The present invention relates to a system and method for treating biological vessels and, more particularly, to an angioplasty balloon catheter having an expandable constraining structure positioned over the balloon and configured for constraining balloon inflation thereby enabling isolated balloon regions to protrude from the constraining structure during inflation.
Percutaneous transluminal angioplasty (PTA) is a procedure in which a balloon catheter is inserted through an artery and guided to the region of lumen narrowing. The balloon is inflated to force the plaque material (typically fat and calcium) against the wall of the artery to open the vessel lumen and improve blood flow.
Angioplasty balloons are typically cylindrical when inflated and have different lengths and diameters to conform to different vessel sizes. The balloons are inflated at high pressure, normally between 8-20 atmospheres, in order to overcome the resistance of the plaque and achieve luminal expansion.
High pressure angioplasty is often traumatic to the vessel walls and can lead to vessel wall dissections. Such dissections are common and can be severe and may require urgent surgery or placement of stents. In addition, dissection may contribute to poor long term clinical results and restenosis even if a stent is placed in the treated lesion.
Dissections are usually attributed to several mechanisms occurring during balloon inflation including shear forces applied on the vessel walls as the balloon pleats unfold as well as uneven balloon inflation which occurs as a result of the non-symmetric nature of the vascular disease.
Shear forces result from balloon unfolding and an increase in balloon diameter in the radial direction as the folded balloon unwraps. As the folded pleats of the balloon open, the layers slide over one another and apply tangential forces to the lesion and/or vessel wall which can abrade the lesion or vascular wall and in the worst instances cause dissections.
Uneven inflation results from the uneven nature of the disease in the vessel. Angioplasty balloons are commonly non-compliant or semi-compliant, and when semi-compliant balloons are inflated against an eccentric lesion, the balloon will follow the “path of least resistance” and its diameter will increase more in the less diseased sections of the vessel (causing a dog bone effect), often increasing trauma in these areas.
Due to the above limitations, standard balloon catheters are also incapable of applying local forces sufficient to open to resistant plaque regions and thus can be ineffective in providing ample patency in highly calcified lesions, such as those prevalent in peripheral arteries.
Attempts to solve the above limitations of balloon catheters by increasing local forces via cutting or scoring elements (blades/wires) positioned on the balloon surface (e.g. US20040143287 and US20060085025) were somewhat successful at opening resistant lesions but did not adequately solve the aforementioned problems resulting from balloon unfolding and uneven inflation.
Thus it would be highly advantageous to have an angioplasty balloon catheter configured for minimizing trauma and dissection to the blood vessel walls as the balloon is inflated as well as for enabling application of local forces to discrete lesion regions that are resistant to opening.
According to one aspect of the present invention, there is provided a system for performing angioplasty comprising: (a) a balloon mounted on a catheter shaft; and (b) an expandable constraining structure including a plurality of axial struts crossing a plurality of radially-expandable rings, for constraining the balloon such that isolated balloon regions protrude through openings in the constraining structure when the balloon is inflated; the expandable constraining structure being configured such that radial expansion of the radially-expandable rings does not substantially alter a distance between adjacent radially-expandable rings.
According to further features in preferred embodiments of the invention described below, the expandable constraining structure is also configured such that radial expansion of the radially-expandable rings moves adjacent axial struts attached to the adjacent radially-expandable rings in opposite (axial) directions.
According to still further features in the described preferred embodiments, the radially-expandable rings are configured with peaks and valleys forming an undulating omega loop path.
According to still further features in the described preferred embodiments, the plurality of axial struts interconnect the plurality of radially-expandable rings at the peaks and the valleys.
According to still further features in the described preferred embodiments, the system comprises at least 4 axial struts crossing at least 4 radially-expandable rings forming at least 16 of the openings.
According to still further features in the described preferred embodiments, the expandable constraining structure further includes first and second end rings for fixedly attaching the expandable constraining structure to the catheter.
According to still further features in the described preferred embodiments, the first and second rings are connected to terminal radially-expandable rings via N end struts, N being half of a number of the plurality of axial struts.
According to still further features in the described preferred embodiments, the N end struts of the first end ring are connected to peaks of a first terminal radially-expandable ring, and the N end struts of the second end ring are connected to valleys of a second terminal radially-expandable ring.
