The present invention relates to acoustic waveform generation and specifically to ultrasound pulse shaping using multiple drive pulses.
Ultrasound imaging systems commonly in use generate and transmit ultrasound signals to map internal tissue typography, vascular fluid flow rates, and abnormalities. The systems typically incorporate several methods, or modes, of imaging, i.e. Brightness Mode (B-Mode), Harmonic, Spectral Doppler, and Color Flow.
Each imaging method has its characteristic uses and limitations. B-Mode imaging is typically used to image a “snapshot” of internal tissue and organs with high spatial resolution. Generally to achieve this degree of spatial resolution, short-duration ultrasound pulses are advantageous as are lower frequencies—lower frequency ultrasound having better penetration.
Color Flow imaging is primarily used to measure blood flow rates and detect abnormal and destructive turbulent flows within the cardiovascular system. Color Flow images are usually overlaid on to a B-Mode structural snapshot. However, the ultrasound properties necessary for proper Color Flow imaging differ from those used in B-Mode. Low ultrasound pulse repetition rates are desirable for slow-flowing veins, but for the faster flows found in the arteries and heart, higher ultrasound pulse repetition rates are necessary to properly avoid aliasing errors. The sensitivity necessary for Color Flow imaging requires higher ultrasound frequencies than commonly used for the deeper penetrating B-Mode scans. Additionally, Color Flow imaging uses higher-intensity power than B-Mode.
Harmonic imaging uses the harmonic frequencies produced when a transmitted fundamental frequency is reflected by tissues and other internal structures. Proper Harmonic imaging, thus, requires transmission of ultrasound fundamental frequencies without the associated harmonics, which would be confused with the reflected harmonics. Harmonic imaging makes use of narrowly tuned frequencies achievable through waveform shaping as disclosed in U.S. Pat. No. 5,833,614 “Ultrasonic Imaging Method and Apparatus for Generating Pulse Width Modulated Waveforms with Reduced Harmonic Response” issued to Dodd et al. and incorporated herein by reference in its entirety.
In all of these imaging methods, it is also desirable to control the power output of the emitted ultrasound pulse. Power output is reduced when imaging delicate tissues such as fetal tissue or to prevent over-heating of the transducer and patient-contact area thus preventing burns to the patient and damage to the ultrasound transducer. One method for controlling power output commonly in use consists of systems to regulate voltage, either automatically or manually, to the ultrasound transducer. However, this power output control method has a relatively slow response time—on the order of hundreds of milliseconds—and may compromise image quality, therefore, voltage modulation is not appropriate in situations where the power level needs to be rapidly varied without loss of image quality, as in the case of Color Flow/B-Mode combination scans.
An object of the present invention is to provide a system and method for controlling power output having faster response time than obtained with conventional voltage modulation method.
An additional object of the present invention is to provide a system and method of shaping the output waveform in order to reduce harmonics-induced transducer heating and provide a more versatile imaging system.
Another object of the present invention is to provide a system and method of shaping the output waveform allowing power output characterization as required for medical-use certifications that is less complex and time consuming than needed by prior art single pulse width modulation.
The present invention provides a system and method for ultrasound pulse shaping and output power adjustment using multiple Pulse Width Modulated drive pulses. Generally, a drive pulse is a square wave characterized by a duration, amplitude and frequency. These drive pulse characteristics directly affect the shape—frequency, amplitude, waveform, etc.—of the output signal. Thus, by varying the input pulse widths, the output signal can be shaped to meet the needs of most any situation.
The present invention uses multiple full amplitude drive pulses of varying durations and frequencies to create a desired output signal.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings wherein:
With reference to
Pulse Width Modulation (PWM) 200 solves this speed problem. The PWM method can switch on and off at a rate of mere microseconds—easily capable of meeting the rapid switching requirements for accurate Color Flow/B-Mode combination scans. PWM 200 relies on variable duration drive pulses 201 to achieve a desired power level from the output signal. The amplitude 202 of the drive pulse 201 remains at a constant value while the duration (or width) 201 is varied. Thus over the duration of the output signal, the total power averages out to less than full power. However, this technique creates some new problems. With this method, increased harmonics are produced.
The increased harmonics actually have two harmful effects. First, output signal harmonics direct power towards unusable frequencies and away from the fundamental frequency, increasing the overall energy needed to be transmitted to the patient in order to achieve a proper ultrasonic image. Second, in Harmonic Imaging, output signal harmonics interfere with the ultrasound imaging system's ability to detect the harmonics produced by the reflection of the output fundamental frequency by the internal tissues and structures of the patient. Additionally, ultrasound devices must be certified for use as medical devices; this certification requires that an output characterization be provided. Generally, in Voltage modulation, this characterization procedure is simple and straightforward, however in PWM systems, the procedure is more complex and time consuming since all possible input pulse widths need to be individually tested and characterized.
The method of the present invention entails multi-Pulse Width Modulation (m-PWM) 300. This method solves both the slow amplitude modulation rate issue and the production of output signal harmonics. In m-PWM, as shown by
An embodiment of the present invention, as shown in
The output signal 410, emitted by the ultrasound transducer 409, impinges on and reflects off of various corporeal structures (not shown) resulting in a return signal 411. The return signal 411 is detected by an ultrasound receiver, which may either be an element and function of the ultrasound transducer 409 or an entirely separate unit. The return signal data 412 is transferred to the signal processor 413, which processes the return signal data 412 and produces image data 414, which are then transferred to a display apparatus 415. The display apparatus 415, may be any of the following: video display, printer, etc. additionally the display apparatus 415 may instead be replaced or supplemented by a data storage device, i.e. RAM, magnetic media, optical media, etc.
Referring to
The described embodiments of the present invention are intended to be illustrative rather than restrictive, and are not intended to represent every embodiment of the present invention. Various modifications and variations can be made without departing from the spirit or scope of the invention as set forth in the following claims both literally and in equivalents recognized in law.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/51487 | 8/18/2004 | WO | 2/21/2006 |
Number | Date | Country | |
---|---|---|---|
60498000 | Aug 2003 | US |