System and method for utilizing IP-based wireless telecommunications client location data

Information

  • Patent Grant
  • 10869162
  • Patent Number
    10,869,162
  • Date Filed
    Monday, November 13, 2017
    6 years ago
  • Date Issued
    Tuesday, December 15, 2020
    3 years ago
Abstract
A location provision facility communicates with a mobile telecommunications device over an IP-based telecommunications network to obtain information that enables the facility to determine a location of the telecommunications device. The facility and/or the telecommunications device store the determined location. In response to requests from location-based applications for the location of the telecommunications device, the facility can provide the location-based applications with the stored or calculated location.
Description
TECHNICAL FIELD

The present invention is directed generally toward telecommunications and more specifically toward mobile telecommunications devices and services.


BACKGROUND

In this digital age, modern telecommunication service providers and device manufacturers are increasingly relying on public and/or private IP (Internet Protocol) networks, including the Internet, as a core part of their technology. For example, many telecommunications service providers now offer a suite of Voice over IP (“VoIP”) services, as well as various data services, that utilize IP networks and/or IP-based wireless access networks (e.g., access networks based on IEEE 802.16 (“WiMAX”), IEEE 802.20 Mobile Broadband Wireless Access (MBWA), Ultra Wideband (UWB), IEEE 802.11 wireless fidelity (“WiFi”), Bluetooth, ZigBee and similar standards) for at least part of their infrastructure. Likewise, device manufacturers are producing the next generation of mobile devices (e.g. wireless handhelds, wireless handsets, mobile phones, personal digital assistances, notebook computers, and similar devices) that are enabled to send and receive information utilizing IP-based telecommunications services. In fact, many of today's modern mobile devices are able to function as “dual-mode devices” that take advantage of both cellular network technologies and IP-based technologies.


Unlicensed Mobile Access (alternatively referred to as Universal Mobile Access (UMA)) technology has developed as part of this trend to incorporate IP solutions into mobile device telecommunication systems. UMA technology has recently been accepted into Release 6 of the 3rd Generation Partnership Project (3GPP) and is also referred to as Generic Access Network (GAN) technology. In various implementation schemes, UMA allows wireless service providers to merge cellular networks (such as Global System for Mobile Communications (GSM) networks) and IP-based wireless networks into one seamless service (with one mobile device, one user interface, and a common set of network services for both voice and data). One goal of UMA is to allow subscribers to move transparently between cellular networks and IP-based wireless networks with seamless voice and data session continuity, much like they can transparently move between cells within the cellular network. Seamless in-call handover between the IP-based wireless network and the cellular network ensures that the user's location and mobility do not affect the services delivered to the user.


At an operational level, UMA technology effectively creates a parallel radio access network, the UMA network, which interfaces to the mobile core network using standard mobility-enabled interfaces. For example, UMA can replace a system's GSM radio technology on the lower protocol layers with a wireless LAN or similar technology. A call or other communication may be tunneled to the Mobile Switching Center (MSC) of a mobile service provider via an access point (e.g., a WiFi access point connected to a modem via the Internet) and gateway (e.g., a UMA network controller). In many cases, the mobile core network remains unchanged, making it much easier to maintain full service and operational transparency and allowing other aspects of the service infrastructure to remain in place. For example, in many systems that utilize UMA, the existing service provider's business support systems (BSS), service delivery systems, content services, regulatory compliance systems, and operation support systems (OSS) can support the UMA network without change. Likewise, service enhancements and technology evolution of the mobile core network apply transparently to both cellular access and UMA.


As the incorporation of IP solutions, such as UMA, into mobile device telecommunication systems expands, wireless service providers and wireless users may face various obstacles. For example, it can be necessary or desirable to determine the location of a mobile device for various reasons, such as needing to provide it to certain services, such as emergency services that need to know the location of the user of the mobile device. Certain mobile devices have incorporated Global Positioning System (GPS) technology that enables determining their locations. However, GPS technology may not function as desired in certain situations, and other mobile devices may not have incorporated GPS technology. It can still be desirable or necessary to determine the locations of such mobile devices and provide it to certain services.


The need exists for a system that overcomes the above problems, as well as one that provides additional benefits. Overall, the examples herein of some prior or related systems and their associated limitations are intended to be illustrative and not exclusive. Other limitations of existing or prior systems will become apparent to those of skill in the art upon reading the following Detailed Description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates aspects of a sample network system that allows VoIP-based communications in conjunction with a public switched telephone network (PSTN).



FIG. 2 illustrates an example converged wireless network system that combines a cellular network with an IP-based wireless telecommunications network.