According to still further features in the described preferred embodiments, the N end struts of the first end ring are connected to peaks of a first terminal radially-expandable ring, and the N end struts of the second end ring are connected to peaks of a second terminal radially-expandable ring.
According to still further features in the described preferred embodiments, N may be 2 or 3 or 4.
According to still further features in the described preferred embodiments, the plurality of axial struts are fabricated from a super-elastic alloy having a thickness of from about 0.04 to about 0.12 mm.
According to still further features in the described preferred embodiments, the plurality of radially-expandable rings are fabricated from a super-elastic alloy having a thickness of about 0.05 to about 0.12 mm.
According to still further features in the described preferred embodiments, the plurality of radially-expandable rings are capable of radially expanding from a compressed state of about 1 mm to an expanded state of at least about 5 mm and in some embodiments about 6 mm in diameter, or from a compressed state of 2 mm to an expanded state of at least about 8 or 10 mm and in some embodiments 12 mm in diameter. In any case, the radially expandable rings have an expanded diameter which is smaller than that of the inflated balloon in order to enable the balloon to protrude through the constraining structure and form the pillow-like structures described herein.
According to still further features in the described preferred embodiments, the plurality of radially-expandable form an undulating radial path when compressed and a linear radial path when expanded.
According to still further features in the described preferred embodiments, a length of the expandable constraining structure from the first end ring to the second end ring is 10-300 mm.
According to still further features in the described preferred embodiments, each omega loop of the undulating omega loop path is composed of two contiguous sine curves.
According to still further features in the described preferred embodiments, the sine curve has a radius of 0.3-0.5 mm, such as at least about 0.35 mm or at least about 0.45 mm.
According to still further features in the described preferred embodiments, the isolated balloon regions protrude about 0.1-0.7 mm from the radially outwardly facing surface of the expandable constraining structure, such as at least about 0.3 mm, and preferably at least about 0.6 mm.
According to still further features in the described preferred embodiments, the balloon is coated with a drug coating, which may also contain an excipient or excipients. The excipient is an inactive substance that serves as the vehicle or medium for an active drug substance.
According to still further features in the described preferred embodiments, the drug coating is applied on the isolated balloon regions that protrude through the openings.
According to still further features in the described preferred embodiments, the isolated balloon regions protruding through the openings are rectangular.
According to still further features in the described preferred embodiments, the isolated balloon regions protruding through the openings are about 1-5 mm in length and 1-3.5 mm in width.
According to another aspect of the present invention, there is provided a method of treating a body vessel comprising: (a) positioning, in the vessel, a balloon disposed within an expandable constraining structure including a plurality of axial struts crossing a plurality of radially-expandable rings being for constraining the balloon such that isolated balloon regions protrude through openings in the expandable constraining structure when the balloon is inflated; the expandable constraining structure being configured such that radial expansion of the radially-expandable rings: (i) does not substantially alter a distance between adjacent radially-expandable rings; and (ii) axially moves adjacent axial struts attached to the adjacent radially-expandable rings in opposite directions; and (b) inflating the balloon so as to enable the isolated balloon regions to protrude through the openings and contact a wall of the vessel while the plurality of axial struts and the plurality of radially-expandable rings are displaced from the vessel, thereby treating the body vessel.
According to still further features in the described preferred embodiments, (b) is effected by inflating the balloon to at least 3 atm.
According to still further features in the described preferred embodiments, the vessel is an artery and the treatment is angioplasty.
According to another aspect of the present invention there is provided a medical prosthesis comprising a substantially tubular expandable structure including a plurality of axial struts crossing a plurality of radially-expandable rings, the expandable constraining structure being configured such that radial expansion of the radially-expandable rings: (a) does not substantially alter a distance between adjacent radially-expandable rings; and (b) axially moves adjacent axial struts attached to the adjacent radially-expandable rings in opposite directions.
The present invention successfully addresses the shortcomings of the presently known configurations by providing a balloon catheter that includes a cage-like constraining structure designed for minimizing dissection-inducing stresses on the vessel wall while enabling localized high pressure treatment of dilation-resistant lesion regions.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The present invention relates to a balloon catheter system which can be used to open stenosed vessel region while minimizing vessel wall trauma and dissections and providing localized forces to discrete lesion regions and a homogeneous distribution of forces along the lesion.
