assuming that the unit vector from the center of the transducer to the interrogation point completely maps the movement, a new approach is formulated using the distance formula. For example, assume that the transducers are in the same plane a distance ‘R’ from the center of a circle. In this case, the original distance to a common interrogation point is:
where R is the distance from the center of the circle to the center of each transducer, N is the number of transducers which is greater than or equal to three, i varies from 1 to N, and zf is the distance to the interrogation point. In this case, the interrogation point is only on the z axis. Equation (19) simplifies to:
dio=√{square root over (R2+zf2)} (20)
This results makes sense for this system design, given that each transducer is equidistant from the interrogation point.
If the target moves to a new point described as (Δx, Δy, zf+Δz), where the movement can be caused by tissue movement or transducer movement, the new distance to the target is given as:
In the technique to determine motion, the phase difference of a reference line to a current line is determined. This technique is similar to calculating the difference between the distance vectors.
vin=din−dio (22)
where vin is the difference between the two distances for transducer ‘i’. Unfortunately, it is difficult to solve equation (22) for Δx, Δy, and Δz because of the square root. Therefore, it may be possible to calculate the movement if equations (20) and (21) are first squared.
Simplifying equation (23) yields:
where aix, aiy, and aiz are the x, y and z unit vectors from transducer ‘i’.
In practice, the actual distances are not calculated from the signal vectors, rather the time differences between the pulses are calculated. A distance can be related to time by knowing the speed of sound.
If equation (26) is substituted into equation (25), then:
Equation (27) can now be placed into matrix form for a three transducer system:
A recursive formula is generated by solving equation (28) for Δx, Δy, and Δz. In this case, the calculated motion is still a function of the distance squared. Therefore, in order to get an initial estimate of the movement, assume that the time differences are much larger than the sum of the square of the movement divided by the speed of sound in tissue. In this case, the solution is:
Also note that:
This result is the initial calculation of the movement and the estimates for Δx, Δy, and Δz can be placed in the left side of the equation, and the motion calculated again according to equation (31).
In this case, the index m denotes the number of times through the calculation.
In order to determine the advantages using the recursive formulation, data was simulated using the Field II program by Jorgen Jensen. This allowed a phantom of random scatterers to be easily rotated in elevation and roll. A 16 element phased array operating at 2 MHz with 60% bandwidth was defined in Field II and placed uniformly around a radius of 12.5 mm. The conventional algorithm was applied to the data to determine the calculated x, y and z motion. For example, since elevation rotation is about the x-axis, movement is expected in the y and z dimensions. The recursive formula was also applied to the exact same data and a comparison was made to actual movement in x, y and z.
A calibration process may be used to calibrate an ultrasound system used to track tissue motion. The direction of the ultrasound propagation to the focus is directly related to the amount of detected movement. Therefore, it is advantageous to know the direction vector from the transducers to the focus with a high degree of accuracy. Any errors have the potential to be compounded if re-referencing frequently. Re-referencing may be required due to the limited region that the transducers can detect movement. The following discussion describes a process to calibrate the direction of ultrasound propagation from a set of transducer, pistons or arrays. The process provides a significant reduction in potential errors resulting in improved accuracy of motion estimation with significantly reduced error for pistons or multi-element arrays, increased mechanical alignment tolerances since acoustic calibration eliminates these errors, and reduction in susceptibility to accumulation error.
The overlapping beam pattern of at least three transducers can be used to track the motion in three dimensions. In this case, a unit vector from the transducer to the coordinate system of the interrogated point describes the beam direction and sensitivity to specific types of movement. If the interrogated point moves relative to the transducer, then a certain amount of movement will be detected by each transducer depending on the unit vector. In this case, the difference in the square of distance vectors is described as:
where Δx, Δy, and Δz are the small movements of the point from the original position in three dimensions, din and dio are the new and original distance to the interrogation point for the ith transducer, and zf is the location of the focus. Equation 32 also describes a system where all of the transducers are in the same plane at a radius ‘R’.
Equation (32) can be simplified to:
where ctissue is the velocity of sound in tissue, is the total time to the interrogation point, and aim are the components of the unit vectors for the respective transducers.
As equation (33) shows, solving for Δx, Δy, and Δz requires taking the inverse of the a-matrix or directional matrix. Therefore, it is critical to accurately determine aim if the motion is to be tracked properly.
One method to accurately determine the directional matrix is to mount the system in a test station that offers precise control of x, y and z movement. Next, the system is coupled to tissue mimicking material. The stages are moved in x, y or z only in small increments that insures the position can be tracked. For example, suppose that the stage is only moved in the x direction such that Δy and Δz are zero. Equation (33) can then be simplified to the following:
Since Δx is known, equation (34) can be solved for the x component of the unit vector:
Equations (35a), (35b) and (35c) show how the x components can easily be calculated from the acquired data. By making many Δx movements, an average and standard deviation of a1x, a2x, and a3x can be calculated. A similar approach can be done to calculate aiy and aiz. This technique is also not limited to the number of transducers in the system.
In order to show the advantages using the calibration procedure, data from a 4 MHz piston was acquired at 0 degrees, 120 degrees and 240 degrees along an approximately 40 mm radius. The piston was coupled into an agar phantom set on a three dimensional motion stage. The phantom was separately moved in x, y and z in 0.25 mm increments.
For the mechanical system, the directional matrix can be calculated as in Table 1.
If the directional matrix is calculated using equations 35a, 35b and 35c, then the directional matrix is as indicated in Table 2.
Table 2 shows that the magnitude is not necessarily equal to one and the components are significantly different than the mechanical predictions.
Some embodiments include a station keeping system for executing the procedures described above. The system may include multiple transducers, analog transmit and receive channels, an optional transmit and receive beamformer, an optional multiplexer, an analog to digital board, a CPU and memory, and an electronic compass. In some embodiments, the system provides for the measurement of six degrees of freedom to uniquely identify any point in space. In some embodiments, the system is configured to provide multiple solutions by tracking a point and calculating the effects due to translation and rotation. In addition, in some embodiments, the system provide for minimization of re-referencing by storing previous reference data with the x, y and z locations
Generally, using ultrasound for station keeping is not sensitive to azimuth rotation unless multiple points in a plane are tracked. Accordingly, in some embodiments, another technique may be used to acquire the azimuth, elevation and roll angles of the applicator at the beginning of motion estimation as well as for future data acquisition.
Referring back to
A multiplexer 208 may be optionally included if the number of transmit and receive channels is to be limited, for example, if the phased arrays in
The transmitter 210 may include a high voltage switch that excites the transducer elements 200. Ideally, both positive and negative voltages are available. Any available spectral shaping may also be beneficial to optimizing the transmit pulse. The receiver 212 may include a preamplifier, filters, and other signal conditioning circuits prior to digitization.
Both the transmitter 210 and receiver 212 have an optional beamformer. The transmit beamformer 214 has only one delay profile per transmit event whereas the receive beamformer 216 is digital and allows beamforming at multiple depths. A memory device 218 stores the digitized signal from each transducer. The number of signals stored per acquisition is equivalent to the number of transducers in the device. The memory 218 may also save previous reference frame information. The information from the electronic compass 206 is also digitized for each acquisition and stored in memory 218.
The CPU 220 orchestrates the timing throughout the system and places the components in specific states. The CPU 220 also executes the tracking algorithm.
On the acquisition side, the first step (block 250) is to acquire the azimuth, elevation and roll angles from the electronic compass. These angles are used to calculate the distance moved relative to the current reference frame and ultimately the starting location. It is beneficial to use averaging or other filtering techniques that remove any acceleration components.
Next, at block 252, the signal vectors are acquired from the transducers in either a pulse-echo or pitch-catch mode. It may be necessary to reset the multiplexers depending on the system hardware configuration for each transmit. Signal data may be acquired at multiple locations or averaged to reduce phase error. This step is repeated through decision block 254 until the signal pulses from each transducer are acquired. In the embodiment depicted in
After the current signal vectors are acquired, the signal vectors from the current reference frame are recalled from memory at block 256 and passed to the RfUME (Radio Frequency Ultrasound Motion Estimate) algorithm, which operates at block 258. The RfUME algorithm finds the phase change between the current signal vectors and the reference frame. A correlation technique such as sum of absolute differences (SAD) may be used to find the best match for each vector pair. This time difference is used in the RfUME algorithm to calculate the total movement in x, y and z from the reference. Along with the movement, the RfUME algorithm assesses the quality of the fit. If SAD is used to determine the best fit, a higher SAD value implies a lower quality fit. A histogram analysis of SAD shows that the SAD magnitude predicts whether a motion estimate from the RfUME algorithm is good or bad. For example, if the SAD value is below a certain amount, then the measured phase difference for that transducer is good. If it is above a certain amount, then the measured phase difference may be good or bad. This SAD value is defined as the critical SAD.
