The present invention generally relates to tufting carpets and other fabric products, and in particular to a system and method for tufting different products in different zones or sections of a tufting machine.
Carpets and other tufted articles generally are formed by passing a backing material through a tufting machine in which a series of needles are reciprocated so as to deliver tufts of yarn into the backing material. Over the years, tufting machines have been further developed and provided with various enhancements designed to produce new and more varied pattern effects, such as cut and loop pile patterns, shifting needle bar patterns, as well as producing different tufted fabrics, such as synthetic or artificial grass turf products and patterned rugs.
A problem that exists, however, with the formation of specialty products such as carpet tiles and narrower or smaller rugs or carpets, is that such products often typically are run on specialty machines that are smaller in size, which can limit production rates. Running such products on larger, full-sized tufting machines also can require additional operations to separate or form the tiles or rugs from the full-sized tufted fabrics, and generally limits the type of patterns that can be formed across the width of the tufted fabrics to a single pattern.
Therefore, it can be seen that a needs exists for a system and method for forming tufted carpets and other, similar tufted fabrics that addresses the foregoing and other related and related problems in the art.
Briefly described, the present invention generally is directed to a system and method for tufting or otherwise forming multiple tufted fabric articles or products, such as carpets, including tufted fabrics having different patterns or pattern effects, which patterns can be formed at substantially the same time utilizing a single tufting machine. The tufting machine generally will include a frame, with two or more machine sections or pattern sections defined transversely thereacross, and with each of the machine or pattern sections defining a tufting zone. Each machine or pattern section generally will include one or more needle bars, which can be shiftable, and which include needles spaced therealong and arranged either inline or in staggered series. Additionally, each machine or pattern section typically will include a yarn feed mechanism or device associated therewith for controlling the feeding of yarns to the needles of such machine or pattern section. Each tufting machine section further can have a main drive shaft associated therewith for driving its needle bar(s), or the needle bars of each machine section can be run off of a single main drive shaft for the tufting machine.
Still further, the tufting machine generally will include a series of backing feed rolls, including at least one upstream and one downstream backing feed roll for feeding a backing material through the tufting machine. Multiple sets or pairs of backing feed rolls also can be used, with each machine or pattern section having a set for backing feed rolls associated therewith. Thus, either a single backing material web can be fed substantially simultaneously through all of the tufting zones of each of the machine or pattern sections of the tufting machine, or, alternatively, multiple sets or pairs of backing feed rolls can feed multiple, separate lengths or webs of backing materials independently through each of the machine or pattern sections.
The tufting machine further will be operated under control of a system control that is capable of operating each of the machine or pattern sections independently as needed for forming the desired multiple tufted fabrics or articles with various different pattern effects, including different pile heights, pile types, such as mixtures of cut and loop tufts, various yarn feed pattern effects, and the like. The system control can include an overall tufting machine control system such as a “Command-Performance™” computerized tufting machine control system, as manufactured by Card-Monroe Corp., or can include a stand-alone workstation or system controller that operates in conjunction with a tufting machine controller for controlling various operative features of the tufting machine. The system control further can include design center functionality to enable an operator to design or create various pattern effects to be run by each of the machine or pattern sections.
In operation of the system and method for forming multiple tufted fabric articles or products according to the principles of the present invention, an operator can select a desired machine or pattern section, and thereafter will input various pattern parameters, including yarn feed rates or amounts for each color or step of the pattern, a cloth feed or stitch rate, if needed, shift steps for the pattern, and further can adjust or set needle strokes and bed rail positions for the pattern. The operator generally will repeat this process for each pattern or machine section in which different patterns are to be run, or alternatively, can select from preprogrammed patterns and assign such preprogrammed pattern information to a selected machine or pattern section. After all of the machine or pattern sections to be run have been assigned their pattern instructions, the tufting machine can be initiated to begin tufting operations. The tufting machine sections or pattern sections will be independently operated by the system control so as to tuft the desired or programmed patterns therefore. Each machine or pattern section is operated until the desired amount or run of the tufted article or fabric is completed.
Various features, objects and advantages of the present invention will become apparent to those skilled in the art upon a review of the following detailed description, when taken in conjunction with the company drawings.