FIG. 3 illustrates a location provision facility in accordance with embodiments of the invention.



FIG. 4 is a flow diagram of a process for registering an IP-based telecommunications mobile device.



FIG. 5 is a flow diagram of a process for providing location information of an IP-based telecommunications mobile device to a Location-Based Service (LBS) application.



FIG. 6 is a call flow diagram depicting registration of an IP-based telecommunications mobile device.



FIG. 7 is a call flow diagram depicting provisioning of location information of an IP-based telecommunications mobile device to an LBS application.





DETAILED DESCRIPTION

The following description provides specific details for a thorough understanding of, and enabling description for, various embodiments of the technology. One skilled in the art will understand that the technology may be practiced without these details. In some instances, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. It is intended that the terminology used in the description presented below be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain embodiments of the technology. Although certain terms may be emphasized below, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.



FIG. 1 and the following discussion provide a brief, general description of suitable environments in which the technology can be implemented. Although not required, aspects of the technology are described in the general context of computer-executable instructions, such as routines executed by a general-purpose computer, e.g., a server computer, wireless device or personal computer. Those skilled in the relevant art will appreciate that the technology can be practiced with other communications, data processing, or computer system configurations, including: Internet appliances, hand-held devices (including personal digital assistants (PDAs)), wearable computers, all manner of cellular or mobile phones, multi-processor systems, microprocessor-based or programmable consumer electronics, set-top boxes, network PCs, mini-computers, mainframe computers, and the like. Indeed, the terms “computer,” “server,” “host,” “host system,” and the like are generally used interchangeably herein, and refer to any of the above devices and systems, as well as any data processor.


Aspects of the technology may be stored or distributed on computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media. Indeed, computer implemented instructions, data structures, screen displays, and other data under aspects of the invention may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time, or they may be provided on any analog or digital network (packet switched, circuit switched, or other scheme).


1. Sample Network Configurations



FIGS. 1-3 show sample network system configurations in which aspects of a location provision facility can be implemented in accordance with various embodiments. In general, one purpose of the location provision facility is to provide locations of telecommunications devices to certain services.



FIG. 1 illustrates aspects of a sample network system 100 that allows VoIP-based communications in conjunction with a public switched telephone network (PSTN) 102. The system 100 includes at least one wireless access point 104. The access point 104 may be public or private, and may be located, for example, in a subscriber's residence (e.g., home, apartment or other residence), in a public location (e.g., coffee shops, retail stores, libraries, or schools) or in corporate or other private locations. In the sample system of FIG. 1, the access point 104 can accept communications 106 from at least one suitably configured telecommunications device 108 (e.g., a VoIP device). Various examples of network technology that may be involved in communicating between the telecommunications device 108 and the access point 104 include the IEEE 802.16 (WiMAX), IEEE 802.20 Mobile Broadband Wireless Access (MBWA), Ultra Wideband (UWB), IEEE 802.11 wireless fidelity (Wi-Fi), Bluetooth standards, Zigbee or other similar standards. The access point 104 includes a wireless router 110 and a broadband modem 112 that enable connection to an Internet Protocol (IP) network 114. The IP network 114 may comprise one or more public networks, private networks, or combination of public and private networks.


In a communication or set of communications 106, the access point 104 receives IP packets from the telecommunications device 108. These IP packets are then transported through the IP network 114 to a signaling gateway 116, which in the example of FIG. 1, is operated by a telecommunications service provider. At the signaling gateway 116, the IP packets are converted to a traditional phone service signal. The phone service signal is then conveyed to a recipient via the PSTN 102.


The network system 100 of FIG. 1 also includes a call controller 118 that provides call logic and call control functions for communications sent through the system and an application server 120 that provides logic and execution of one or more applications or services offered by the telecommunications service provider, such as applications that implement various access and security rules. In this example, a telecommunication service provider manages both the call controller 118 and the application server 120.



FIG. 2 illustrates a sample network system 200 in which aspects of the location provision facility can be implemented within a cellular telephone-type network. In general, with respect to the network system described in FIG. 2, because the same cellular protocols are used in communications involving IP access points as with traditional radio towers, the cellular service provider maintains a large degree of system compatibility even though using an IP-based network. For example, the various systems of the cellular service provider that deliver content and handle mobility may not even need to be aware that a subscriber's mobile device is on an IP-based wireless telecommunications network. Instead, the various systems of the cellular service provider assume the mobile device is on its native cellular network. The IP network is, therefore, abstracted with respect to the cellular network, regardless of whether the mobile device connects to the cellular network via a base station (e.g., for licensed spectrum access) or a wireless access point (e.g., for licensed, semilicensed and/or unlicensed spectrum access—such as spectrums for IP-based telecommunications). Likewise, at a protocol level, because the same cellular protocols are used in communications involving the IP access points as with traditional radio towers, the cellular service provider maintains a large degree of system compatibility even though using an IP-based network.