Therefore, after the RfUME algorithm calculates the motion, the SAD values (one SAD value for each transducer) are also compared to the critical SAD at decision block 260. If the SAD values for any of the transducers are greater than the critical SAD, then this result suggests that the previous signal acquisition should have been the new reference. In this case, the previous measured x, y and z location is the accumulated movement (block 262). In order to limit re-referencing which may accumulate a significant amount of error, the accumulated x, y and z location of the possible new reference is compared with all of the stored references at decision block 264. If the accumulated x, y and z position is near an old reference and the SAD values are acceptable, then instead of using a new reference, an old reference is used at block 266. This technique may be beneficial when trying to hold the device still and re-referencing error must be limited.
Regardless of whether a new reference or stored reference is used, the RfUME algorithm may be used at block 268 to calculate the movement and SAD values. Next, the SAD values may be compared to a SAD threshold at decision block 270. This threshold is dependent on the sample rate of the process flow chart as well as the user model. For example, the higher the sample rate, the closer the SAD threshold could be to the critical SAD value. Furthermore, the faster a user might move given a fixed sample rate, then the lower the SAD threshold. SAD threshold prevents loss of tracking ability by updating the reference frame at an acceptable rate. Therefore, if the SAD values are greater than the SAD threshold, the calculated x, y and z location is the accumulated movement and the current signal data becomes the new reference at block 272. Again, to limit the amount of re-referencing, the accumulated x, y and z position are compared to the stored reference positions at decision block 274. If there is a close match and the SAD values are acceptable, then the stored reference is used rather than the newly acquired signal vectors at block 276.
After the critical SAD and threshold SAD are tested, the amount of movement is compared to movement thresholds at decision block 278. These thresholds for x, y and z are based on the transducer position and performance. For example, the wider the beam response for the individual transducers, the longer the distances that can be tracked from the reference frame. Furthermore, the directional matrix, frequency and bandwidth also affect the tracking performance. If these movement thresholds are exceeded, then the movement is accumulated and the reference vectors are changed at block 272. This process continues until it is no longer desired to track motion.
In the RfUME algorithm, the recursive solution is used to track translation as well as rotation. In other words, movement from the reference position includes both translation and rotation (Equations 36a-36c).
xtotal=xrotation+xtranslation (36a)
ytotal=yrotation+ytranslation (36b)
ztotal=zrotation+ztranslation (36c)
RfUME only tracks the movement from the current reference frame. Therefore, it is possible to rotate between the current reference frame and the old reference frame such that the coordinate system axes are different. The electronic compass helps account for this difference. The general equation is:
Xi0=Xk0+Sk0−1·Xik (37)
where Xi0 is the distance from original reference to the current position, Xk0 is accumulated distance from the original reference to the current reference, Sk0 is the rotation matrix (3×3) between the current reference and the original reference, Xik is the distance measured with the RfUME algorithm from the current reference to the current sample. The rotation matrix is determined by the electronic compass and calibration to the ultrasound transducer is required. In order to display the net movement, Xi0 must be multiplied by the negative of Si0, which is the rotation matrix between the current sample and the original reference.
It is also possible to obtain the azimuth, elevation and roll angles with the RfUME algorithm. This is accomplished by calculating the distance from multiple points in tissue. For example, if multiple points are tracked along the z-axis for the transducer concept depicted in
Returning to the discussion of the flowchart in
Finally, at block 114 of the flow chart in
As depicted in
As described above, the targeting catheter may be used to locate the precise position of the arteriotomy, such as by use of a targeting aid (e.g., an inflatable balloon) located on the targeting catheter. As note above, suitable targeting aids are not limited to balloons but may include one or more arteriotomy locating sensor(s). Suitable arteriotomy locating sensor(s) include but are not limited to: i) acoustic transceivers capable of transmitting and receiving acoustic signals (such as Doppler), ii) self-heated thermistor-based probes for detecting the arteriotomy location by discriminating conductive and convective energy dissipation levels in the tissues and blood surrounding the probe, and iii) use of piezoelectric materials self heating characteristics to discriminate conductive and convective energy dissipation levels in tissues and blood surrounding the probe. Additional descriptions for these three arteriotomy detection techniques are provided below. Those of skill in the art will appreciate many other possible methods and sensors for determining whether a sensor (or arbitrary location on a catheter) is located within a blood vessel versus or within tissue.
One example of arteriotomy locating sensor(s) includes one or more Doppler transducers as illustrated in the targeting catheter 310 depicted in
The arteriotomy localization step may be accomplished by slowly withdrawing the targeting catheter, thereby causing the arteriotomy locating sensor(s) (e.g., Doppler devices 314) to get closer to the arteriotomy. The sensor signal is monitored to determine when the arteriotomy locating sensor is proximate to the arteriotomy. In one embodiment, the Doppler transducer(s) 314 may also emit an ultrasound signal which is received by ultrasound receivers or transducers located on the applicator to monitor the movement and position of the Doppler transducer(s) 314, such as by using ATOF as described above.
To guide the user to achieve accurate arteriotomy localization placement, specific vascular locations may be detected by the arteriotomy location sensor (e.g., Doppler transducer(s)) using an algorithm subsystem. Upon detection, this information may be translated into feedback presented to the user through the user interface located on the display of the handheld therapeutic applicator. In one embodiment, depicted in
Those of skill in the art will appreciate that other methods of providing feedback to a user to adjust the speed of catheter withdrawal may be used. For example, the actual rate of withdrawal may be displayed to the user. In addition, audible signals may employed such as tones or voice commands.
As shown in
Although it is anticipated that the Doppler signals of relevance will occur in the audible portion of the spectrum, in one embodiment, the electronic system user interface is able to inform and guide the user as to beacon 322 localization through either audible or non-audible (principally visual) cues. In this way, less user training and experience will be required to achieve reliable arteriotomy localization. Localization cues that are non-audible and thus not dependent on a user learning “targeting sounds” may be generated by having the Doppler signals be processed by the arteriotomy localization hardware/software in a manner which can identify the acoustic signature of the arteriotomy or other characteristic location near the arteriotomy that has a consistent and unique acoustic signature.
Forward Looking Doppler
Alternatively, in systems with two (or more) beacons 178 located on the targeting catheter, the geometric uncertainty created by stick angle variation may be compensated for, assuming that an ATOF positioning system is in operation during the targeting catheter placement and location process. For example, referring to
DISTANCE TO FLOW VOLUME=(V+Dw+F)/sin(alpha s) Eq. 38
Side-Looking Doppler
Z Matching
In yet another alternative method illustrated in
Z FLOW VOLUME+DELTA=ZTA Eq. 39
where DELTA is an offset value representing the distance above the flow volume desired for beacon positioning.
In this approach, the z coordinate of the beacon 178 is measured by utilizing the ATOF triangulation system—TOF distances 180 between the beacon 178 and the receiving sensors 171 on the applicator 20. The z coordinate of the anterior surface of the flow volume (shallowest) is measured, as depicted in
In this technique, the applicator 20 would ideally be in targeted position when executing the Z matching because the artery 28 may be deep at various positions. An iterative method of positioning may be used wherein the applicator 20 is approximately positioned, beacon 178 is placed, and then the applicator 20 and beacon 178 are re-positioned for final targeting.
Those of skill in the art will appreciate several alternative approaches for utilizing a targeting catheter beacon 178 in combination with the sensors 171 on the therapeutic applicator 20. For example, in one embodiment, a separate Doppler transducer (one or more channels) may be integrated into the applicator 20 face and used to both send and receive.
Combination Methods
It is noted that the above methods may advantageously also be used in combinations with each other, for example, by combining forward looking and side-looking Doppler. Such combinations may be used to increase robustness of the positioning process. These methods may also be used in combination with thermal methods. It is noted that beacons on the targeting catheter may be used to make self-heated thermal measurement and associated position determinations inside or outside of flowing blood. In this method, the capacitance may be measured at an off resonant frequency of the piezoelectric material (e.g. PZT) to estimate temperature.
In some embodiments, the arteriotomy location sensor on the targeting catheter may be a thermistor based probe, used either alone or in combination with an ultrasound transducer. Use of self-heating thermistors is termed herein as Thermistor Detection via Targeting and Monitoring (TDTM). These probes contain thermistors as sensors to assist in locating the puncture site, monitoring leakage of fluids or bleeding (prior to and during treatment), confirming the targeted location of the therapeutic energy delivery, and measuring and monitoring at least a portion of the thermal dose delivered to the treatment field. In order to be inserted down the puncture track, and thus directly into the puncture wound at the vessel or body cavity, the TDTM probes may have physical structures, and sizes, similar to catheterization guidewires. They can be deployed as an integral portion of a therapeutic hemostasis procedure using either non-invasive or invasive therapeutic heating modalities, and have the advantage of requiring little additional effort or complexity in the puncture sealing or closure procedure.
