This application claims priority to Israel Patent Application No. 210376 filed on 30 Dec. 2010, the contents of which are incorporated herein, in their entirety by this reference.
The presently disclosed subject matter relates to the field of pools containing various materials treated therein.
The presently disclosed subject matter relates to pools containing various materials treated therein, such as pools used, e.g., for production of microorganisms, waste treatment, mixing and/or stirring various materials and chemicals, etc.
For example, in the field of production of microorganisms, it is well known to use specialized pools for carrying out processes related to the growth of. The pools are exposed to sunlight or to an artificial light source that enables photosynthesis to take place in the microorganisms. Water and carbon-dioxide mixed therein serve as a typical liquid in which the microorganisms are grown. Such microorganisms can be, for example, single-cell algae, such as: Nannochloropsis sp. Nannochloris sp. Phaeodactylum sp. Chlorococcum sp. Tetraselmis sp. Navicula lanzii; Navicula vim; Isochrysis sp. Chlorella sp. Spirulina sp. Aphnizomenon flos-aqua Amphora sp. Porphyridium sp. Hematococus sp. Donolealh sp. Diatom sp.
Various other types of microorganisms can also be grown this way. In the present description, the term ‘growth of microorganisms’ implies both their growth, i.e. enlargement, of each individual microorganism and their multiplication. The liquid itself can be any liquid wherein microorganisms can reside such as, for example, water, sea water, sewage, etc.
As microorganisms typically tend to sink and settle on the bottom of a pool in which they are treated, and as their amount of changes, it becomes necessary to stir the liquid in order to enable the sunk microorganisms to rise close to the surface of the pool and become exposed to light shining at the pool from above so that photosynthesis may take place. In addition, stirring the liquid allows to better mix its contents such as, for example, water and carbon-dioxide.
A typical well known method for stirring the liquid in the pool involves the use of one or more paddle wheels. Each paddle wheel is installed at one predetermined location in the pool and, as it rotates, produces a wave of moving liquid, that that travels along the pool. As it travels across the pool away from the paddle wheel the wave subsides, its energy is reduced, and areas of the pool away from the pedal wheel are less affected by it.
Some more advanced systems have also been developed for stirring liquid in a pool, for example, as disclosed in DE 2122891 and EP 261533.
The presently disclosed subject matter according to one aspect thereof relates to a system for treating materials, for example facilitating production of microorganisms, in a liquid in a pool having a bottom, comprising:
The presently disclosed subject matter according to its other aspect relates to a system for treating materials, for example facilitating production of microorganisms, in a liquid in a pool having a bottom, comprising:
A further aspect of the presently disclosed subject matter relates to a system for treating materials, for example facilitating production of microorganisms, in a liquid in a pool having a bottom, comprising:
The wiper can be made at least partially of a flexible material such as, for example, rubber and the like, allowing it to effectively push liquid across the bottom of the pool without damaging it (or any layer or liner covering the bottom).
In addition to the original wing, brush and wiper in the respective stirring, brushing or wiping device in any one or more of the above aspects of the presently disclosed subject matter, each such device can further comprise at least one of a wing, brush and wiper, which is mountable in such device in addition to or instead of its original element. In some examples, the further wing, brush or wiper can be mounted, onto the original element.
A still further aspect of the presently disclosed subject matter relates to a kit for treating materials, for example facilitating production of microorganisms, in a liquid in a pool having a bottom, comprising a floating arrangement and interchangeably attachable thereto at least two of the following three elements: a wing, a brush, and a wiper. In some examples, the kit can be part of a system further comprising an automatic moving arrangement configured for moving each of the interchangeably attachable elements in the pool.
At least one of the brushing device, the wiper and the kit in any one or more of the aspects of the presently disclosed subject matter, can further comprise at least two contacting elements spaced from each other along a longitudinal axis of the brush and/or the wiper. The contacting elements may be attached to edges of the wing, brush or wiper and/or at middle parts thereof.
The contacting elements in any one or more of the aspects of the presently disclosed subject matter can be wheels configured to rotate when in contact with the bottom of the pool. The wheels can be rotatable attached to the wing, brush or wiper. It should be understood that, while the wheels are spaced from each other along the longitudinal axis, they need not necessarily be positioned on the longitudinal axis or be rotatable with respect to it or parallel thereto.
The contacting elements in any one or more of the aspects of the presently disclosed subject matter can be sliding elements configured to slide on the bottom of the pool. The sliding elements can be, for example, in the form of non-rotating wheels, spheres, skis (in particular, with curved forward edges), etc.