The principles and operation of the present invention may be better understood with reference to the drawings and accompanying descriptions.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
Attempts to traverse the limitations of standard angioplasty balloon catheters using cutting or scoring elements have met with limited clinical success.
In a previously filed patent application (U.S. patent application Ser. No. 13/044,425, filed Mar. 9, 2011, the entire disclosure of which is hereby incorporated by reference), the present inventors described a balloon catheter that includes an expandable constraining structure (CS) positioned over an angioplasty balloon. The constraining structure was configured such that when the balloon was inflated to a diameter larger than that of the expandable constraining structure, isolated balloon regions protruded from openings in the expandable constraining structure. Such a unique configuration protected the vessel wall from the effects of balloon unfolding and uneven inflation while also enabled application of localized forces to a discrete plaque region.
In order to enable a delivery state and expansion in the vessel (and enable isolated balloon regions to protrude therethrough), the expandable constraining structure of U.S. patent application Ser. No. 13/044,425 is preferably constructed from several axial struts crossing several radially-expandable rings (forming a cage with balloon openings). The radially expandable rings must be compressed for delivery and expanded for operability and should preferably assume a linear circumferential configuration when expanded such that isolated balloon regions protruding through the expandable constraining structure contact substantially linear surfaces.
Thus, the operability of the expandable constraining structure, and in particular its ability to compress and expand without applying excessive strain to its structural elements and upon the balloon, largely depends on the radially expandable rings and connection therebetween.
Expansion through large diameter ranges can strain the struts and rings, leading to ring failure or strut deformation (see Example section).
Thus, the present inventors continued to experiment with various expandable constraining structure designs, and particularly with various radially expandable rings designs, in efforts to improve the operability of the expandable constraining structure.
As is described hereunder and in the Examples section which follows, the present inventors have devised a radially expandable ring configuration that substantially enhances the operability of the expandable constraining structure.
Thus, according to one aspect of the present invention there is provided a system for performing angioplasty in a subject (e.g. a human subject).
The system includes a balloon mounted on a catheter shaft and an expandable constraining structure mounted over the balloon (in a coaxial arrangement), and fixedly attached at its distal and proximal ends to the catheter shaft.
The catheter can be any catheter configuration suitable for use in angioplasty procedures. The catheter can be configured for over-the-wire or a rapid exchange delivery and can include suitable connectors for wire insertion, inflation and the like at its proximal end. The catheter shaft can be any length and diameter suitable for angioplasty of peripheral, coronary or cerebral blood vessels. Suitable lengths (L) and diameters (D) can be in the range of about 5-30 mm L, 2-5 mm D for coronary applications and 20-300 mm L, 2-12 (or more) mm D for peripheral vessels applications.
The balloon can be a compliant, a semi-compliant or a non-complaint balloon fabricated from nylon, Pebax and the like at dimensions selected from a range of about 5-300 mm in length and about 2-12 (or more) mm in diameter. The balloon can be cylindrical, or any other shape known in the art.
The expandable constraining structure includes a plurality of axial struts crossing a plurality of radially-expandable rings. The struts and rings form a cage-like structure that expands with balloon expansion, but constrains the balloon such that isolated balloon regions protrude through openings in the cage structure when the balloon is inflated therein.
Thus, the expandable constraining structure provides protection of vessel wall/plaque from shear forces caused by balloon unfolding, protection from uneven expansion during radial dilatation, and strain relief zones through isolated balloon protrusions.
The expandable constraining structure is configured such that radial expansion of the radially-expandable rings does not substantially alter a distance between any two axially adjacent rings while shifting circumferentially-adjacent axial struts (interconnecting the two adjacent rings) in opposite directions (e.g., one strut shifts in a proximal direction, while its circumferentially-adjacent strut shifts in a distal direction).
