System and method for using a saw based RF transmitter for AM modulated transmission in a TPM

Abstract
For use in a tire pressure monitoring system, an amplitude modulation (AM) radio frequency (RF) oscillator includes a modulator and a generator. The modulator may be configured to generate a modulation signal in response to a data input signal. The generator may be configured to generate an AM output signal having an RF carrier frequency and an envelope, wherein the envelope is amplitude modulated by the modulation signal and the generator includes a frequency determining device.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a system and a method for using a surface acoustic wave (SAW) based radio frequency (RF) transmitter for amplitude modulation RF transmission in a tire pressure monitoring (TPM) system.


2. Background Art


It is known in the automotive industry to provide for wireless monitoring of vehicle tire parameters, particularly tire pressure. In some such tire pressure monitoring (TPM) systems, tire pressure sensors and radio frequency (RF) transmitters that can generate and transmit at least one amplitude modulated (AM) signal. In each tire, the tire pressure sensed by the tire pressure sensor is transmitted by the transmitter through an antenna to a receiver/controller located on the vehicle. The tire pressure information delivered to the receiver/controller by the RF AM signals from the transmitters is subsequently conveyed to a vehicle operator or occupant, typically using a display unit. In such a fashion, tire pressure monitoring systems can help to improve vehicle safety. Exemplary tire pressure monitoring systems are described and shown in U.S. Pat. Nos. 6,112,587 and 6,034,597.


Remote keyless entry (RKE) systems are also well known in the automotive industry. Some RKE systems can include a conventional RF AM transmitter used by the vehicle operator or occupant to transmit signals that control such functions as door, trunk, etc. locking/unlocking, turning on/off lights, sounding an alert, arming/disarming an anti-theft system, etc. and a receiver/controller in the vehicle that processes the transmitter control signals.


However, conventional AM transmitters that are not based on surface acoustic wave (SAW) technology (i.e., non-SAW AM transmitters) are limited to transmission of lower data rates than is desired for some tire pressure monitoring and RKE applications. Furthermore, some conventional SAW based AM transmitters have two or more transistors to generate the amplitude modulation. As a result, conventional SAW based AM transmitters are costly and can have significant circuit board size and weight. Yet further, many conventional tire pressure monitoring and RKE AM oscillator implementations are configured as on-off keyed (OOK) devices (i.e., devices only having two fixed percentages, usually 0% and 100%) AM capability.


Thus, there exists a need for a system and a method for a SAW based RF transmitter to provide AM signal modulation generation in a single transistor configuration. Such a system and method would generally provide fewer components and hence be less costly than conventional approaches. Such a system and method would generally provide the desired data rates for applications such as TPM and RKE applications. Such a system and method is generally adjustable for any desired value (or percentage) of AM capability as compared with many conventional AM oscillators that only implement OOK modulation.


SUMMARY OF THE INVENTION

Accordingly, the present invention provides an improved system and an improved method for a surface acoustic wave (SAW) based radio frequency (RF) transmitter to provide amplitude modulation (AM) signal modulation generation in a single transistor configuration. The present invention may be advantageously implemented in connection with a tire pressure monitoring (TPM) system, a remote keyless entry (RKE) system, or the like.


According to the present invention, for use in a tire pressure monitoring system, an amplitude modulation (AM) radio frequency (RF) oscillator is provided comprising a modulator and a generator. The modulator may be configured to generate a modulation signal in response to a data input signal. The generator may be configured to generate an AM output signal having an RF carrier frequency and an envelope, wherein the envelope is amplitude modulated by the modulation signal and the generator comprises a frequency determining device.


Also according to the present invention, for use in a tire pressure monitoring system, a method of generating an amplitude modulation (AM) radio frequency (RF) output signal is provided, the method comprising generating a modulation signal in response to a data input signal, generating an AM output signal having an RF carrier frequency and an envelope, and amplitude modulating the envelope of the output signal with the modulation signal, wherein the output signal is generated using a generator comprising a frequency determining device.


Further, according to the present invention, for use in a remote keyless entry (RKE) system, an amplitude modulation (AM) radio frequency (RF) oscillator is provided comprising a modulator and a generator. The modulator may be configured to generate a modulation signal in response to a data input signal. The generator may be configured to generate an AM output signal having an RF carrier frequency and an envelope, wherein the envelope is amplitude modulated by the modulation and the generator comprises a surface acoustic wave (SAW) device.