The bottom of the pool in any one or more of the aspects of the presently disclosed subject matter can be in the form of a liner made of a liner material, and the contacting elements, when present, can have such a design as to cause no damage to the liner when rotating and/or sliding in contact therewith. Liner materials can be, for example, polyethylene (PE), polypropylene (PP), PVC, thermoplastic polyolefin (TPO), etc.
The stirring or wiping device in any one or more of the aspects of the presently disclosed subject matter can further comprise a floating arrangement configured for floating on the liquid, the wing or wiper being at least indirectly attached to the floating arrangement.
The floating arrangement can be attached to the wing, brush and/or wiper via an attachment mechanism. The attachment mechanism can fix the orientation and/or position of the wing and/or brush and/or wiper with respect to the floating arrangement. In one example, the attachment mechanism can comprise at least one rigid arm having ends, and connectors, wherein the connectors connect the ends of the rigid arm, respectively, to the floating arrangement and the wing and/or brush and/or wiper. In another example, the attachment mechanism can be flexible and may comprise cables and/or springs. The attachment mechanism, in some examples, can be adjustable, so as to be able to adjust the position and/or orientation of the wing, brush or wiper with respect to the floating arrangement.
The stirring, brushing or wiping device, or the kit, in any one or more of the aspects of the presently disclosed subject matter, can further comprise a rudder configured, when the device or kit is moving in the liquid, to stabilize movement of the device or kit through interaction with the liquid. In some examples, the rudder can be attached to the wing, brush or wiper and may be used to stabilize movement thereof. In further examples, the rudder is inclined at an angle other than 90 degrees, to a plane which is perpendicular to the longitudinal axis of the wing, brush or wiper and configured, when the device or kit is moving in the liquid, to push the device or kit or only the wing, brush or wiper, towards a side of the pool which is closest thereto.
The floating arrangement in any one or more of the aspects of the presently disclosed subject matter can have a leading portion defining a plane parallel to the longitudinal axis and extending upwardly and frontward of the remainder of the floating arrangement, to allow producing waves in the liquid when the floating arrangement is moved in the frontward direction.
The wing, brush and wiper in any one or more of the aspects of the presently disclosed subject matter, can have a longitudinal axis and the moving arrangement can be configured to move the corresponding element in a direction transverse to the longitudinal axis. In some examples, the movement direction can be inclined to the longitudinal axis of the moved element by at least 40 degrees, particularly, by at least 75 degrees, more particularly, by at least 85 degrees or perpendicular to the longitudinal axis.
When the pool has sides inclined relative to its bottom, in any one or more of the aspects of the presently disclosed subject matter, any of the stirring, brushing or wiping device, or the kit, can comprise a main portion extending along the longitudinal axis thereof and configured for corresponding interaction (i.e. stirring, sweeping, wiping) with liquid and microorganisms near the pool's bottom, and at least one secondary portion which is inclined with respect to the longitudinal axis and configured for interaction with liquid and microorganisms near the pool's sides.
The wiping device can have a weight increasing element(s) associated with it. The weight increasing element can be part of, attached to, or apply pressure to, the wiper. For example, the weight increasing element can be in the form of a layer(s) of material interposed between layers of the wiper or attached to the wiper. In another example, the weight increasing element(s) can be in the form of weights distributed in the wiper configured for pressing the wiper down, towards the bottom of the pool. The weight increasing element(s) can also be in the form of a crossbar(s) configured for providing rigidity to the construction of the wiper that helps it support its form
It should be understood that the wing, brush and wiper of any one or more of the above aspects can have various profiles, including non-standard profiles (i.e. shape in their cross-section taken perpendicular to their longitudinal axis). For example, any of the wing, brush or wiper can have a polygon profile, a partially or fully rounded profile, etc., or a combination of these forms. Furthermore, in some examples, the wing, brush or wiper can be segmented and at least some of these segments can have a longitudinal axis that is not aligned with the longitudinal axis of the whole wing, brush or wiper, accordingly.
In should be understood that the presently disclosed subject matter can used to obtain increased photosynthesis of microorganisms, and algae in particular, and/or for growing microorganisms, in particular to increase their biomass.
In the above aspects and examples of the presently disclosed subject matter, the floating arrangement can comprise one or more floating elements having buoyancy allowing them to stay on the surface of the liquid in the pool while supporting, at least partially, the weight of the wing and/or brush and/or wiper attached thereto. The floating arrangement can comprise of several different parts. In some examples, these parts can be, not only elements configured for floating, but also frame elements, connectors, bolts and screws, etc. Separated parts of the floating arrangement may be connected with rigid or non-rigid connections (e.g. cables and the like). Alternatively separated parts that comprise the floating arrangement may be completely separate from each other and connected to the wing, brush or wiper. The floating arrangement is configured to float on the liquid in the pool at least in a part thereof, and its structure is configured therefore. Exemplary shapes of the floating arrangement may include interconnected or separate pipe-like sections, boat-like shapes, elongated buoys, etc.