The core sensor(s) deployed on the TDTM probes may be one or more thermistors (temperature sensors possessing the property of electrical resistance that varies with temperature). Both the electrical resistance variation with temperature of thermistors and their property of self-heating when supplied with adequate electrical power may be utilized. The latter property refers to the fact that when a thermistor is connected to an electrical circuit, power is dissipated in it as heat and, thus, the body temperature of the thermistor rises above the temperature of its immediate environment. An energy balance on the thermistor requires that the rate at which energy is supplied (Q) must equal the rate at which energy is lost, plus the rate at which energy is absorbed (energy storage). The rate of thermal energy delivered to the thermistor is equivalent to its electrical power dissipation, i.e., Qs=P=I2R=VI. The rate at which a thermistor's thermal energy is lost to its surroundings (QL) is proportional to the temperature difference between it and its surroundings, i.e., QL=δ(T−Ta), where δ is the “dissipation coefficient.” The dissipation coefficient is defined as the ratio, at a specified temperature, of a change in the power dissipation of the thermistor to the resultant thermistor body temperature change. The dissipation constant depends on the thermal environment around the thermistor, so naturally, the coefficient depends on the thermal conductivity of the medium surrounding it, convection (forced or free convection) influences, as may result from relative motion between the surrounding medium and the thermistor, and thermal conduction through leads and surfaces upon which the thermistor is mounted, etc. The dissipation coefficient is also naturally dependent upon the physical geometry of the thermistor, especially its surface area and mass. For example, a larger surface area will result in a larger dissipation coefficient for a given thermal environment. This in turn requires more input power for a larger thermistor than a smaller one in order to achieve an equivalent temperature difference between the thermistor and its surroundings. The additional power requirement effectively reduces the sensitivity of the device. Furthermore, a small thermistor device will have low thermal mass, which will allow it to cool and re-heat relatively quickly. This relatively fast thermal response makes the smaller device more sensitive to rapid changes in the dissipation coefficient.
It has been found that small self-heating thermistors, when placed in the human body in medical procedures, can be used to measure tissue temperature, thermal properties, blood temperatures and, when appropriately calibrated, even blood flow levels in organs and vessels. Similar principles may be applied in detecting and discriminating levels of blood flow at and surrounding the puncture wound site, and in discriminating conduction and convective energy dissipation levels in the tissues surrounding the probe. The TDTM probe may be positioned in the tissue such that its thermistor sensor(s) can travel to and be located in close proximity to the puncture site, typically through the puncture track created by the instrument producing the puncture wound and/or maintaining the wound portal open (e.g., a catheter or needle).
The probe 414 may be placed in the vessel 412 in a manner analogous to arterial catheterization, by creating a puncture track from the “skin” surface down to the vessel puncture site (intersection of the probe 414 with the vessel 412). By moving the probe 414 (probe 414 travel is indicated as by arrows 416) in the puncture track, such that the sensor 414 (e.g., the thermistor bead) can be alternatively placed a) in the track, b) at the anterior (upper) vessel wall (i.e., the puncture site) or c) in the lumen of the vessel 412, thermistor signals indicative of the bead location are provided as output to the data acquisition system.
The thermistor also has the ability to indicate when bleeding in the track occurs.
When used in patients, the nature of the thermistor temperature signals will change relative to the above results in phantoms, in large part due to the pulsatile nature of blood flow in arteries and veins. To characterize TDTM probe behavior under such conditions, arterial catheterization wounds in pigs were studied.
As shown in the graphs depicted in
Thus, TDTM probe thermistor beads can provide signal information indicating when they reside either in the lumen of the vessel, near or at the vessel wall, or in the track, with either modest or significant compression (i.e., indicating the presence or absence of track bleeding). These properties can therefore be used to both place a TDTM probe in the track such that the probe would be in a known relationship to the puncture site, and in such a way that track bleeding could be monitored, providing user feedback on level of tissue compression, with such information also being used to confirm absence of track bleeding, avoiding potentially compromising the efficacy of the cautery thermal dose via heat carried away in blood from the treatment zone.
As will be described below, the ability of placing the TDTM probe 428 in fixed relationship to the puncture site can be useful in targeting the therapeutic energy from a device used for deep cautery. One method to place the probe at the puncture site is illustrated in
Another embodiment includes a triple bead TDTM probe, as shown in
To illustrate one method for guiding a therapeutic beam for targeting,
In some embodiments, attempts to seal the puncture with the TDTM probe in place (i.e., deployed through the puncture) is contraindicated due to the tendency of the probe to either a) interfere with the sealing process during dosing, or b) disrupt a successful seal upon removal of the probe. Accordingly, in some embodiments, the probe is at least partially withdrawn until it is clear of the puncture prior to the delivery of the dose. This maneuver will not eliminate the advantages of the probe. While in situ (at the puncture), the TDTM probe can be used to position the therapeutic beam at the puncture, as described above. Further, the adequacy and level of the therapeutic dosing power can be assessed through the thermistor thermal signals in response to test power pulses (as illustrated in
It is also possible to use TDTM probe thermistors in conjunction with other sensors (non-thermistor) for targeting and monitoring the puncture site. These “partner” sensors could be deployed on the shaft of the probe used in the puncture track, and could provide complementary, redundant or unique information for orienting and guiding a medical device of interest (e.g., a therapeutic device such as an ultrasound applicator used for sealing puncture wounds).
In some embodiments, a TDTM probe is used in conjunction with invasive therapeutic devices used for sealing puncture wounds.
In summary, the TDTM probe can be used in conjunction with both non-invasive and invasive thermal sealing or cautery therapeutic devices in halting bleeding or bodily fluid leakage at depth from penetration wounds associated with medical procedures. The TDTM probe can assist in: a) locating the puncture site (e.g., arteriotomy), and can be positioned in relationship to this site; b) confirming/guiding tissue compression levels adequate to eliminate track bleeding during application of the thermal dose; and c) targeting the therapeutic energy; d) assessing in situ the propriety of the therapeutic power In addition, the thermistor sensors can be used in combination and coordination with other types of sensors, and in different configurations and spatial arrangements. Further more, the thermistor sensors can also be used to guide invasive therapeutic devices (e.g., minimally invasive surgical type tools). Finally, TDTM probes with one, two, three or more sensors can be used, depending on the application and the procedural approach desired.
Although the invention has been described with reference to embodiments and examples, it should be understood that numerous and various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.