The above features, and other features and advantages of the present invention are readily apparent from the following detailed descriptions thereof when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an amplitude modulation oscillator according to the present invention; and



FIG. 2 is a detailed diagram of the oscillator of FIG. 1.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

With reference to the Figures, the preferred embodiments of the present invention will now be described in detail. As previously noted, it is known in the automotive industry to provide for wireless monitoring of vehicle tire parameters, particularly tire pressure. In some such tire pressure monitoring (TPM) systems, tire pressure sensors and radio frequency (RF) transmitters that can generate and transmit at least one amplitude modulated (AM) signal. In each tire, the tire pressure sensed by the tire pressure sensor is transmitted by the transmitter through an antenna to a receiver/controller located on the vehicle. The tire pressure information delivered to the receiver/controller by the RF AM signals from the transmitters is subsequently conveyed to a vehicle operator or occupant, typically using a display unit. In such a fashion, tire pressure monitoring systems can help to improve vehicle safety.


Remote keyless entry (RKE) systems are also well known in the automotive industry. Some RKE systems can include a conventional RF AM transmitter used by the vehicle operator or occupant to transmit signals that control such functions as door, trunk, etc. locking/unlocking, turning on/off lights, sounding an alert, arming/disarming an anti-theft system, etc. and a receiver/controller in the vehicle that processes the transmitter control signals.


Generally, the present invention provides an improved system and method for producing (or generating) an AM RF signal using a surface acoustic wave (SAW) based transmitter oscillator. The present invention may accommodate high data rates in connection with a single transistor AM transmitter. Such a system and method are generally implemented having fewer components and may be less costly than conventional approaches. Such a system and method generally provide the desired data rates that may not be attainable using conventional approaches for applications such as TPM and RKE systems. The amplitude modulation generated by the present invention may be adjustable for any desired value of AM, whereas many conventional approaches to generation of AM RF signals are limited to OOK modulation.


Referring to FIG. 1, a diagram illustrating a oscillator circuit 100 in accordance with a preferred embodiment of the present invention is shown. The oscillator 100 is generally implemented as a surface acoustic wave (SAW) modulation circuit that is configured to provide an amplitude modulation (AM) signal (e.g., MOD) to an RF output signal having an RF carrier frequency and an envelope in response to a data input signal (e.g., DATA_IN) and, thereby, generate an amplitude modulated RF output signal (e.g., OUTPUT). The oscillator 100 generally comprises a modulation circuit (or modulator) 102 that is configured to provide the amplitude modulation signal MOD for modulation of an envelope of a signal generated by an RF surface acoustic wave (SAW) based frequency generation circuit (or generator) 104 in response to the data input signal DATA_IN and, thereby, generate the amplitude modulated RF output signal OUTPUT. In one example, the oscillator 100 may be implemented in connection with a TPM system. In another example, the oscillator 100 may be implemented in connection with a RKE system. However, the oscillator 100 may be advantageously implemented in connection with any appropriate wireless transmission system to meet the design criteria of a particular application.


The modulator 102 may have an input that may receive the signal DATA_IN and an output that may present the signal MOD. The RF generator 104 may have an input that may receive the signal MOD and an output that may present the signal OUTPUT. In one example, the generator 104 may be configured as a Colpitts oscillator. However, the generator 104 may be implemented (or configured) as any appropriate RF oscillator to meet the design criteria of a particular application.


The signal DATA_IN is generally data (or information) that is modulated onto an envelope of a carrier wave having a radio frequency (RF). The signal OUTPUT is generally an AM RF signal where the amplitude modulation corresponds to the signal (or information related to the signal) DATA_IN. The circuit 100 may be configured to generate the signal OUTPUT in response to the signal DATA_IN. The signal OUTPUT is generally coupled to an amplifier, antenna, load, or other appropriate component or circuitry (not shown) to meet the design criteria of a particular application.


Referring to FIG. 2, a detailed diagram of the oscillator 100 is shown. The oscillator 100 generally comprises resistances (or resistors) R1, R2, R3, R4, R5 and R6, capacitances C1, C2, C3, C4 and C5, a diode D1, an element (or device) X1, an inductance L1, and a device (or transistor) Q1. Some components of the oscillator 100 are generally connected to form a number of nodes (e.g., nodes 110, 112, 114, 116, 118, and 120) as described below.


In one example, the capacitances C1-C5 may be implemented as capacitors. In another example, the capacitances C1-C5 may be implemented as transistors configured as capacitors. However, the capacitances C1-C5 may be implemented as any appropriate capacitive components to meet the design criteria of a particular application. In one example, the diode D1 may be implemented as a bi-polar component. In another example, the diode D1 may be implemented as at least one transistor configured as a diode.