In the above aspects of the presently disclosed subject matter an automatic moving arrangement can, for example, comprise at least one of the following:
At least a part of the moving arrangement, such as for example its cable/s, pulleys/gears, motor/s, etc., is configured to be located substantially above the liquid. The moving arrangement can generally be automatic, enabling an operator to turn it on or off, wherein in the ‘on’-state, the stirring, brushing or wiping device, or the wiper and/or brush and/or wing of the kit, is moved in the pool by the moving arrangement. In some examples, the operator can control the speed of movement. In other examples, the movement can be monitored by an automatic controller, such as a computer or a specialized control unit, having control of operation modes such as different movement speeds (for example, for day and night time and/or various steps of the production process planned to last for predetermined time periods) at different predetermined times that are controlled and/or monitored. The depth at which the wing, brush or wiper is disposed in the pool, can also be controlled by an operator or an automatic controller. When more than one of the wing, brush or wiper, are to be used at different stages of operation of the pool, the controller can also control their position and/or orientation with respect to the floating arrangement.
It should be noted that the moving arrangement can be configured to move any movable component(s) of the device or kit (wing, brush and/or wiper) across any portion of the pool and the movement can be unidirectional (e.g. only in the forward direction), bidirectional (e.g. back-and-forth), or multi-directional. For example, two pulleys can be used to move the movable components of the device or kit back-and-forth and/or continuously along a longitudinal direction of the pool. In another example, three or more pulleys can move any movable component(s) of the device or kit in a continuous loop across at least a portion of the pool with or without overlap of the areas of the pool covered by the component throughout the loop. In a large pool, several devices can be moved in a coordinated manner side by side across the pool to generate a greater wave in the liquid.
The stirring, brushing, or wiping device, or the kit, in accordance with the above aspects of the presently disclosed subject matter, is configured for being attachable to the at least one belt, cable or chain through a linking arrangement comprising at least one linking element. The linking arrangement can comprise, for example, one or more cables and/or rigid arms, straps, etc. and various connectors can be used to connect its ends to the device or kit and to the belt, cable, etc.
In some examples of the presently disclosed subject matter, the device or kit can further comprise sensor(s) for monitoring conditions or state of the liquid and/or microorganisms therein.
A still further aspect of the presently disclosed subject matter relates to a method of facilitating production of microorganisms in a liquid within a pool having a bottom, the method comprising at least one of the following three steps:
The above steps can also be performed by the mentioned components that are parts of the kit as described above.
The method can comprise at least two of the steps (a), (b) and (c) above.
The method can further constitute a part of a process for producing microorganisms, the process comprising:
In the above method, the microorganisms can be algae, in particular, single-cell algae selected from at least one of the following types: Nannochloropsis sp. Nannochloris sp. Phaeodactylum sp. Chlorococcum sp. Tetraselmis sp. Navicula lanzii; Navicula vim; Isochrysis sp. Chlorella sp. Spirulina sp. Aphnizomenon flos-aqua Amphora sp. Porphyridium sp. Hematococus sp. Donolealh sp. Diatom sp.
In accordance with a still further aspect of the presently disclosed subject matter, there is provided a pool including one or more devices as described above and/or operated by a method as described above.
The pool can have a bottom covered with a water-proof material, and the contacting elements referred to above can be configured to smoothly slide along the material without catching hold thereof.
In order to understand the disclosed subject matter and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
The stirring device 100 better seen in
The wing 110 is, generally, configured for stirring the liquid in the pool 11, as it is moved therein. In particular, the wing 110 is configured to increase pressure of the liquid below, and possibly in front, of it and lower the pressure of the liquid above, and possibly behind, it. The described effects on the pressure of the liquid induce an at least partially upwards directed flow of the liquid, i.e. in a direction UP from the bottom of the pool 11 to the surface of the liquid. The resulting liquid flow also causes flow of materials, such as for example microorganisms, in the corresponding upwards direction. The effects on the pressure of the liquid are typically localized to a volume of the liquid in vicinity of the wing. In some examples of the presently disclosed subject matter, however, the wing(s) 110 and/or its velocity can be configured to produce a significant wave(s) that travels in the liquid.