This application is a continuation of co-pending U.S. application Ser. No. 13/245,703, filed Sep. 26, 2011, which is a continuation of U.S. application Ser. No. 13/118,245, filed May 27, 2011, which is a continuation of U.S. application Ser. No. 11/583,569, filed Oct. 19, 2006, which claims the benefit of U.S. Provisional Application No. 60/728,783, filed Oct. 20, 2005 and U.S. Provisional Application No. 60/808,665, filed May 26, 2006, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
385256 | Eggers | Jun 1888 | A |
3274437 | Mastrup | Sep 1966 | A |
3499437 | Balamuth | Mar 1970 | A |
3552382 | Mount | Jan 1971 | A |
3847016 | Ziedonis | Nov 1974 | A |
3927662 | Ziedonis | Dec 1975 | A |
4059098 | Murdock | Nov 1977 | A |
4167180 | Kossoff | Sep 1979 | A |
4197856 | Northrop | Apr 1980 | A |
4206763 | Pedersen | Jun 1980 | A |
4237901 | Taenzer | Dec 1980 | A |
4273127 | Auth et al. | Jun 1981 | A |
4315514 | Drewes et al. | Feb 1982 | A |
4469099 | McEwen | Sep 1984 | A |
4479494 | McEwen | Oct 1984 | A |
4484569 | Driller et al. | Nov 1984 | A |
4545386 | Hetz et al. | Oct 1985 | A |
4594895 | Fujii | Jun 1986 | A |
4601296 | Yerushalmi | Jul 1986 | A |
4605010 | McEwen | Aug 1986 | A |
4688578 | Takano et al. | Aug 1987 | A |
4708836 | Gain et al. | Nov 1987 | A |
4748985 | Nagasaki | Jun 1988 | A |
4757820 | Itoh | Jul 1988 | A |
4770175 | McEwen | Sep 1988 | A |
4773865 | Baldwin | Sep 1988 | A |
4784148 | Dow et al. | Nov 1988 | A |
4841979 | Dow et al. | Jun 1989 | A |
4850363 | Yanagawa | Jul 1989 | A |
4858613 | Fry et al. | Aug 1989 | A |
4905672 | Schwarze et al. | Mar 1990 | A |
4913155 | Dow et al. | Apr 1990 | A |
4929246 | Sinofsky | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4938216 | Lele | Jul 1990 | A |
4938217 | Lele | Jul 1990 | A |
4957099 | Hassler | Sep 1990 | A |
5005579 | Wurster et al. | Apr 1991 | A |
RE33590 | Dory | May 1991 | E |
5026387 | Thomas | Jun 1991 | A |
5036855 | Fry et al. | Aug 1991 | A |
5039774 | Shikinami et al. | Aug 1991 | A |
5042486 | Pfeiler et al. | Aug 1991 | A |
5065742 | Belikan et al. | Nov 1991 | A |
5080101 | Dory | Jan 1992 | A |
5080102 | Dory | Jan 1992 | A |
5150712 | Dory | Sep 1992 | A |
5170790 | Lacoste et al. | Dec 1992 | A |
5178135 | Uchiyama et al. | Jan 1993 | A |
5178148 | Lacoste et al. | Jan 1993 | A |
5181522 | McEwen | Jan 1993 | A |
5194291 | D'Aoust et al. | Mar 1993 | A |
5211160 | Talish et al. | May 1993 | A |
5215680 | D'Arrigo | Jun 1993 | A |
5219401 | Cathignol et al. | Jun 1993 | A |
5230334 | Klopotek | Jul 1993 | A |
5230921 | Waltonen et al. | Jul 1993 | A |
5233994 | Shmulewitz | Aug 1993 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5254087 | McEwen | Oct 1993 | A |
5263957 | Davison | Nov 1993 | A |
5290278 | Anderson | Mar 1994 | A |
5307816 | Hashimoto et al. | May 1994 | A |
5311869 | Okazaki | May 1994 | A |
5312431 | McEwen | May 1994 | A |
5318035 | Konno et al. | Jun 1994 | A |
5352195 | McEwen | Oct 1994 | A |
5364389 | Anderson | Nov 1994 | A |
5383896 | Gershony et al. | Jan 1995 | A |
5391140 | Schaetzle et al. | Feb 1995 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5439477 | McEwen | Aug 1995 | A |
5453576 | Krivitski | Sep 1995 | A |
5454373 | Koger et al. | Oct 1995 | A |
5454831 | McEwen | Oct 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5474071 | Chapelon et al. | Dec 1995 | A |
5492126 | Hennige et al. | Feb 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5515853 | Smith et al. | May 1996 | A |
5520188 | Hennige et al. | May 1996 | A |
5522878 | Montecalvo et al. | Jun 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5526815 | Granz et al. | Jun 1996 | A |
5534232 | Denes et al. | Jul 1996 | A |
5536489 | Lohrmann et al. | Jul 1996 | A |
5553618 | Suzuki et al. | Sep 1996 | A |
5556415 | McEwen et al. | Sep 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5578055 | McEwen | Nov 1996 | A |
5584853 | McEwen | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5607447 | McEwen et al. | Mar 1997 | A |
5609485 | Bergman et al. | Mar 1997 | A |
5626601 | Gershony et al. | May 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5630837 | Crowley | May 1997 | A |
5638823 | Akay et al. | Jun 1997 | A |
5643179 | Fujimoto | Jul 1997 | A |
5649954 | McEwen | Jul 1997 | A |
5655538 | Lorraine et al. | Aug 1997 | A |
5655539 | Wang et al. | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5665073 | Bulow et al. | Sep 1997 | A |
5666954 | Chapelon et al. | Sep 1997 | A |
5681339 | McEwen et al. | Oct 1997 | A |
5685307 | Holland et al. | Nov 1997 | A |
5695493 | Nakajima et al. | Dec 1997 | A |
5697897 | Buchholtz et al. | Dec 1997 | A |
D389574 | Emerson et al. | Jan 1998 | S |
5704361 | Seward et al. | Jan 1998 | A |
5711058 | Frey et al. | Jan 1998 | A |
5713363 | Seward et al. | Feb 1998 | A |
5716374 | Francese et al. | Feb 1998 | A |
5720286 | Chapelon et al. | Feb 1998 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5726066 | Choi | Mar 1998 | A |
5735796 | Granz et al. | Apr 1998 | A |
5738635 | Chapelon et al. | Apr 1998 | A |
5741295 | McEwen | Apr 1998 | A |
5755228 | Wilson et al. | May 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5769790 | Watkins et al. | Jun 1998 | A |
5788636 | Curley | Aug 1998 | A |
5807285 | Vaitekunas | Sep 1998 | A |
5810007 | Holupka et al. | Sep 1998 | A |
5810810 | Tay et al. | Sep 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5823962 | Schaetzle et al. | Oct 1998 | A |
5824015 | Sawyer | Oct 1998 | A |
5824277 | Campos | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5833647 | Edwards | Nov 1998 | A |
5840028 | Chubachi et al. | Nov 1998 | A |
5846517 | Unger | Dec 1998 | A |
5852860 | Lorraine et al. | Dec 1998 | A |
5853752 | Unger et al. | Dec 1998 | A |
5855589 | McEwen et al. | Jan 1999 | A |
5873828 | Fujio et al. | Feb 1999 | A |
5879314 | Peterson et al. | Mar 1999 | A |
5882302 | Driscoll, Jr. et al. | Mar 1999 | A |
5895356 | Andrus | Apr 1999 | A |
5904659 | Duarte | May 1999 | A |
5906580 | Kline-Schoder et al. | May 1999 | A |
5911735 | McEwen et al. | Jun 1999 | A |
5919139 | Lin | Jul 1999 | A |
5921994 | Andreas et al. | Jul 1999 | A |
5922945 | Allmaras et al. | Jul 1999 | A |
5931786 | Whitmore, III et al. | Aug 1999 | A |
5931853 | McEwen et al. | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5935146 | McEwen | Aug 1999 | A |
5935339 | Henderson et al. | Aug 1999 | A |
5951476 | Beach | Sep 1999 | A |
5957849 | Munro | Sep 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5976092 | Chinn | Nov 1999 | A |
5979453 | Savage et al. | Nov 1999 | A |
5993389 | Driscoll, Jr. et al. | Nov 1999 | A |
5997481 | Adams et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6013031 | Mendlein et al. | Jan 2000 | A |
6014473 | Hossack et al. | Jan 2000 | A |
6033506 | Klett | Mar 2000 | A |
6036650 | Wu et al. | Mar 2000 | A |
6037032 | Klett et al. | Mar 2000 | A |
6039694 | Larson et al. | Mar 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6067371 | Gouge et al. | May 2000 | A |
6068596 | Weth et al. | May 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6071277 | Farley et al. | Jun 2000 | A |
6078831 | Belef et al. | Jun 2000 | A |
6083159 | Driscoll, Jr. et al. | Jul 2000 | A |
6087761 | Lorraine et al. | Jul 2000 | A |
6102860 | Mooney | Aug 2000 | A |
6106463 | Wilk | Aug 2000 | A |
6120453 | Sharp | Sep 2000 | A |
6128522 | Acker et al. | Oct 2000 | A |
6179831 | Bliweis | Jan 2001 | B1 |
6182341 | Talbot et al. | Feb 2001 | B1 |
6193660 | Jackson et al. | Feb 2001 | B1 |
6200268 | Vince et al. | Mar 2001 | B1 |
6200539 | Sherman et al. | Mar 2001 | B1 |