Such an expansion profile can provide several advantages:
Referring now to the drawings,
System 10 includes a catheter 12 having a shaft 14 which is fabricated from one or more concentrically arranged hollow tubes (typically 3) fabricated from a polymer such as Nylon, Pebax, HDPE, LDPE, PTFE, Polyimide and the like. A balloon 16 is mounted on a distal end region 18 of shaft 14 and is inflatable via an inflation lumen that extends the length of shaft 14 from balloon 16 to a handle/connector (not shown) of system 10 mounted on the proximal end of shaft 14. Balloon 16 is fabricated and bonded onto shaft 14 using well known prior art approaches.
An expandable constraining structure 20 (referred to hereunder as CS 20, a portion of which is shown separately in
CS 20 can be fabricated from welded superelastic wire (having a round or rectangular profile), or it can be laser cut from a tube/sheet. Rings 24 and struts 32 can be fabricated from a superelastic alloy such as Nitinol and have a thickness of 0.04 to 0.12 mm (indicated by TR and TS in
Any number of rings 24/struts 32 can be used in CS 20. For example, CS 20 can include a number of rings 24, e.g. 4-80 and 2-6 struts 32. The number of rings 24 can be determined by the balloon length divided by two or three. Forty rings 24 and 4 struts 32 are shown in
As is mentioned hereinabove rings 24 have a unique structure and unique strut 32 interconnections.
In the collapsed configuration, rings 24 are preferably configured with peaks 52 and valleys 54 (peaks 52 face left in the Figures) forming an undulating omega loop 56 (one omega loop 56 emphasized in
Expansion of ring 24 nearly linearizes each sine curve. Therefore the sine radius has to be large enough in order not to develop high strains in ring 24 and fail. The preferred sine radius is about 0.3-0.5 mm. The overall length of the sine path (darkened line referenced by LS in
Any number of omega loops (e.g., one or two or three or four or more) can be included in ring 24. However, in cases where rings 24 need to tightly fit over a folded balloon 16 in order to accommodate delivery thru tight lesions, the relatively large sine radius and small overall diameter of compressed ring 24 can dictate two sine waves per ring 24 (two peaks 52 and two valleys 54) in a balloon less than 4.5 mm (inflated diameter). A balloon 4.5 mm or larger (inflated diameter) can accommodate three sine waves per ring 24 (three peaks 52 and thereto valleys 54) and can be compressed for delivery to about 1 mm or slightly more (e.g. 1.2 mm).
Struts 32 (four in
An undulating path (for strut 32) can also be advantageous due to deformation of strut 32 upon expansion of CS 20. The ends of strut 32 are attached to the rings 24 and therefore are forced to the relatively small diameter of the rings 24 on expansion. At the same time, the middle area of strut 32 is being pushed outwardly by the pressure of balloon 16, and thus, strut 32 arcs radially outward. A linear strut 32 would thus shorten upon expansion due to arcing. Such shortening between adjacent rings 24 can then result in shortening of the overall length of CS 20 and generation of high axial compression forces on the balloon. The undulating path of strut 32 mitigates this shortening: as pillows are formed on both sides of strut 32 they apply a force to strut 32 that linearize the strut and mitigates shortening. The magnitude of undulation can control the magnitude of shortening mitigation and can be selected such that the shortening is minimal and distance between rings is kept substantially constant.
As is shown in
During expansion, adjacent struts 24 (60 and 62 in
As is mentioned hereinabove, CS 20 is attached to catheter shaft 14 either directly, or to the balloon neck overlying the shaft, via two end rings 22 each connected via one or more end struts 30 to a terminal ring 24 (designated 26 and 28). End rings can be connected directly to end struts 30 or through a pair of angled couplers 31 (
The number of end struts 30 (on each side) can be half that of the number of struts 32. For example, in a CS 20 having 4 struts 32 (and any number of rings 24), an end ring 22 is connected to a terminal ring 24 (26 or 28) via 2 struts 30.
End rings 22 can be fixedly attached to shaft 14 preferably via thermal bonding crimping and/or adhesive bonding. End rings 22 are configured as zigzag rings with an amplitude of approximately 1 mm or shorter. End rings 22 are preferably connected via one or more struts 30 to external peaks 52 of terminal ring (26 or 28) although other connection configurations are also contemplated herein.