The wing 110 has profile(s), i.e. cross-sections of the wing 110 perpendicular to the longitudinal axis LA, the borders of which correspond to the outer surface(s) of the wing 110. This outer surface may be continuous, or comprise of any number of interconnected surfaces each of which can be planar, rounded, etc. The profile of the wing 110 can change along the longitudinal axis and individual sections, i.e. interconnected parts of the wing 110, or segments, i.e. non-connected parts of the wing 110, can have section or segment longitudinal axes that do not match the longitudinal axis of the whole wing 110.
While the wing's outer surface can be continuous or not, a profile of the wing 110 can be generally characterized as having a (leading) liquid moving surface 110l configured to face the liquid in the path of the wing 110 as it is moved in a frontward FW direction, a trailing surface 110t generally opposite the surface 110l, a rear portion 110re and a lower portion 110lw.
The pool bottom contacting elements of the stirring device 100 are elements configured, when in contact with the bottom 13 of the pool 11, to prevent contact between the wing 110 and the bottom 13. The contacting elements are also configured to contact the bottom 13 of the pool 11 without causing damage thereto. As such, when the stirring device 100 is moved in the pool 11 and the contacting elements contact the bottom 13, the contacting elements slide and/or roll on the bottom 13. Thus, the contacting elements can be sliding elements, such as skis, configured to slide and/or rotating elements, such as wheels and the like, configured to roll on the bottom 13 of the pool 11. The bottom contacting elements can be spaced from each other along the longitudinal axis, and in some examples may be positioned on the longitudinal axis or be rotatable with respect to it or parallel thereto. The contacting elements can be made, for example, of plastic and the like which means that they are relatively low weight, rounded and have little friction with the bottom 13 or a liner covering the bottom 13 of the pool 11, as well as being less prone to corrosion in the liquid.
In this example, the contacting elements are wheels 120 attached to the wing and rotatable about an axis (not shown) parallel to the longitudinal axis LA.
The floating arrangement 130 is configured to at least partially support the weight of the wing 110 and the attachment mechanism 140 in the liquid. The floating arrangement 130 can also be configured to generate a wave in the liquid in order to cause stirring thereof. It normally comprises at least one floating element whose length in the direction perpendicular to the longitudinal axis LA can be greater than its dimensions in other directions. In some examples, the floating arrangement can be combined with the attachment mechanism and even, in some further examples, the wing 110 and/or a brush 210 and/or a wiper 310 into a single unitary element.
It is noted that, in some examples of the device 100, the wing 110 can be attached directly to the moving arrangement 80, and a floating arrangement 130 may or may not be part of the stirring device 100.
In this example the floating arrangement 130 comprises two such floating elements in the form of tubular floats 131a and 131b and a middle element 131c connecting there-between. The middle element 131c is connected to upper portions of the tubular floats 131a and is disposed generally above them, so that it does not become fully or partially submerged in the liquid and increase the drag of the floating arrangement as it moves in the liquid. The floating arrangement 130 is connected to the linking arrangement 170 for its connection to the moving arrangement 80.
The attachment mechanism 140, that connects the wing 110 to the floating arrangement 130, can be configured to enable adjustment and fixating the distance, i.e. height, and/or the orientation of the wing 110 with respect to the floating arrangement 130. In
The moving arrangement 80 is configured for moving the stirring device 100 in the pool 11 along a predetermined path. As such, it can include, for example, a belt/cable/chain/etc. movable on pulleys/cog wheels/etc. rotated by a motor. In this example, the moving arrangement 80 includes a cable 82 guided by pulleys 84 and a motor (not shown).
The stirring device 100 is configured for being moved by the moving arrangement 80 in a frontward direction marked by FW in
The floating arrangement 130 in
The rudder of this example comprises of a lower rudder portion 152 and an upper rudder portion 154 attachable to each other via a rudder connector 156. The rudder connector 156 enables customization of the rudder's 150 surface area by addition of upper rudder portions 154 of various sizes or by removal thereof. The rudder 150, causes the wing 110 to move along its predetermined path next to a side 15 of the pool 11 that is closest thereto. The rudder 150 also helps control the radius of turn of the wing 110 as it follows the cable 82 when it partially circles a pulley 84. Thus, the stirring device 100 can turn more smoothly and without applying undesirably high forces on the cable 82.
The floating arrangement 130 in this example comprises several interconnected pipe sections. The attachment mechanism 140 connects between the floating arrangement 130 and wing 110, and comprises metal strips 142 having holes along their longitudinal dimension which can be associated with the holes of protrusions 114 to enable both types of holes to be secured by bolts. The linking arrangement 170, shown in
All features described above with respect to specific examples can be used in other examples in any combination.