6206843 | Iger et al. | Mar 2001 | B1 |
6213939 | McEwen | Apr 2001 | B1 |
6217530 | Martin et al. | Apr 2001 | B1 |
6221015 | Yock | Apr 2001 | B1 |
6231507 | Zikorus et al. | May 2001 | B1 |
6233477 | Chia et al. | May 2001 | B1 |
6246156 | Takeuchi et al. | Jun 2001 | B1 |
6254601 | Burbank et al. | Jul 2001 | B1 |
6259945 | Epstein et al. | Jul 2001 | B1 |
6261233 | Kantorovich | Jul 2001 | B1 |
6263551 | Lorraine et al. | Jul 2001 | B1 |
6267734 | Ishibashi et al. | Jul 2001 | B1 |
6270458 | Barnea | Aug 2001 | B1 |
6277077 | Brisken et al. | Aug 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6315441 | King | Nov 2001 | B2 |
6332089 | Acker et al. | Dec 2001 | B1 |
6361496 | Zikorus et al. | Mar 2002 | B1 |
6361548 | McEwen | Mar 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6399149 | Klett et al. | Jun 2002 | B1 |
6406759 | Roth | Jun 2002 | B1 |
6409720 | Hissong et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6425876 | Frangi et al. | Jul 2002 | B1 |
6432067 | Martin et al. | Aug 2002 | B1 |
6443894 | Sumanaweera et al. | Sep 2002 | B1 |
6453526 | Lorraine et al. | Sep 2002 | B2 |
6488639 | Ribault et al. | Dec 2002 | B1 |
6491672 | Slepian et al. | Dec 2002 | B2 |
6494848 | Sommercorn et al. | Dec 2002 | B1 |
6500133 | Martin et al. | Dec 2002 | B2 |
6520915 | Lin et al. | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6548047 | Unger | Apr 2003 | B1 |
6551576 | Unger et al. | Apr 2003 | B1 |
6559644 | Froundlich et al. | May 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6565557 | Sporri et al. | May 2003 | B1 |
6576168 | Hardcastle et al. | Jun 2003 | B2 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6595934 | Hissong et al. | Jul 2003 | B1 |
6599256 | Acker et al. | Jul 2003 | B1 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602251 | Burbank et al. | Aug 2003 | B2 |
6612988 | Maor et al. | Sep 2003 | B2 |
6616624 | Kieval | Sep 2003 | B1 |
6626855 | Weng et al. | Sep 2003 | B1 |
6633658 | Dabney et al. | Oct 2003 | B1 |
6652461 | Levkovitz | Nov 2003 | B1 |
6656131 | Alster et al. | Dec 2003 | B2 |
6656136 | Weng et al. | Dec 2003 | B1 |
6676601 | Lacoste et al. | Jan 2004 | B1 |
6682483 | Abend et al. | Jan 2004 | B1 |
6685639 | Wang et al. | Feb 2004 | B1 |
6706892 | Ezrin et al. | Mar 2004 | B1 |
6709392 | Salgo et al. | Mar 2004 | B1 |
6709407 | Fatemi | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6719694 | Weng et al. | Apr 2004 | B2 |
6719699 | Smith | Apr 2004 | B2 |
6726627 | Lizzi et al. | Apr 2004 | B1 |
6735461 | Vitek et al. | May 2004 | B2 |
6755789 | Stringer et al. | Jun 2004 | B2 |
6764488 | Burbank et al. | Jul 2004 | B1 |
6846291 | Smith et al. | Jan 2005 | B2 |
6868739 | Krivitski et al. | Mar 2005 | B1 |
6875176 | Mourad et al. | Apr 2005 | B2 |
6875420 | Quay | Apr 2005 | B1 |
6905498 | Hooven | Jun 2005 | B2 |
6932771 | Whitmore et al. | Aug 2005 | B2 |
6955648 | Mozayeni et al. | Oct 2005 | B2 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
7022077 | Mourad et al. | Apr 2006 | B2 |
7052463 | Peszynski et al. | May 2006 | B2 |
7063666 | Weng et al. | Jun 2006 | B2 |
7128711 | Medan et al. | Oct 2006 | B2 |
7149564 | Vining et al. | Dec 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7211060 | Talish et al. | May 2007 | B1 |
7260250 | Summers et al. | Aug 2007 | B2 |
7285093 | Anisimov et al. | Oct 2007 | B2 |
7445599 | Kelly et al. | Nov 2008 | B2 |
7470241 | Weng et al. | Dec 2008 | B2 |
7499748 | Moffitt et al. | Mar 2009 | B2 |
7510536 | Foley et al. | Mar 2009 | B2 |
7530958 | Slayton et al. | May 2009 | B2 |
7534209 | Abend | May 2009 | B2 |
7553284 | Vaitekunas | Jun 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7628764 | Duarte et al. | Dec 2009 | B2 |
7684865 | Aldrich et al. | Mar 2010 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
8277398 | Weng et al. | Oct 2012 | B2 |
20010014775 | Koger et al. | Aug 2001 | A1 |
20010014805 | Burbank et al. | Aug 2001 | A1 |
20010032382 | Lorraine et al. | Oct 2001 | A1 |
20010041910 | McEwen | Nov 2001 | A1 |
20010044636 | Pedros et al. | Nov 2001 | A1 |
20020032394 | Brisken et al. | Mar 2002 | A1 |
20020055736 | Horn et al. | May 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020193831 | Smith, III | Dec 2002 | A1 |
20030009194 | Saker et al. | Jan 2003 | A1 |
20030018255 | Martin et al. | Jan 2003 | A1 |
20030036771 | McEwen | Feb 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030069569 | Burdette et al. | Apr 2003 | A1 |
20030114756 | Li | Jun 2003 | A1 |
20030120204 | Unger et al. | Jun 2003 | A1 |
20030153849 | Huckle et al. | Aug 2003 | A1 |
20030195420 | Mendlein et al. | Oct 2003 | A1 |
20030208101 | Cecchi | Nov 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20040002654 | Davidson et al. | Jan 2004 | A1 |
20040030227 | Littrup et al. | Feb 2004 | A1 |
20040030268 | Weng et al. | Feb 2004 | A1 |
20040054287 | Stephens | Mar 2004 | A1 |
20040054289 | Eberle et al. | Mar 2004 | A1 |
20040078034 | Acker et al. | Apr 2004 | A1 |
20040078219 | Kaylor | Apr 2004 | A1 |
20040082978 | Harrison et al. | Apr 2004 | A1 |
20040097840 | Holmer | May 2004 | A1 |
20040106880 | Weng et al. | Jun 2004 | A1 |
20040113524 | Baumgartner et al. | Jun 2004 | A1 |
20040122493 | Ishibashi et al. | Jun 2004 | A1 |
20040127798 | Dala-Krishna et al. | Jul 2004 | A1 |
20040153126 | Okai | Aug 2004 | A1 |
20040158154 | Hanafy et al. | Aug 2004 | A1 |
20040234453 | Smith | Nov 2004 | A1 |
20040254620 | Lacoste et al. | Dec 2004 | A1 |
20040267252 | Washington et al. | Dec 2004 | A1 |
20050043625 | Oliver et al. | Feb 2005 | A1 |
20050046311 | Baumgartner et al. | Mar 2005 | A1 |
20050054955 | Lidgren | Mar 2005 | A1 |
20050065436 | Ho et al. | Mar 2005 | A1 |
20050070790 | Niwa et al. | Mar 2005 | A1 |
20050085793 | Glossop | Apr 2005 | A1 |
20050090104 | Yang et al. | Apr 2005 | A1 |
20050096542 | Weng et al. | May 2005 | A1 |
20050124884 | Bolorforosh et al. | Jun 2005 | A1 |
20050154299 | Hoctor et al. | Jul 2005 | A1 |
20050165298 | Larson et al. | Jul 2005 | A1 |
20050182297 | Gravenstein et al. | Aug 2005 | A1 |
20050182319 | Glossop | Aug 2005 | A1 |
20050240102 | Rachlin et al. | Oct 2005 | A1 |
20050240103 | Byrd et al. | Oct 2005 | A1 |
20050240126 | Foley et al. | Oct 2005 | A1 |
20050240170 | Zhang et al. | Oct 2005 | A1 |
20060025756 | Francischelli et al. | Feb 2006 | A1 |
20060058678 | Vitek et al. | Mar 2006 | A1 |
20060122514 | Byrd et al. | Jun 2006 | A1 |
20060184069 | Vaitekunas | Aug 2006 | A1 |
20060235300 | Weng et al. | Oct 2006 | A1 |
20070004984 | Crum et al. | Jan 2007 | A1 |
20070055155 | Owen et al. | Mar 2007 | A1 |
20070106339 | Errico et al. | May 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070142879 | Greenberg et al. | Jun 2007 | A1 |
20070149880 | Willis | Jun 2007 | A1 |
20070167806 | Wood et al. | Jul 2007 | A1 |
20070179379 | Weng et al. | Aug 2007 | A1 |
20070213616 | Anderson et al. | Sep 2007 | A1 |
20070233185 | Anderson et al. | Oct 2007 | A1 |
20070239000 | Emery et al. | Oct 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20080033292 | Shafran | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080045864 | Candy et al. | Feb 2008 | A1 |
20080045865 | Kislev | Feb 2008 | A1 |
20080047325 | Bartlett | Feb 2008 | A1 |
20080200815 | Van Der Steen et al. | Aug 2008 | A1 |
20080234569 | Tidhar et al. | Sep 2008 | A1 |
20080255498 | Houle | Oct 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20080312561 | Chauhan | Dec 2008 | A1 |
20080317204 | Sumanaweera et al. | Dec 2008 | A1 |
20080319375 | Hardy | Dec 2008 | A1 |
20090012098 | Jordan et al. | Jan 2009 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090054770 | Daigle | Feb 2009 | A1 |