Referring to FIG. 2, a sample network system 200 combines a cellular telephone network 202 (such as a GSM network) and an IP network 204 in a UMA-type configuration that provides service to the user of a mobile device 206. Such service may include voice services, and also supplementary services like call forwarding and call waiting, text messaging services (e.g., SMS), and data-based services like ringtone downloads, game downloads, picture messaging, email and web browsing. Further, since the mobile device 206 is connected to an IP network, all manner of data services available over such networks may be provided to the mobile device 206.


In general, the described network system 200 accepts registration requests and communication connections from the mobile device 206. The accepted registration requests can be requests to either the cellular telephone network 202 or to the IP-based network 204. Accordingly, to handle requests to the cellular telephone network 202, the cellular telephone network 202 includes one or more cell towers 208 that are configured to accept cellular communications 210 from the mobile device 206. The cell towers 208 are connected to a base station controller 212 (such as a base station controller/radio network controller (BSC/RNC)) via a private network 214. The private network 214 can include a variety of connections (not shown) such as T1 lines, a wide area network (WAN), a local area network (LAN), various network switches, and other similar components.


The base station controller 212 controls communication traffic to a carrier core network 216, where all communications are managed (including both cellular and IP-based). Components of the carrier core network 216 in this example include a switch (e.g., a mobile switching center or MSC) 218, which is configured to control data/call flows and perform load balancing, as well as other functions. The carrier core network 216 may also include a variety of system databases such as an operation support subsystem (OSS) database 220, a business support system (BSS) database 222, and home location register (HLR) 224 or other central subscriber database that contains details of a carrier's subscribers for billing, call logging, etc.


The sample network system 200 of FIG. 2 further includes one or more access points 226 that can accept IP-based communications 228 from the mobile device 206. For example, each access point 226 can be configured as part of a wireless network in one or more locations such as a public network 230, a home network 232, or a private business network 234. Each access point 226 is coupled to the IP network 204 through, for example, a broadband connection (not shown) such as a DSL (Digital Subscriber Line) modem, a cable modem, a satellite modem, or any other broadband device.


When the mobile device 206 attempts to access the IP network 204 (i.e., to initiate an IP-based communication), information (e.g., data, voice, SMS, etc.) is initially formatted in the cellular system's 202 native protocol and then encapsulated into Internet Protocol (IP) packets, which are transmitted to the access point 226 and routed through the IP network 204 to a security gateway 236. In contrast to non-IP communication requests, such transmissions bypass the cellular telephone system's 202 existing network of radio towers. The security gateway 236 controls access to a network controller 238, which communicates with a data store 242 for logging and accessing communications data. Thus, one function of the network controller 238 is to manage access to the carrier network 216 when dealing with an IP-based communication (in a similar manner to that performed by the base station controller 212 for a non-IP-based communication).


In one example, authentication of a request for access by the mobile device 206 over the IP network 204 is handled by the security gateway 236, which communicates with an authentication, access and authorization (AAA) module 240 that is most likely associated with the carrier network 216. Challenges and responses to requests for access by the mobile device 206 are communicated between the HLR 224 and the AAA module 240. When authorization is granted, the security gateway 236 communicates the assignment of an IP address to the mobile device 206 that requested access. Once the security gateway 236 passes the IP address to the mobile device 206, the public IP address assigned to the mobile device 206 is passed to the network controller 238.


In another authorization example, upon receiving an identifier from the mobile device 206, the network controller 238 may query the data store 242 to determine if the mobile device 206 is authorized for accessing the IP network 204. Sample identifiers that may be utilized to determine access include a media access control (MAC) address associated with an access point, a mobile device or subscriber identifier (such as an International Mobile Subscriber Identifier (IMSI)), an Internet Protocol (IP) address (or “Public IP address”) associated with the access point, a fully qualified domain name (FQDN), or other similar types of information. The data store 242 may be a single database, table, or list, or a combination of databases, tables, or lists, such as one for IP addresses 244, one of MAC addresses 246, and one for FQDNs 248. The data store 242 may include “blocked” identifiers as well as “authorized” identifiers. Authorized accesses to the IP-based wireless telecommunications network may be maintained by the network controller 238 in an authorized session table or similar data construct.