Since inflation of balloon 16 causes terminal rings 26 and 28 to expand and peaks 52 to linearize, connecting struts 30 (on both sides of CS 20) to a peak 52 of terminal ring 26 and a peak 52 of terminal ring 28 (which is on the same strut 32) can cause buckling (inward or outward arcing) of CS 20 and, as such, it is less preferred. To avoid such buckling, end rings 22 are preferably connected via strut 30 to a peak 52 of one terminal ring (e.g. 26) and a valley 54 of the opposite terminal ring (e.g. 28) in such a configuration that the connection does not span the same lengthwise strut 32.
In
In
In
System 10 can be fabricated using conventional balloon catheter components, such as metallic hypotube and/or polymer tubes for fabrication of the catheter shaft, an inflation hub at the proximal end, a polymeric guide wire lumen adapted to receive the guide wire, and an inflatable balloon 16 at its distal end. The balloon catheter components are attached to each other using techniques that are known in the art such as thermal bonding and adhesives.
CS 20 is preferably fabricated using laser cutting technique in which the CS pattern is cut from a Nitinol tube. CS 20 can then be electropolished and heat treated to form an inner diameter smaller than that of the folded balloon. CS 20 is mounted over balloon 16 and positioned relatively to the balloon such that rings 24 are positioned over the working length of balloon 16 (balloon cylindrical section in between the balloon tapers) and end rings 22 are positioned over the catheter shaft or balloon legs on both sides of balloon 16. End rings 22 are thermally bonded to the catheter shaft or the balloon legs.
System 20 can be used in angioplasty as follows. System 20 can be guided to the stenosed region over a guide-wire (not shown) using well known angioplasty approaches. Once in position, balloon 16 can be inflated to a point where it protrudes through CS 20 such that isolated regions of balloon 16 apply an outward radial force to the plaque. Once the region is sufficiently dilated, balloon 16 is deflated (thereby allowing the CS 20 to recover its set configuration) and system 20 is removed from the body.
Thus, the present invention provides an angioplasty system which protects the vessel wall from the shear forces caused by balloon unwrapping and radial and uneven expansion, as well as enables provision of localized higher pressure forces to specific lesion regions which are resistant, such as highly calcified expansion-resistant plaque regions.
Balloon 16 of system 20 or pillow-like regions thereof can be coated with a hydrophilic or hydrophobic coating to enhance lubricity. Alternatively, balloon 16 of system 20 or pillow-like regions thereof can be coated with a drug coating containing an antiproliferative drug such as sirolimus or paclitaxel using methods well known in the art.
As used herein the term “about” refers to ±10%.
Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting.
Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.
Prototype Testing
Several designs having different shaped rings and end strut attachment configurations were fabricated and tested.
Such testing demonstrated that the shape of the ring loop is critical for achieving expansion of balloon and constraining structure and balloon constraint without ring failure and that the end strut configuration (three types shown in
When a ring of CS 20 expands (under balloon inflation), the radii of the peaks and valleys (formed by the zigzagging loops) grow and stresses and strains form along the radius length maximizing at the peak/valley centers.