The element X1 is generally implemented as a surface acoustic wave (SAW) device that is configured to have a predetermined (e.g., set, fixed, stable, etc.) oscillation frequency in response to a given input (e.g., a particular input current or voltage). However, the element X1 may be implemented as any appropriate frequency determining device, network, circuitry, etc. (e.g., LC components, a crystal resonator, a ceramic resonator, etc.) to meet the design criteria of a particular application. The transistor Q1 is generally implemented as a bipolar junction transistor (BJT). However, the device Q1 may be implemented as any appropriate device (e.g., an FET) to meet the design criteria of a particular application.


The modulator 102 generally comprises the resistor R1, the diode D1, and the capacitance C1. A first terminal of the resistance R1 may receive the signal DATA_IN. The resistance R1 may have a second terminal that may be connected to a first terminal of the capacitance C1 and a first terminal (e.g., an anode terminal) of the diode D1. The diode D1 may have a second terminal (e.g., a cathode terminal) that may be connected to the node 120. The capacitance C1 may have a second terminal that may be connected to the node 118. The signal MOD is generally presented at the node 118.


The generator 104 generally comprises the capacitances C2, C3, C4 and C5, the resistors R2, R3, R4, R5 and R6, the inductance L1, the device X1, and the transistor Q1 configured in combination to form a Colpitts oscillator. However, the generator 104 may be implemented as any appropriate oscillator configuration to meet the design criteria of a particular application. Furthermore, some components (e.g., the capacitance C2 and the resistor R6) may be considered components of the modulator 102 as well as the generator 104.


The capacitance C2 may have a first terminal that may be connected to the node 118 and a second terminal that may be connected to a first terminal of the resistor R6. The capacitance C3 may have a first terminal that may be connected to the node 116 and a second terminal that may be connected to the node 118. The capacitance C4 may have a first terminal that may be connected to the node 114 and a second terminal that may be connected to the node 116. The capacitance C5 may have a first terminal that may be connected to the node 110 and a second terminal that may be connected to the node 114.


The resistor R2 may have a first terminal that may be connected to the node 110 and a second terminal that may be connected to the node 112. The resistor R3 may have a first terminal that may be connected to the node 112 and a second terminal that may be connected to the node 114. The resistor R4 may have a first terminal that may be connected to the node 114 and a second terminal that may be connected to the node 116. The resistor R5 may have a first terminal that may be connected to the node 114 and a second terminal that may be connected to the node 120. The resistor R6 may have a second terminal that may be connected to the node 120. The signal OUTPUT is generally presented at the node 120.


The inductance L1 may have a first terminal that may be connected to the node 110 and a second terminal that may be connected to the node 118. The device X1 may have a first terminal that may be connected to the node 112 and a second terminal that may be connected to the node 114. The transistor Q1 may have a base that may be connected to the node 112, an emitter that may be connected to the node 116, and a collector that may be connected to the node 118 (e.g., a collector that may receive the signal MOD).


During one mode of operation of the oscillator 100 (e.g., an AM transmission, broadcast, or radiation mode), the signal DATA_IN is generally configured to control the amplitude modulation of the signal OUTPUT (i.e., amplitude modulation of the envelope of the signal OUTPUT). When the signal DATA_IN changes, current flow through the diode D1 generally changes and the effective parallel capacitance of the capacitances C1 and C2 changes accordingly. The signal MOD is generally adjusted in response to the signal DATA_IN. Since the device X1 generally sets (i.e., provides, fixes, establishes, generates, etc.) the RF carrier frequency of the signal OUTPUT, the signal MOD generally provides amplitude modulation to the envelope of the signal OUTPUT as determined by the signal DATA_IN.


The carrier frequency of the signal OUTPUT is generally a fixed RF frequency. The oscillator 100 generally provides any desired level (or percentage) of amplitude modulation (e.g., from 0% to 100%) to the envelope of the signal OUTPUT as compared with typical conventional AM oscillator approaches that are implemented in connection with TPM or RKE systems that only implement on-off keyed (OOK) (i.e., only 0% and 100% or another fixed value percentage) modulation. Since the modulation is implemented via the diode D1, the oscillator 100 may be suitable for much faster data rates than typical conventional AM oscillator approaches.


While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.