In some cases, the signaling portion of a communication (e.g., the portion of the communication that governs various overhead aspects of the communication such as, for example, when the call starts, when the call stops, initiating a telephone ring, etc.) is routed through the network controller 238 to the switch 218, while the voice bearer portion of the communication (e.g., the portion of the communication that contains the actual content (either data or voice information) of the communication) is routed through the network controller 238 to a media gateway 250. In other words, the media gateway 250 controls the content flow between the service provider and the mobile device 206, while the switch 218 controls the signaling flow (or controls overhead-related flow) between the service provider and the mobile device 216.



FIG. 3 illustrates a suitable environment 300 in which the location provision facility can be implemented. As previously described with reference to, e.g., FIGS. 1 and 2, the access point 104 enables the telecommunications device 108 (e.g., a dual-mode mobile phone that can connect to an existing cellular network and is UMA-enabled) to connect to an IP Network 314a. An IP-based wireless telecommunications network (e.g., UMA or GAN) is also connected to the IP Network 314a. The IP-based telecommunications network 320 can be part of a cellular network. The IP-based telecommunications network 320 includes a network controller (e.g., a UMA Network Controller (UNC), or a GAN Controller (GANC)) 325, which is connected to a serving mobile location center (SMLC) 330 and to a location database 335. The IP-based telecommunications network 320 is also connected to an IP Network 314b. The IP Networks 314a and 314b can be the same IP network, but are shown as distinct networks for illustrative purposes. A Secure User Plane Location (SUPL) Location Platform (SLP) 340 is connected to the IP Network 314b. A Location-Based Services (LBS) application 345 is connected to the SLP 340. Although the SLP 340 and the LBS application 345 are depicted as separate from the IP-based telecommunications network 320, the IP-based telecommunications network 320 can include either or both components. For example, the SLP 340 can be included in the IP-based telecommunications network 320. The SMLC 330 and the location database 335 can also be without the IP-based telecommunications network 320. The interactions between the various components depicted as part of the environment 300 are described with reference to, e.g., FIGS. 4-7.


The location provision facility can be implemented in environments other than the environment 300 depicted. For example, the telecommunications device 108 could be a non-IP-enabled mobile phone (e.g., a non-UMA enabled phone) that connects to an IP-enabled femtocell (e.g., a UMA-enabled femtocell) that is connected to an IP-based telecommunications network (e.g., a UMA network) over an IP network. As a second example, the telecommunications device 108 could be an analog telephone that connects to a IP-enabled terminal adaptor (e.g., a UMA-enabled terminal adaptor) that is connected to a IP-based telecommunications network (e.g., a UMA network) over an IP network. As a third example, the telecommunications device could be an IP-enabled softmobile (e.g., a personal computer having a USB device with an embedded SIM and UMA softphone application) that is connected to an IP-based telecommunications network (e.g., a UMA network) over an IP network. The telecommunications device may also include other devices, such as wearable computers, devices that perform monitoring or tracking functions, and any other device (or combination of devices) that is IP-enabled (e.g., UMA-enabled), either in hardware, software, or a combination of both hardware and software. Therefore, those of skill in the art will understand that various configurations are possible and that the location provision facility can be implemented in a wide variety of environments.


2. Registering an IP-Based Telecommunications Mobile Device



FIG. 4 is a flow diagram of a process 400 for registering an IP-based telecommunications mobile device (mobile station (MS)). An MS refers to any wireless device that can access network services over a radio interface. For purposes of illustration, the process 400 is described below in the context of the environment 300 of FIG. 3. The process 400 begins at block 405 at which an MS sends a registration request (e.g., a URR_Registration_Request) to the network controller 325. The registration request can include data from the MS 108 that enables a determination of its location. At block 410, the network controller 325 begins the location process by initiating a location request to the SMLC 330. In some embodiments, the location process is begun immediately after verifying IP Security (IPSEC) tunnel information with a signaling gateway (SGW) (not shown in FIG. 3). The network controller 325 initiates the location request by sending a Perform Location Request message to the SMLC. The Perform Location Request message may include a Location Services (LCS) Quality of Service (QoS) information element with the Response Time (RT) parameter set to one of the four valid entries (00b to 11b). The network controller 325 can determine the value of the RT parameter based upon a system parameter. In some embodiments the system parameter is named “Registration_PLRQ_RT” and has a default value of 01b, thus setting the RT parameter to 01b (“Low Delay”).