20090062697 | Zhang et al. | Mar 2009 | A1 |
20090062873 | Wu et al. | Mar 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090088623 | Vortman et al. | Apr 2009 | A1 |
20090112095 | Daigle | Apr 2009 | A1 |
20090112133 | Deisseroth et al. | Apr 2009 | A1 |
20090163982 | deCharms | Jun 2009 | A1 |
20090221939 | Demarais et al. | Sep 2009 | A1 |
20090247911 | Novak et al. | Oct 2009 | A1 |
20090264755 | Chen et al. | Oct 2009 | A1 |
20090306644 | Mayse et al. | Dec 2009 | A1 |
20090326379 | Daigle et al. | Dec 2009 | A1 |
20100092424 | Sanghvi et al. | Apr 2010 | A1 |
20100125269 | Emmons et al. | May 2010 | A1 |
20100174188 | Wang et al. | Jul 2010 | A1 |
20110028867 | Choo et al. | Feb 2011 | A1 |
20110118602 | Weng et al. | May 2011 | A1 |
20110178403 | Weng et al. | Jul 2011 | A1 |
20110230763 | Emery et al. | Sep 2011 | A1 |
20110230796 | Emery et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
4110308 | Oct 1992 | DE |
4230415 | Mar 1994 | DE |
102 09 380 | Sep 2003 | DE |
0 225 120 | Jun 1987 | EP |
0 239 999 | Oct 1987 | EP |
0 383 270 | Aug 1990 | EP |
0 420 758 | Apr 1991 | EP |
0 679 371 | Nov 1995 | EP |
1 219 245 | Jul 2002 | EP |
1 265 223 | Dec 2002 | EP |
1 449 563 | Aug 2004 | EP |
1 874 192 | Oct 2006 | EP |
2 181 342 | Feb 2009 | EP |
2 303 131 | Dec 2009 | EP |
2672486 | Aug 1992 | FR |
WO 9731364 | Aug 1997 | WO |
WO 9811840 | Mar 1998 | WO |
WO 9858588 | Dec 1998 | WO |
WO 9907432 | Feb 1999 | WO |
WO 9922652 | May 1999 | WO |
WO 9948621 | Sep 1999 | WO |
WO 0072919 | Dec 2000 | WO |
WO 0134018 | May 2001 | WO |
WO 02069805 | Sep 2002 | WO |
WO 2004064598 | Aug 2004 | WO |
WO 2004086086 | Oct 2004 | WO |
WO 2005030295 | Apr 2005 | WO |
WO 2005056105 | Jun 2005 | WO |
WO 2006113445 | Oct 2006 | WO |
WO 2007073551 | Jun 2007 | WO |
WO 2009018394 | Feb 2009 | WO |
WO 2009026534 | Feb 2009 | WO |
WO 2009158399 | Dec 2009 | WO |
WO 2011053757 | May 2011 | WO |
WO 2011053772 | May 2011 | WO |
Entry |
---|
Accord et al., “The Issue of Transmurality in Surgical Ablation for Atrial Fibrillation.” Cardiothoracic Surgery Network, 3pp, Feb. 8, 2007. |
Amenta et al., “A New Voronoi-Based Surface Reconstruction Algorithm.” Computer Graphics: 7pp, 1998. |
American Red Cross., “Blood 101.” 4pp., Dec. 11, 2007. |
Anand et al., “Monitoring formation of high intensity focused ultrasound (HIFU) induced lesions using backscattered ultrasound.” Acoustical Society of America; Mar. 10, 2004. |
Anand et al., “Using the ATL 1000 to Collect Domodulated RF Data for Monitoring HIFU Lesion Formation.” Presented at SPIE Medical Imaging 2003. 11pp, 2003. |
Aurenhammer, F. “Voronoi diagrams—A Survey of a Fundamental Geometric Data Structure.” ACM Computing Surveys, 23(3):345-405, Sep. 1991. |
Bachmann et al., “Targeting Mucosal Addressin Cellular Adhesion Molecule (MAdCAM)-1 to Noninvasively Image Experimental Crohn's Disease.” Gastroenterology; 130:8-16, 2006. |
Barthe et al. “Efficient Wideband Linear Arrays for Imaging and Therapy” IEEE Ultrasonics Symposium. pp. 1249-1252 1999. |
Bauer et al., “Ultrasound Imaging with SonoVu Low Mechanical Index Real-Time Imaging.” Acad. Radiol., 9(Suppl. 2):S282-S284, 2002. |
Beard et al., “An Annular Focus Ultrasonic Lens for Local Hyperthermia Treatment of Small Tumors.” Ultrasound in Medicine & Biology; 8(2):177-184, 1982. |
Bokarewa et al., “Tissue factor as a proinflammatory agent.” Arthritis Research, 4:190-195, Jan. 10, 2002. |
Bots et al., “Intima Media Thickness as a Surrogate Marker for Generalised Atherosclerosis.” Cardiovascular Drugs and Therapy, ProQuest Medical Library; 16(4):341-351, Jul. 2002. |
Brayman et al., “Mechanical bioeffects in presence of gas-carrier, ultrasound contrast agents,” in Mechanical Bioeffects From Diagnostic Ultrasound: Consensus Statements, J.Ultrasound Med., 19, 120-142, 2000. |
Brayman et al., “Erosion of Artificial Endothelia In Vitro by Pulsed Ultrasound: Acoustic Pressure, Frequency, Membrane Orientation and Microbubble Contrast Agent Dependence.” Ultrasound in Medicine & Biology; 25(8):1305-1320, 1999. |
Buller et al., “Accurate Three-dimensional Wall Thickness Measurement From Multi-Slice Short-Axis MR Imaging.” Computers in Cardiology, 245-248, 1995. |
Byram et al., “3-D Phantom and In Vivo Cardiac Speckle Tracking Using a Matrix Array and Raw Echo Data.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(4):839-854, Apr. 2010. |
Campese, V., Krol, E. Neurogenic Factors in Renal Hypertension. Current Hypertension Reports 2002, 4:256-260. |
Chao et al., “Aspheric lens design.” Ultrasonics Symposium, 2000 IEEE,. vol. 2: Abstract Only, Oct. 2000. |
Chelule et al., “Fabrication of Medical Models From Scan Data via Rapid Prototyping Techniques.” 9 pp., Feb. 7, 2007. |
Chen et al., “A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents.” Journal of the Acoustical Society of America, 113(1):643-665, Jan. 2003. |
Chen et al., “Inertial Cavitation Dose and Hemolysis Produced In Vitro With or Without Optison.” Ultrasound in Medicine & Biology, 29(5):725-737, 2003. |
Chen et al., DC-Biased Electrostrictive Materials and Transducers for Medical Imaging, 1997 IEEE Ultrasonics Symposium, IEEE, Aug. 1997. |
Chong et al., “Tissue Factor and Thrombin Mediate Myocardial Ischemia-Reperfusion Injury.” The Society of Thoracic Surgeons, 75:S649-655, 2003. |
Damianou, et al., “Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery”, IEEE Ultrasonic Symposium, 1993, pp. 1199-1202. |
Dayton et al., “The magnitude of radiation force on ultrasound contrast agents.” Journal of the Acoustical Society of America, 112(5, Part 1):2183-2192, Nov. 2002. |
Dempsey et al., “Thickness of Carotid Artery Atherosclerotic Plaque and Ischemic Risk.” Neurosurgery, 27(3):343-348, 1990. |
Dewhirst, et al., “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia”, Int. J. Hyperthermia, (2003) 19(3):267-294. |
Dibona et al., Chaotic behavior of renal sympathetic nerve activity: effect of baroreceptor denervation and cardiac failure, Am J Physiol Renal Physiol, 279:F491-501, 2000. |
Dibona, G.F., “Neural control of the kidney: functionally specific renal sympathetic nerve fibers.” Am J. Physiol Regulatory Integrative Comp Physiol 279: R1517-1524, 2000. |
Dibona, GF. Functionally Specific Renal Sympathetic Nerve Fibers: Role in Cardiovascular Regulation. American Journal of Hypertension, 2001, 14(6):163S-170S. |
Doumas, M., et al., Renal Sympathetic Denervation: The Jury is Still Out, The Lancet, Nov. 2010, 376(9756):1878-1880. |
Ebbini et al., “Image-guided noninvasive surgery with ultrasound phased arrays.” SPIE, 3249:230-239, Apr. 2, 1998. |
Edelsbrunner, Herbert. “Geometry and Topology of Mesh Generation.” Cambridge University Press: 217 pp, 2001. |
Esler, Murray D., et al., Renal sympathetic denervation in patients with treatmentresistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial, Nov. 2010, The Lancet, 376(9756):1903-1909. |
Everbach et al., “Cavitational Mechanisms in Ultrasound-Accelerated Thrombolysis at 1 MHz.” Ultrasound in Medicine & Biology, 26(7):1153-1160, 2000. |
Ewert et al., “Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells.” Kidney International, 41:375-383, 1992. |
Fjield et al.; “A parametric study of the concentric-ring transducer design for MRI guided ultrasound surgery.” J. Acoust. Soc. Am, 100(2 Part 1) Aug. 1996. |
Ganapathy et al., “A New General Triangulation Method for Planar Contours.” Computer Graphics 16(3):69-75, 1982. |
Grassi, G. Role of the Sympathetic Nervous System in Human Hypertension. Journal of Hypertension. 1998, 16:1979-1987. |