Since the loop of
Testing of several prototypes also revealed that an end strut configuration of CS is important for maintaining CS integrity during inflation.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This is a continuation of U.S. patent application Ser. No. 14/974,348, filed Dec. 18, 2015, which is a continuation of U.S. patent application Ser. No. 13/972,761, filed Aug. 21, 2013, now U.S. Pat. No. 9,216,033, which is a continuation-in-part of U.S. patent application Ser. No. 13/761,525, now U.S. Pat. No. 9,179,936, filed on Feb. 7, 2013, which claims the benefit of U.S. Provisional Application No. 61/596,618, filed Feb. 8, 2012, the entireties of both of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2701559 | Cooper | Feb 1955 | A |
2854983 | Baskin | Oct 1958 | A |
3045677 | Wallace | Jul 1962 | A |
3467101 | Fogarty et al. | Sep 1969 | A |
3825013 | Craven | Jul 1974 | A |
4327736 | Inoue | May 1982 | A |
4456011 | Warnecke | Jun 1984 | A |
4483340 | Fogarty et al. | Nov 1984 | A |
4637396 | Cook | Jan 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4921484 | Hillstead | May 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5071407 | Porter et al. | Dec 1991 | A |
5100386 | Inoue | Mar 1992 | A |
5133732 | Wilkor | Jul 1992 | A |
5176693 | Pannek | Jan 1993 | A |
5181911 | Shturman | Jan 1993 | A |
5190058 | Jones et al. | Mar 1993 | A |
5196024 | Barath | Mar 1993 | A |
5222971 | Willard et al. | Jun 1993 | A |
5224945 | Pannek, Jr. | Jul 1993 | A |
5263963 | Garrison et al. | Nov 1993 | A |
5308356 | Blackshear, Jr. et al. | May 1994 | A |
5320634 | Vigil et al. | Jun 1994 | A |
5336178 | Kaplan | Aug 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5344419 | Spears | Sep 1994 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5456666 | Campbell et al. | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5460607 | Miyata et al. | Oct 1995 | A |
5484411 | Inderbitzen et al. | Jan 1996 | A |
5501694 | Ressemann et al. | Mar 1996 | A |
5527282 | Segal | Jun 1996 | A |
5556408 | Farhat | Sep 1996 | A |
5562620 | Klein et al. | Oct 1996 | A |
5571086 | Kaplan et al. | Nov 1996 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5609574 | Kaplan et al. | Mar 1997 | A |
5616149 | Barath | Apr 1997 | A |
5620457 | Pinchasik et al. | Apr 1997 | A |
5628746 | Clayman | May 1997 | A |
5628755 | Heller et al. | May 1997 | A |
5643210 | Lacob | Jul 1997 | A |
5643312 | Fischell et al. | Jul 1997 | A |
5695469 | Segal | Dec 1997 | A |
5702410 | Klunder et al. | Dec 1997 | A |
5713863 | Vigil et al. | Feb 1998 | A |
5730698 | Fischell et al. | Mar 1998 | A |
5733303 | Israel et al. | Mar 1998 | A |
5735816 | Lieber et al. | Apr 1998 | A |
5755781 | Jayaraman | May 1998 | A |
5772681 | Leoni | Jun 1998 | A |
5776181 | Lee et al. | Jul 1998 | A |
5797935 | Barath | Aug 1998 | A |
5810767 | Klein | Sep 1998 | A |
5827321 | Roubin et al. | Oct 1998 | A |
5863284 | Klein | Jan 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5868719 | Tsukernik | Feb 1999 | A |
5868779 | Ruiz | Feb 1999 | A |
5868783 | Tower | Feb 1999 | A |
5869284 | Cao et al. | Feb 1999 | A |
5904679 | Clayman | May 1999 | A |
5906639 | Rudnick et al. | May 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5961490 | Adams | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5987661 | Peterson | Nov 1999 | A |
6013055 | Bampos et al. | Jan 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6036708 | Sciver | Mar 2000 | A |