Referring now to the drawings,
As illustrated in
The operation of each of the machine sections of the tufting machine typically can be controlled by a system control 25 (
Additionally, the system control 25 can be provided with design center functionality to enable designing and inputting of patterns to be formed by each tufting machine or pattern section 11/12 directly to the system control as needed for controlling the different machine sections of the tufting machine. Alternatively, a design center can be linked to the system control, such that pattern information developed/designed in the design center can be downloaded directly to the system control from the design center.
The system control typically can be provided with an input mechanism 26 such as a keyboard, mouse, etc., and a display or monitor 27, and will be in communication with the operative elements of the tufting machine to provide feedback from the monitoring of the various operative elements of the tufting machine. The system control further can be provided with the functionality to calculate and revise various parameters of the programmed pattern designs being run by each of the machine sections, such as yarn feed rates, pile heights, stitch lengths, backing feed rates, adjustments to the stroke of the needle bar, and adjustments to the bedrail of the tufting machine, as needed to form the desired patterns.
As noted previously, and as shown in
The needles of each of the needle bars will be mounted in spaced series along their respective needle bars and can be arranged in-line or can be staggered along a single or multiple needle bars. As indicated in
As further illustrated in
As further indicated in
As additionally shown in
Each of the yarn feed mechanisms can be controlled by a separate series of yarn feed controllers 46 (
As indicated in
Once the patterns for each of the tufting machine sections have been programmed, the operation of the tufting machine can be started, as indicated at 108A-108C. During operation of the tufting machine, the system controller and/or the tufting machine controls, will monitor and control the various operative elements of each of the tufting machine sections (Step 109 A-C), including operation of the yarn feed mechanisms, needle bars, needle bar shifters, as well as the backing feed rolls, as needed to tuft the programmed patterns. Formation of the different tufted patterns, and thus the different tufted fabrics, generally can be carried out substantially simultaneously, with the separate sections of the tufting machine each effectively functioning as a separate tufting machine under the control of the master system control.
Once the tufting operations are completed (Step 110 A-C), the operations of one or more, or all, of the machine or pattern sections of the tufting machine can be ceased. Alternatively, the tufting machine can be programmed to run multiple different patterns in each of the different tufting machine sections, and thus, depending upon the change-out of colors and other parameters, the tufting machine sections can be operated to run different patterns as part of continuing operation of the tufting machine. As a further alternative, one or more of the tufting machine sections can be temporarily taken out of operation while the other section(s) continues to form its programmed tufted/patterned fabric. For example, one machine section can be programmed to run a first desired pattern length or run, and can be stopped while another machine section can be run for a second, longer or shorter pattern length independently of the pattern run by the first section so as to continue running a desired pattern length as needed after the other one or more machine sections have been stopped.
Accordingly, it can be seen that the present invention provides a system and method for forming multiple different types of tufted fabrics having different patterns on the same tufting machine. Effectively, the present invention enables the operation and operative elements of multiple (i.e. 2 or more) tufting machines, such as needle bars, backing feed rolls, looper or hook assemblies, etc. to be combined in a single tufting machine, with each machine section being independently operable as needed for forming the desired patterns. Thus, a single tufting machine can be provided that can be operated to form a single tufted pattern, operating as a conventional type tufting machine, or can be used to substantially simultaneously form multiple different tufted fabrics on one tufting machine so as to provide the tufting machine with significantly enhanced functionality. This enables the tufting machine to be provided with significantly more versatility and capabilities. For example, the tufting machine can not only be operated to run 1-2 or more different tufted articles at substantially the same time, it also is possible to run one or more of the machine sections while another machine section(s) is stopped or idle, such as during a creeling or threading set-up operation for such machine section.
It will be further understood by those skilled in the art that while the present invention has been described above with reference to preferred embodiments, numerous variations, modifications, and additions can be made thereto without departing from the spirit and scope of the present invention as set forth in the following claims.
The present patent application is a formalization of previously filed, co-pending U.S. Provisional Patent Application Ser. No. 60/983,454, filed Oct. 29, 2007 by the inventor named in the present Application. This patent application claims the benefit of the filing date of this cited Provisional Patent Application according to the statutes and rules governing provisional patent applications, particularly 35 U.S.C. § 119(a)(i) and 36 C.F.R. § 1.78(a)(4) and (a)(5). The specification and drawings of the Provisional Patent Application referenced above are specifically incorporated herein by reference as if set forth in their entirety.
Number | Date | Country | |
---|---|---|---|
60983454 | Oct 2007 | US |