Gray, Henry. “The Skull.” Anatomy of the Human Body, 85 pp., 1918. |
Guzman et al., “Ultrasound-Mediated Disruption of Cell Membranes. I. Quantification of Molecular uptake and Cell Viability. / II. Heterogeneous effects on cells.” Journal of the Acoustical Society of America, 110(1):588-606, Jul. 2001. |
Hachimine, K. et. al. Sonodynamic Therapy of Cancer Using a Novel Porphyrin Derivative, DCPH-P-Na(I),which is Devoid of Photosensitivity. Cancer Science 2007; 98: 916-920. |
Hadimioglu et al., “High-Efficiency Fresnel Acoustic Lenses.” Ultrasonics Symposium 1993 IEE 579-582, 1993. |
Han et al., “A Fast Minimal Path Active Contour Model.” IEEE Transactions on Image Processing, 10(6):865-873, Jun. 2001. |
Hatangadi, Ram. “A Novel Dual Axis Multiplanar Transesophageal Ultrasound Probe for Three-Dimensional Echocardiograph.” University of Washington, Department of Sciences and Engineering, vol. 55-11B: Abstract 1pg, 1994. |
Holt et al., “Bubbles and Hifu: the Good, the Bad and the Ugly.” Boston University, Department of Aerospace and Mechanical Engineering: 120-131, 2002. |
Hubka et al., “Three-dimensional echocardiographic measurement of left ventricular wall thickness: In vitro and in vivo validation.” Journal of the American Society of Echocardiography, 15(2):129-135, 2002. |
Hutchinson et al. “Intracavitary Ultrasound Phased Arrays for Noninvasive Prostate Surgery.” IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control. 43(6):1032-1042 (1996). |
Hwang et al., “Vascular Effects Induced by Combined 1-MHz Ultrasound and Microbubble Contrast Agent Treatments In Vivo.” Ultrasound in Medicine & Biology, 31(4):553-564, 2005. |
Hynynen et al., “Potential Adverse Effects of High-Intensity Focused Ultrasound Exposure on Blood Vessels In Vivo.” Ultrasound in Medicine & Biology, 22(2):193-201, 1996. |
Iannuzzi et al., “Ultrasonographic Correlates of Carotid Atherosclerosis in Transient Ischemic Attack and Stroke.” Stroke, ProQuest Medical Library, 26(4):614-619, 1995. |
Idell et al., “Fibrin Turnover in Lung Inflammation and Neoplasia.” American Journal of Respiratory and Critical Care Medicine, 163:578-584, 2001. |
Indman, Paul. “Alternatives in Gynecology.” Hysteroscopy, OBGYN.net, Oct. 14, 2004. http://www.gynalternatives.com/hsc.html. |
Insightec, Breast Cancer-focused ultrasound for non invasive treatment. FAQ, (http://www.exablate2000.com/physicians—faq.html), 4 pp. |
Insightec: Focused Ultrasound for Non Invasive Treatment, Breast Cancer, http://replay.wybackmachine.org/2001122920034/http://www.insightec.com/breast—cancer.html, 1 pp. |
Janssen, BJ and Smits, J. Renal Nerves in Hypertension. Mineral and Electrolyte Metabolism. 1090; 15:74-82, 1989. |
Jolesz, F. MRI-Guided Focused Ultrasound Surgery. Annual Review of Medicine. 2009 60:417-30. |
Kaczkowski et al., “Development of a High Intensity Focused Ultrasound System for Image-Guided Ultrasonic Surgery.” Ultrasound for Surgery, Oct. 14, 2004. (http://cimu.apl.washington.edu/hifusurgerysystem.html). |
Kang et al., “Analysis of the Measurement Precision of Arterial Lumen and Wall Areas Using High-Resolution MRI.” Magnetic Resonance in Medicine, 44:968-972, 2000. |
Klibanov et al., “Detection of Individual Microbubbles of an Ultrasound contrast Agent: Fundamental and Pulse Inversion Imaging.” Academy of Radiology, 9(Suppl. 2):S279-S281, 2002. |
Kojima, T., Matrix Array Transducer and Flexible Matrix Arry Transducer, Proceedings of the Ultrasonics Symposium, 2:649-653 (1986). |
Krum, H et. al. Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: a Multicentre Safety and Proof-of-Principle Cohort Study. Lancet, 2009, 373:1275-1281. |
Krum, H. et. al. Pharmacologic Management of the Cardiorenal Syndrome in Heart FAilure. Current Heart Failure Reports 2009, 6:105-111. |
Kudo et al., “Study on Mechanism of Cell Damage Caused by Microbubbles Exposed to Ultrasound.” Ultrasound in Medicine & Biology, 29(Supplement) 4pp, 2003. |
Lalonde et al., “Field conjugate acoustic lenses for ultrasound hyperthermia.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, 40(5) Abstract 1pg., Sep. 1993. |
Martin et al., Hemostasis of Punctured Vessels Using Doppler-Guided High Intensity Ultrasound, Ultrasound in Med.& Biol., 25:985-990, 1999, USA. |
Meyers, D. “Multiresolution tiling.” Computer Graphics, No. 5:325-340, 1994. |
Miller et al., “A Review of In Vitro Bioeffects of Inertial Ultrasonic Cavitation From a Mechanistic Perspective.” Ultrasound in Medicine & Biology, 22(9):1131-1154, 1996. |
Miller et al., “Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.” PNAS, 97(18):10179-10184, 2000. |
Moss, Nicholas G. Renal Function and Renal Afferent and Efferent Nerve Activity. American Journal Physiology. 243 (Renal Fluid Electrolyte Physiology) 12: F425-F433, 1982. |
Ng et al., “Therapeutic Ultrasound: Its Application in Drug Delivery.” Medicinal Research Reviews, 22(2):204-233, 2002. |
O'Leary et al., “Carotid-artery Intima and Media Thickness as a Risk Factor for Myocardial Infarction and Stroke in Older Adults.” Cardiovascular Health Study Collaborative Research Group. New England Journal of Medicine, 340(1):14-22, Jan. 7, 1999. |
Ostensen et al., “Characterization and Use of Ultrasound Contrast Agents.” Academy of Radiology, 9(Suppl. 2):S276-S278, 2002. |
Owaki et al., “The Ultrasonic Coagulating and Cutting System Injuries Nerve Function.” Endoscopy, 34(7):575-579, 2002. |
Pernot, et al., “Temperature Estimation Using Ultrasonic Spatial Compound Imaging”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, (May 2004) 51(5):606-615. |
Pignoli et al., “Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging.” Circulation, 74(6):399-1406, Dec. 1986. |
Poliachik et al., “Activation, Aggregation and Adhesion of Platelets Exposed to High-Intensity Focused Ultrasound.” Ultrasound in Medicine & Biology, 27(11): 1567-1576, 2001. |
Poliachik et al., “Effect of High-Intensity Focused Ultrasound on Whole Blood With or Without Microbubble Contrast Agent.” Ultrasound in Medicine & Biology, 25(6):991-998, 1999. |
Porter et al., “Ultrasound, Microbubbles and Thrombolysis.” Progress in Cardiovascular Diseases, 44(2):101-110, Oct. 2001. |
Recchia et al., Ultrasonic Tissue Characterization of Blood during Stasis and Thrombosis with a Real-Time Linear-Array Backscatter Imaging System., Coronary Artery Disease, 1993, 4:987-994. |
Rivens et al., “Vascular Occlusion Using Focused Ultrasound Surgery for Use in Fetal Medicine.” European Journal of Ultrasound, 9:89-97, 1999. |
Rose, Joseph, “Source Influence” Ultrasonic Waves in Solid Media, pp. 200-227, Cambridge University Press, 1999, USA. |
Rosen et al., “Vascular Occlusive Diseases.” 37pp., revised 2002. |
Rosenschein et al., “Shock-Wave Thrombus Ablation, A New Method for Noninvasive Mechanical Thrombolysis.” The American Journal of Cardiology, 70(15):Abstract, Nov. 15, 1992. |
Rosenschein et al., “Ultrasound Imaging-Guided Nonivasive Ultrasound Thrombolysis—Preclinical Results.” Circulation, 102:238-245, 2000. (http://www.circulationaha.com.org). |
Sanghvi et al. “High-Intensity Focused Ultrasounds.” Experimental and Investigational Endoscopy. 4(2):383-395 (1994). |
Schlaich, MP. Sympathetic Activation in Chronic Renal Failure. Journal American Society Nephrology 20: 933-939, 2009. |
Schulte-Altedorneburg et al., “Accuracy of In Vivo Carotid B-Mode Ultrasound Compared with Pathological Analysis: Intima-Media Thickening, Lumen Diameter, and Cross-Sectional Area.” Stroke, 32(7):1520-1524, 2001. |
Sheahan et al., Observing the Bracial Artery through a Pressure Cuff, Physiol. Meas. 14 (1993) 1-6. |