6053913 | Tu et al. | Apr 2000 | A |
6056767 | Boussignac | May 2000 | A |
6059810 | Brown et al. | May 2000 | A |
6059811 | Pinchasik et al. | May 2000 | A |
6077298 | Tu et al. | Jun 2000 | A |
6102904 | Vigil et al. | Aug 2000 | A |
6106548 | Roubin et al. | Aug 2000 | A |
6129706 | Janacek | Oct 2000 | A |
6156265 | Sugimoto | Dec 2000 | A |
6190403 | Fischell et al. | Feb 2001 | B1 |
6206910 | Berry et al. | Mar 2001 | B1 |
6217608 | Penn et al. | Apr 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6241762 | Shanley | Jun 2001 | B1 |
6245040 | Inderbitzen et al. | Jun 2001 | B1 |
6258099 | Mareiro et al. | Jul 2001 | B1 |
6261319 | Kveen et al. | Jul 2001 | B1 |
6309414 | Rolando et al. | Oct 2001 | B1 |
6319251 | Tu et al. | Nov 2001 | B1 |
6334871 | Dor et al. | Jan 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6416539 | Hassdenteufel | Jul 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6605107 | Klein | Aug 2003 | B1 |
6616678 | Nishtala et al. | Sep 2003 | B2 |
6626861 | Hart et al. | Sep 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6656351 | Boyle | Dec 2003 | B2 |
6695813 | Boyle et al. | Feb 2004 | B1 |
6702834 | Boylan et al. | Mar 2004 | B1 |
6939320 | Lennox | Sep 2005 | B2 |
6942680 | Grayzel et al. | Sep 2005 | B2 |
7156869 | Pacetti | Jan 2007 | B1 |
7186237 | Meyer et al. | Mar 2007 | B2 |
7357813 | Burgermeister | Apr 2008 | B2 |
7686824 | Konstantino et al. | Mar 2010 | B2 |
7691119 | Farnan | Apr 2010 | B2 |
7708748 | Weisenburgh, II et al. | May 2010 | B2 |
7753907 | DiMatteo et al. | Jul 2010 | B2 |
7803149 | Bates et al. | Sep 2010 | B2 |
7931663 | Farnan et al. | Apr 2011 | B2 |
8172793 | Bates et al. | May 2012 | B2 |
8257305 | Speck et al. | Sep 2012 | B2 |
8348987 | Eaton | Jan 2013 | B2 |
8388573 | Cox | Mar 2013 | B1 |
8439868 | Speck et al. | May 2013 | B2 |
9179936 | Feld et al. | Nov 2015 | B2 |
9199066 | Konstantino et al. | Dec 2015 | B2 |
9216033 | Feld et al. | Dec 2015 | B2 |
9375328 | Farnan | Jun 2016 | B2 |
9415140 | Speck | Aug 2016 | B2 |
9649476 | Speck et al. | May 2017 | B2 |
10220193 | Feld et al. | Mar 2019 | B2 |
10232148 | Konstantino et al. | Mar 2019 | B2 |
10524825 | Feld et al. | Jan 2020 | B2 |
10549077 | Konstantino et al. | Feb 2020 | B2 |
11000680 | Konstantino et al. | May 2021 | B2 |
11234843 | Feld et al. | Feb 2022 | B2 |
20020010489 | Grayzel et al. | Jan 2002 | A1 |
20030014100 | Maria Meens | Jan 2003 | A1 |
20030023200 | Barbut et al. | Jan 2003 | A1 |
20030040790 | Furst | Feb 2003 | A1 |
20030065354 | Boyle | Apr 2003 | A1 |
20030078606 | Lafontaine et al. | Apr 2003 | A1 |
20030114915 | Mareiro et al. | Jun 2003 | A1 |
20030114921 | Yoon | Jun 2003 | A1 |
20030120303 | Boyle et al. | Jun 2003 | A1 |
20030144726 | Majercak et al. | Jul 2003 | A1 |
20030153870 | Meyer et al. | Aug 2003 | A1 |
20030195609 | Berenstein et al. | Oct 2003 | A1 |
20030212449 | Cox | Nov 2003 | A1 |
20040034384 | Fukaya | Feb 2004 | A1 |
20040073284 | Bates et al. | Apr 2004 | A1 |
20040143287 | Konstantino et al. | Jul 2004 | A1 |
20040210235 | Deshmukh | Oct 2004 | A1 |
20040210299 | Rogers et al. | Oct 2004 | A1 |
20040230293 | Yip et al. | Nov 2004 | A1 |
20050021071 | Konstantino et al. | Jan 2005 | A1 |
20050021130 | Kveen et al. | Jan 2005 | A1 |
20050049677 | Farnan | Mar 2005 | A1 |
20050125053 | Yachia et al. | Jun 2005 | A1 |
20050271844 | Mapes et al. | Dec 2005 | A1 |
20060008606 | Horn et al. | Jan 2006 | A1 |
20060015133 | Grayzel et al. | Jan 2006 | A1 |