Some examples of a brushing device 200 and a wiping device 300 will now be described, and afterwards exemplary structures of the moving arrangement 80 will be shown. It is noted that features described in specific examples of the devices 100, 200 and 300 can also be used in any combination, while the wing 110, brush 210 and wiper 310 may substitute each other without necessarily requiring changes in any of the other features or readily foreseeable functions of the devices 100, 200 and 300. It is also noted that, more than one wing 110, brush 210, or wiper 310 and combinations of these can be attached the floating arrangement 130 directly or by the same or different attachment mechanism(s) 140.
The brushing device 200 is, generally, configured to sweep material from the bottom of the pool 11 and can also be used to stir liquid in the pool 11. It comprises at least the brush 210 and the floating arrangement 130, and is connected to the moving arrangement 80.
The wiping device 300 is, generally, configured to wipe liquid from the bottom of the pool 11, and can also be used to stir liquid in the pool 11 and/or directly (i.e. physically) sweep materials from the bottom 13. It comprises at least the wiper 310 and a weight increasing element, for increasing clinging of the wiper 310 to the bottom 13 of the pool 11, and is connected to the moving arrangement 80.
When any of the devices described above is used in the pool 11, being attached to the linking arrangement 170 and moved by the moving arrangement 80, the wheels 120 protect the bottom 13 of the pool 11 from damage that might be caused to it by the wing 110 if it would not have such wheels. In particular, when covered by the liner 17, which can be prone to have folds, it can be easily torn by a solid object dragged on it.
The use of liners in pools of the kind in which the devices described above are intended to be used, is known since such liners are very effective means to isolate the bottom and sides of large ground dug pools, which can cover large areas and be used to grow large amount of microorganisms, significantly more than other types of pools which typically require more elaborate construction. Typically for large ground dug pools, the vertical to horizontal measures ratio of the sides 15 of the pool—the measures corresponding respectively to the depth of the pool at the edges of its bottom and to the width of the sides of the pool, is in a range of 1:4 to 1:5. The bottom 13 of the pool 11 typically has two halves, marked 13A and 13B in
In a typical process of microorganism treatment and/or production, the microorganisms are first introduced into the pool. Afterwards, the microorganisms are grown and/or treated and later on the liquid in the pool is evacuated and the microorganisms may be extracted. Subsequently, the pool is cleaned.
The devices 100, 200, 300 can be used alone or in combination at some or all of the above stages. For example, as the wing 110 stirs the liquid in the pool, it can be used both disperse the microorganisms in the pool as they being introduced and to subsequently stir the liquid causing the microorganisms to rise from the bottom of the pool to become exposed to light and/or to better mix with the constituents of the liquid. The wing can also be used to move the liquid in the pool so as to hasten its eviction at the extraction and evacuation stage.
The brush 210 can be used at any of the stages to both stir the liquid in the pool, sweep microorganisms directly from the bottom of the pool causing them to rise upwards in the liquid and mix therewith, help extract the microorganisms from the pool by sweeping them towards extraction openings or tubes and subsequently to clean the pool.
The wiper 310 can also be used at any of the stages, and subsequently to wipe the fluid from the bottom and sides of the pool as part of the cleaning stage.
It should be noted that the wheels, brush and wiper need not be in physical contact with the bottom and/or sides of the pool throughout the entire process. For example, they may be floated by the floating arrangement 130 above the bottom and sides of the pool at some point(s) during the process.
The system and devices described above can be used to treat and/or grow microorganisms in shallow water, only a few centimeters deep, through the use of either of the wing 110, brush 210, wiper 310 and combinations thereof. For example, a small amount of microorganisms can be introduced into a large pool with a low level of liquid therein, and after they are dispersed and as they grow, the level of the liquid can be gradually raised.
The devices 100, 200, 300 and combinations thereof can also be effective in extracting the microorganisms from the liquid. Whereas, in a standard pool the liquid is typically evacuated with the microorganisms, in the present case the microorganisms may be allowed to settle on the bottom of the pool, after which a significant portion of the liquid above the microorganisms can be evacuated, and subsequently the devices 100, 200 and/or 300 can be used to remove the remaining liquid near the bottom of the pool—with the microorganisms in significantly higher concentration.
Further systems according to the presently disclosed subject matter and combinations thereof can also be effective in treating and/or growing different types of microorganisms with different properties including weight, density, concentration in the liquid, etc. For example, microorganisms having high density and/or are too heavy to be stirred by prior art systems.
Number | Date | Country | Kind |
---|---|---|---|
210376 | Dec 2010 | IL | national |