Sherrit et al., The Characterisation and Modelling of Electrostrictive Ceramics for Transducers, Ferroelectrics, 228:(1-4):167-196, 1999. |
Shrout et al., Classification of Electrostrictive-Based Materials for Transducers, 1993. |
Shung, et al., “Ultrasonic Characterization of Blood During Coagulation”, J. Clin. Ultrasound, (1984) 12:147-153. |
Simon, et al, “Two-Dimensional Temperature Estimation Using Diagnostic Ultrasound”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, (Jul. 1998) 45(4):1088-1099. |
Tachibana et al., “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis.” Circulation, 92:1148-1150, 1995. |
Tachibana et al., “The Use of Ultrasound for Drug Delivery.” Echocardiography, 18(4): 323-328, May 2001. |
Tardy et al., “In Vivo Ultrasound Imaging of Thrombi Using a Target-specific Contrast Agent.” Academy of Radiology, 9(Suppl. 2):S294-S296, 2002. |
ter Haar. G. Ultrasound Focal Beam Surgery. Ultrasound in Medicine and Biology. 21(9):1089-1100 (1995). |
Ultrasound Technology Information Portal, “Cavitation,” Dec. 12, 2007, http://www.us-tip.com/serv1.php?type=db1&dbs=Cavitation, 1 page. |
Vaezy et al., “Hemostasis of Punctured Blood Vessels Using High Intensity Focused Ultrasound,” Ultrasound in Med.& Biol., 24(6):903-910,1998, USA. |
Vaezy et al., “Acoustic surgery.” Physics World, 15 pp., Aug. 2001. |
Vaezy et al., “Hemostasis and Tumor Treatment using High Intensity Focused Ultrasound: Experimental Investigations and Device Development.” First International Workshop on the Application of HIFU in Medicine, 46-49, 2001. |
Vaezy et al., “Hemostasis using high intensity focused ultrasound.” European Journal of Ultrasound, 9:79-87, 1999. |
Vaezy et al., “Intra-operative acoustic hemostasis of liver: production of a homogenate for effective treatment.” Ultrasonics, 43:265-269, 2005. |
Vaezy et al., Use of High-Intensity Focused Ultrasound to Control Bleeding, Mar. 1999, J Vasc Surg, 29:533-542. |
Valente, JF et. al. Laparoscopic Renal Denervation for Intractable ADPKD Related Pain. Nephrology Dialysis and Transplantation. 2001 16:160. |
Von Land et al., “Development of an Improved Centerline Wall Motion Model.” IEE 687-690, 1991. |
Watkin et al., “Multi-Modal Contrast Agents: A First Step.” Academy of Radiology, vol. 9, Suppl. 2:S285-S287, 2002. |
Wickline et al., “Blood Contrast Enhancement with a Novel, Non-Gaseous Nanoparticle Contrast Agent.” Academy of Radiology, 9(Suppl. 2):S290-S293, 2002. |
Williamson et al., “Color Doppler Ultrasound Imaging of the Eye and Orbit.” Survey of Ophthamology, 40(4):255-267, 1996. |
Yu et al., “A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study.” Urological Research, PubMed: Abstract, 2004. |
Office Action dated Oct. 19, 2009 for U.S. Appl. No. 11/486,526. |
Office Action dated Jan. 7, 2011 for U.S. Appl. No. 12/762,938. |
Invitation to Pay Additional Fees and Partial International Search Report dated Nov. 29, 2006 for PCT Application No. PCT/US2006/027688. |
International Search Report and Written Opinion dated Mar. 30, 2007 for Application No. PCT/US2006/027688 filed on Jul. 13, 2006. |
Office Action dated Jul. 9, 2008 for U.S. Appl. No. 11/486,528. |
Office Action dated Dec. 8, 2011 for U.S. Appl. No. 11/955,310. |
International Search Report and Written Opinion dated Jun. 30, 2008 for PCT Application No. PCT/US2007/087310. |
Notice of Allowance dated Mar. 25, 2003 from U.S. Appl. No. 09/696,076, filed Oct. 25, 2000. |
Office Action dated Nov. 29, 2002 from U.S. Appl. No. 09/696,076, filed Oct. 25, 2000. |
Office Action dated Jul. 5, 2006 for U.S. Appl. No. 10/616,831. |
Office Action dated Jul. 14, 2009 for U.S. Appl. No. 11/619,996. |
Office Action dated Apr. 6, 2010 for U.S. Appl. No. 11/619,996. |
Office Action dated Dec. 30, 2011 for U.S. Appl. No. 12/896,740. |
Final Office Action dated Jun. 5, 2012 for U.S. Appl. No. 12/896,740. |
Office Action dated Oct. 25, 2011 for U.S. Appl. No. 13/025,959. |
Office Action dated Dec. 15, 2011 for U.S. Appl. No. 13/026,108. |
Final Office Action dated May 14, 2012 for U.S. Appl. No. 12/026,108. |
Office Action dated Nov. 30, 2011 for U.S. Appl. No. 13/011,533. |
Final Office Action dated May 2, 2012 for U.S. Appl. No. 13/011,533. |
Office Action dated Feb. 3, 2012 for U.S. Appl. No. 13/245,689. |
Final Office Action dated Jun. 13, 2012 for U.S. Appl. No. 13/245,689. |
Office Action dated Jun. 7, 2012 for U.S. Appl. No. 13/344,418. |
Office Action dated Jun. 11, 2012 for U.S. Appl. No. 13/346,466. |
Office Action dated Aug. 17, 2006 from U.S. Appl. No. 10/671,417, filed Sep. 24, 2003. |
Office Action dated Jul. 31, 2007 from U.S. Appl. No. 10/671,417, filed Sep. 24, 2003. |
Office Action dated Nov. 16, 2010 for U.S. Appl. No. 12/202,195. |
Office Action dated Apr. 29, 2011 for U.S. Appl. No. 12/202,195. |
International Search Report and Written Opinion dated May 29, 2007 for PCT Application No. PCT/US04/31506. |
Canadian Examination Report dated Nov. 14, 2007 in CA Patent Application 2,387,127, filed Oct. 25, 2000. |
European Examination Report dated Mar. 7, 2008 in EP Patent Application 00989717.4, filed Oct. 25, 2000. |
International Search Report and Written Opinion dated May 18, 2001 for PCT Application No. PCT/US00/41606. |
International Search Report and Written Opinion dated Apr. 23, 2001 for PCT Application No. PCT/US00/35262. |
International Preliminary Report on Patentability dated Jun. 5, 2003 for PCT Application No. PCT/US00/35262. |
Office Action dated Jun. 28, 2010 for U.S. Appl. No. 12/247,969. |
Office Action dated Mar. 18, 2011 for U.S. Appl. No. 12/247,969. |
International Search Report and Written Opinion dated Aug. 4, 2005 for PCT Application No. PCT/US2005/001893. |
Office Action dated Sep. 16, 2010 for U.S. Appl. No. 11/583,656. |
Office Action dated Feb. 18, 2011 for U.S. Appl. No. 11/583,656. |
Final Office Action dated May 10, 2012 for U.S. Appl. No. 11/583,656. |
Office Action dated Oct. 19, 2009 for U.S. Appl. No. 11/583,256. |
Office Action dated Mar. 4, 2011 for U.S. Appl. No. 11/583,569. |
Office Action dated May 24, 2012 for U.S. Appl. No. 13/118,144. |
First Action Interview Office Action Summary dated May 30, 2012 for U.S. Appl. No. 13/245,703. |
International Search Report and Written Opinion dated Jul. 11, 2007 for PCT Application No. PCT/US2006/041163. |
Office Action dated Apr. 6, 2012 for U.S. Appl. No. 12/685,655. |
Office Action dated Apr. 10, 2012 for U.S. Appl. No. 12/725,450. |
International Search Report and Written Opinion dated Jul. 27, 2011 for PCT Application No. PCT/US2011/033337. |
International Search Report and Written Opinion dated Jun. 6, 2011 for PCT Application No. PCT/US2010/052197. |
Office Action dated Mar. 20, 2012 for U.S. Appl. No. 13/246,775. |
Office Action dated Nov. 28, 2011 for U.S. Appl. No. 13/246,763. |
International Search Report and Written Opinion dated Dec. 6, 2010 for PCT Application No. PCT/US2010/052193. |
Takeuchi et al., Dec. 4, 1990, Relaxor ferroelectric transducers, IEEE Ultrasonics Symposium, pp. 697-705. |
Office Action dated Nov. 2, 2012 for U.S. Appl. No. 12/896,740. |
Advisory Action dated Jul. 16, 2012 for U.S. Appl. No. 13/011,533. |
Office Action dated Oct. 25, 2012 for U.S. Appl. No. 13/245,689. |
Office Action dated Jul. 10, 2012 for U.S. Appl. No. 12/951,850. |
Number | Date | Country | |
---|---|---|---|
20130012839 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
60728783 | Oct 2005 | US | |
60808665 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13245703 | Sep 2011 | US |
Child | 13618361 | US | |
Parent | 13118245 | May 2011 | US |
Child | 13245703 | US | |
Parent | 11583569 | Oct 2006 | US |
Child | 13118245 | US |