Claims
  • 1. For use in a tire pressure monitoring system, an amplitude modulation (AM) radio frequency (RF) oscillator comprising: a modulator comprising a diode configured to generate a modulation signal in response to a data input signal; and a generator configured to generate an AM output signal having an RF carrier frequency and an envelope, wherein the envelope is amplitude modulated by the modulation signal and the generator comprises a frequency determining device that includes a surface acoustic wave (SAW) device.
  • 2. The oscillator of claim 1 wherein the oscillator comprises a Colpitts oscillator.
  • 3. The oscillator of claim 1 wherein the frequency determining device further comprises a crystal resonator or a ceramic resonator.
  • 4. The oscillator of claim 1 wherein the oscillator is implemented for use in a remote keyless entry (RKE) system.
  • 5. The oscillator of claim 1 wherein the generator comprises a single transistor.
  • 6. For use in a tire pressure monitoring system, a method of generating an amplitude modulation (AM) radio frequency (RF) output signal, the method comprising: generating a modulation signal in response to a data input signal using a diode; generating an AM output signal having a carrier frequency and an envelope; and amplitude modulating the envelope of the output signal with the modulation signal, wherein the output signal is generated using a generator comprising a frequency determining device that includes a surface acoustic wave (SAW) device.
  • 7. The oscillator of claim 6 wherein the output signal is generated using a Colpitts oscillator.
  • 8. The method of claim 6 wherein the frequency determining device further comprises a crystal resonator or a ceramic resonator.
  • 9. The method of claim 6 wherein the method is implemented for use in a remote keyless entry (RKE) system.
  • 10. The method of claim 6 comprising generating the output signal using a single transistor.
  • 11. For use in a remote keyless entry (RKE) system, an amplitude modulation (AM) radio frequency (RF) oscillator comprising: a modulator comprising a diode configured to generate a modulation signal in response to a data input signal; and a generator configured to generate an AM output signal having an RF carrier frequency and an envelope, wherein the envelope is amplitude modulated by the modulation signal and the generator comprises a surface acoustic wave (SAW) device.
  • 12. The oscillator of claim 11 wherein the SAW is configured to generate the carrier frequency and receive the modulation signal.
  • 13. The oscillator of claim 11 wherein the oscillator comprises a Colpitts oscillator.
  • 14. The oscillator of claim 11 wherein the oscillator is coupled to an amplifier or an antenna.
  • 15. The oscillator of claim 11 wherein the generator comprises a single transistor.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. provisional application Ser. No. 60/360,762 filed Mar. 1, 2002.