20060085025 | Farnan et al. | Apr 2006 | A1 |
20060085058 | Rosenthal et al. | Apr 2006 | A1 |
20060149308 | Melsheimer et al. | Jul 2006 | A1 |
20060259005 | Konstantino et al. | Nov 2006 | A1 |
20060271093 | Holman et al. | Nov 2006 | A1 |
20070073376 | Krolik et al. | Mar 2007 | A1 |
20070173923 | Savage et al. | Jul 2007 | A1 |
20080255508 | Wang | Oct 2008 | A1 |
20090036964 | Heringes et al. | Feb 2009 | A1 |
20090038752 | Weng et al. | Feb 2009 | A1 |
20090105686 | Snow et al. | Apr 2009 | A1 |
20090192453 | Wesselman | Jul 2009 | A1 |
20090227949 | Knapp et al. | Sep 2009 | A1 |
20090240270 | Schneider et al. | Sep 2009 | A1 |
20090319023 | Hildebrand et al. | Dec 2009 | A1 |
20100042121 | Schnieder et al. | Feb 2010 | A1 |
20100234875 | Allex et al. | Sep 2010 | A1 |
20100241215 | Hansen et al. | Sep 2010 | A1 |
20100331809 | Sandhu et al. | Dec 2010 | A1 |
20110066225 | Trollsas et al. | Mar 2011 | A1 |
20110071616 | Clarke et al. | Mar 2011 | A1 |
20110172698 | Davies et al. | Jul 2011 | A1 |
20120059401 | Konstantino et al. | Mar 2012 | A1 |
20120083733 | Chappa | Apr 2012 | A1 |
20120245607 | Gershony et al. | Sep 2012 | A1 |
20130046237 | Speck et al. | Feb 2013 | A1 |
20130116655 | Bacino et al. | May 2013 | A1 |
20130190725 | Pacetti et al. | Jul 2013 | A1 |
20130211381 | Feld | Aug 2013 | A1 |
20140276406 | Campbell et al. | Sep 2014 | A1 |
20150209556 | Timothy | Jul 2015 | A1 |
20160100964 | Feld et al. | Apr 2016 | A1 |
20190151627 | Konstantino et al. | May 2019 | A1 |
20190151631 | Feld et al. | May 2019 | A1 |
20200139093 | Feld et al. | May 2020 | A1 |
20200215311 | Konstantino et al. | Jul 2020 | A1 |
20210128891 | Konstantino et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
1568165 | Jan 2005 | CN |
0 565 796 | Oct 1993 | EP |
0 623 315 | Nov 1994 | EP |
0 832 608 | Apr 1998 | EP |
1 042 997 | Oct 2000 | EP |
2 035 291 | Mar 2009 | EP |
2005-508709 | Apr 2005 | JP |
2014-528809 | Oct 2014 | JP |
WO 9805377 | Feb 1998 | WO |
WO 9850101 | Nov 1998 | WO |
WO 0057815 | Oct 2000 | WO |
WO 2002068011 | Sep 2002 | WO |
WO 2003041760 | May 2003 | WO |
WO 2005020855 | Mar 2005 | WO |
WO 2011112863 | Sep 2011 | WO |
WO 2013066566 | May 2013 | WO |
WO 2013114201 | Aug 2013 | WO |
WO 2013119735 | Aug 2013 | WO |
Entry |
---|
AngioSculpt XL PT Scoring Balloon Catheter Brochure, AngioScore, Inc., Rev. C, May 2013. |
Bearing Works, (PTFE) Polytetrafluoroethylene material specifications sheet, available online Feb. 11, 2018 at https://www.bearingworks.com/uploaded-assets/pdfs/retainers/ptfe-datasheet.pdf; printed Feb. 21, 2018, in 2 pages. |
Brydson, J.A., “Plastics Materials—Sixth Edition,” 1995, p. 510, available in part online from https://books.google.com/books?id=wmohBQAAQBAJ&lpg=PA510&ots=G_4Q-OMpB4&dq=young's%20modulus%20of%20PEBAx&pg=PA510#v=onepage&q=young's%20modulus%20of%20PEBAx&f=false; printed on May 5, 2017. |
Kadish, A., et al. “Mapping of Atrial Activation With a Noncontact, Multielectrode Catheter in Dogs,” Circulation: Journal of the American Heart Association, (Apr. 1999) 99: 1906-1913. |
International Search Report for Appl. No. PCT/US13/25032, mailed Apr. 19, 2013 in 8 pages. |
“Materials Data Book,” Cambridge University Engineering Department, 2003, pp. 1-41. |
Number | Date | Country | |
---|---|---|---|
20220168120 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14974348 | Dec 2015 | US |
Child | 17643674 | US | |
Parent | 13972761 | Aug 2013 | US |
Child | 14974348 | US |