US Referenced Citations (120)
Number Name Date Kind
3580353 Thompson May 1971 A
3723966 Mueller et al. Mar 1973 A
3916688 Dendy et al. Nov 1975 A
4067235 Markland et al. Jan 1978 A
4101870 Ekman Jul 1978 A
4330774 Doty May 1982 A
4450431 Hochstein May 1984 A
4468650 Barbee Aug 1984 A
4570152 Melton et al. Feb 1986 A
4609905 Uzzo Sep 1986 A
4646359 Furrer Feb 1987 A
4660528 Buck Apr 1987 A
4670845 Etoh Jun 1987 A
4684853 Coash Aug 1987 A
4717905 Morrison, Jr. et al. Jan 1988 A
4749993 Szabo et al. Jun 1988 A
4761830 Izumi Aug 1988 A
4896372 Weaver Jan 1990 A
4951208 Etoh Aug 1990 A
5040561 Achterholt Aug 1991 A
5109213 Williams Apr 1992 A
5156230 Washburn Oct 1992 A
5165497 Chi Nov 1992 A
5289160 Fiorletta Feb 1994 A
5444448 Schuermann et al. Aug 1995 A
5451959 Schuermann Sep 1995 A
5461385 Armstrong Oct 1995 A
5463374 Mendez et al. Oct 1995 A
5473938 Handfield et al. Dec 1995 A
5479171 Schuermann Dec 1995 A
5483827 Kulka et al. Jan 1996 A
5485381 Heintz et al. Jan 1996 A
5500637 Kokubu Mar 1996 A
5515014 Troutman May 1996 A
5531109 Tsagas Jul 1996 A
5562787 Koch et al. Oct 1996 A
5573610 Koch et al. Nov 1996 A
5573611 Koch et al. Nov 1996 A
5585554 Handfield et al. Dec 1996 A
5600301 Robinson, III Feb 1997 A
5602524 Mock et al. Feb 1997 A
5612671 Mendez et al. Mar 1997 A
5654689 Peyre et al. Aug 1997 A
5661651 Geschke et al. Aug 1997 A
5677667 Lesesky et al. Oct 1997 A
5705746 Trost et al. Jan 1998 A
5708403 Morozumi et al. Jan 1998 A
5717376 Wilson Feb 1998 A
5724028 Prokup Mar 1998 A
5728933 Schultz et al. Mar 1998 A
5740548 Hudgens Apr 1998 A
5741966 Handfield et al. Apr 1998 A
5753809 Ogusu et al. May 1998 A
5760682 Liu et al. Jun 1998 A
5774047 Hensel, IV Jun 1998 A
5783992 Eberwine et al. Jul 1998 A
5822683 Paschen Oct 1998 A
5835868 McElroy et al. Nov 1998 A
5838229 Robinson, III Nov 1998 A
5844130 Hilgart et al. Dec 1998 A
5853020 Widner Dec 1998 A
5880363 Meyer et al. Mar 1999 A
5883305 Jo et al. Mar 1999 A
5900808 Lebo May 1999 A
5920234 Hill Jul 1999 A
5926087 Busch et al. Jul 1999 A
5929620 Dobkin et al. Jul 1999 A
5939977 Monson Aug 1999 A
5942971 Fauci et al. Aug 1999 A
5959365 Mantini et al. Sep 1999 A
5963128 McClelland Oct 1999 A
5999091 Wortham Dec 1999 A
6002327 Boesch et al. Dec 1999 A
6025777 Fuller et al. Feb 2000 A
6034596 Smith et al. Mar 2000 A
6034597 Normann et al. Mar 2000 A
6043738 Stewart et al. Mar 2000 A
6043752 Hisada et al. Mar 2000 A
6053038 Schramm et al. Apr 2000 A
6060984 Braun et al. May 2000 A
6078226 Ajjikuttira Jun 2000 A
6087930 Kulka et al. Jul 2000 A
6111520 Allen et al. Aug 2000 A
6112587 Oldenettel Sep 2000 A
6118369 Boesch Sep 2000 A
6127939 Lesesky et al. Oct 2000 A
6169480 Uhl et al. Jan 2001 B1
6175302 Huang Jan 2001 B1
6181241 Normann et al. Jan 2001 B1
6204758 Wacker et al. Mar 2001 B1
6232875 DeZorzi May 2001 B1
6232884 Gabbard May 2001 B1
6239753 Kado et al. May 2001 B1
6243007 McLaughlin et al. Jun 2001 B1
6246317 Pickornik et al. Jun 2001 B1
6252498 Pashayan, Jr. Jun 2001 B1
6255940 Phelan et al. Jul 2001 B1
6259361 Robillard et al. Jul 2001 B1
6259362 Lin Jul 2001 B1
6275148 Takamura et al. Aug 2001 B1
6278363 Bezek et al. Aug 2001 B1
6292095 Fuller et al. Sep 2001 B1
6304610 Monson Oct 2001 B1
6340929 Katou et al. Jan 2002 B1
6362731 Lill Mar 2002 B1
6369703 Lill Apr 2002 B1
6384720 Juzswik et al. May 2002 B1
6408690 Young et al. Jun 2002 B1
6417766 Starkey Jul 2002 B1
6441728 Dixit et al. Aug 2002 B1
6489888 Honeck et al. Dec 2002 B1
6501372 Lin Dec 2002 B2
6518877 Starkey et al. Feb 2003 B1
6543279 Yones et al. Apr 2003 B1
6571617 Van Nickerk et al. Jun 2003 B2
6581449 Brown et al. Jun 2003 B1
6612165 Juzswik et al. Sep 2003 B2
20010008083 Brown Jul 2001 A1
20030020605 Starkey Jan 2003 A1
20030201879 Munch et al. Oct 2003 A1
Foreign Referenced Citations (34)
Number Date Country
4232240 Mar 1994 DE
0 016 991 Oct 1980 EP
0671289 Dec 1994 EP
0 646 985 Apr 1995 EP
0 753 897 Jan 1997 EP
0 760 299 Mar 1997 EP
0995619 Apr 2000 EP
1059177 Dec 2000 EP
1 113 582 Jul 2001 EP
1 172 236 Jan 2002 EP
1 211 104 Jun 2002 EP
1 215 056 Jun 2002 EP
1215056 Jun 2002 EP
1 262 339 Dec 2002 EP
1 267 021 Dec 2002 EP
2801728 Jun 2001 FR
1483735 Aug 1977 GB
2179480 Mar 1987 GB
2318696 Apr 1998 GB
2363463 Dec 2001 GB
2381972 May 2003 GB
260212 Feb 1990 JP
10-107548 Apr 1998 JP
2001-007712 Jan 2001 JP
WO 9108614 Jun 1991 WO
WO 9615919 May 1996 WO
WO 9826946 Jun 1998 WO
WO 9929523 Jun 1999 WO
WO 0126069 Apr 2001 WO
WO 0169803 Sep 2001 WO
WO 0176007 Oct 2001 WO
WO 0181104 Nov 2001 WO
WO 02057097 Jul 2002 WO
WO 02072369 Sep 2002 WO
Related Publications (1)
Number Date Country
20030164741 A1 Sep 2003 US
Provisional Applications (1)
Number Date Country
60360762 Mar 2002 US