The SMLC 330 receives the Perform Location Request from the network controller 325 and at block 415 attempts to determine the location of the MS 108 using location technology algorithms. In some embodiments, the SMLC attempts to determine the location of the MS 108 using methods described in International Application No. PCT/US2007/066579, entitled MOBILE COMPUTING DEVICE GEOGRAPHIC LOCATION DETERMINATION, filed Apr. 12, 2007, the entirety of which is hereby incorporated by reference, and/or the previously-referenced U.S. Provisional Application No. 60/853,086. After attempting to determine the location of the MS 108, the SMLC 330 sends a Perform Location Response message to the network controller 325.


After receiving the Perform Location Response message, at block 420 the network controller 325 verifies whether the SMLC 330 successfully determined the location of the MS 108, by checking to see if the Perform Location Response message includes a location response or location estimate. In some embodiments, the location estimate includes the estimated latitude and longitude of the MS 108. If the Perform Location Response message does not include a location estimate (such as the estimated latitude and longitude of the MS 108), the network controller logs an indication of the mobile device or subscriber identity (e.g., an International Mobile Subscriber Identity (IMSI)) of the MS 108, the MAC address of its access point and a timestamp. The process 400 then continues at block 440, at which the network controller 325 sends a registration rejection message (e.g., a URR_Registration_Reject with an error code of “Geo-Location Unknown”) to the MS 108. The process 400 then ends.


If the SMLC 330 successfully determined the location of the MS 108 (e.g., if the Perform Location Response message includes a location estimate including an estimated latitude and longitude), the process 400 instead continues at block 425, at which the network controller 325 stores the location (e.g., the estimated latitude and longitude) in the location database 335. The location database 335 can be a Dynamic Host Configuration Protocol (DHCP) server database, a DHCP-like server database, or any standalone database. At block 430 the network controller 325 sends a registration acceptance message (e.g., a URR_Registration_Accept) that includes the location to the MS 108. Alternatively, instead of including the location in the registration acceptance message, the network controller 325 can instead obtain the location from the location database 335 and provide it to the MS 108 using DHCP or a protocol that is generally similar to DHCP. For example, another protocol that can be used is the HTTP Enabled Location Delivery (HELD) protocol. The network controller 325 can provide the location to the MS 108 on a periodic or as-needed basis. For example, as the MS 108 moves, the network controller 325 can provide the MS 108 with updated locations. At block 435 the network controller MS 108 stores the location and a timestamp indicating the date and time of the storage (or of the location determination). The process 400 then ends.


3. Providing Mobile Device Location Information to an LBS Application



FIG. 5 is a flow diagram of a process 500 for providing location information of an IP-based telecommunications mobile device (MS) to an LBS application or value added client over SUPL. An LBS application generally refers to any application that wishes to obtain the location of the MS 108. Examples of LBS applications include, but are not limited to: a friend finder application; a security application; an emergency services application (e.g., E911); a driving directions application; and an advertising services application. For purposes of illustration, the process 500 is described below in the context of the environment 300 of FIG. 3.


The process 500 begins at block 505, at which the LBS application 345 requests the location of the MS 108 from the SLP 340. As previously noted, the LBS application 345 and the SLP 340 can both be located within the IP-based telecommunications network 320. In some embodiments, however, only the SLP 340 is located within the IP-based telecommunications network 320, in which case the LBS Application 345 connects to it via the IP Network 314b. In other embodiments, the LBS Application 345 is within the IP-based telecommunications network 320 and the SLP 340 is without, and they connect to each other via the IP Network 314b. After receiving the request from the LBS Application 345, at block 510 the SLP 340 initiates a service discovery process and initiates a session with the MS 108. At block 515 the SLP 340 sends to the MS 108 a SUPL INIT message. The SUPL INIT message includes various parameters, such as: 1) Positioning Method, which includes the positioning technology desired by the SLP 340; 2) Notification, which includes instructions to the MS 108 with respect to notification and privacy policies of the LBS application 345; 3) SLP Address, which includes an electronic address of the SLP 340; 4) QoP, which includes the desired Quality of Position (location); 5) SLP Mode, which includes an indication of the proxy mode of the SLP; 6) MAC, which includes a Message Authentication Code (MAC) which may be used as integrity protection of the SUPL INIT message; and 7) Key Identity, which includes a key identity that identifies a key to be used to verify the MAC.


At block 520 the MS 108 responds to the SUPL INIT message by sending a SUPL POS INIT message to the SLP 340. The SUPL POS INIT message includes various parameters, such as: 1) SET capabilities, which includes the capabilities of the MS 108; 2) Requested Assistance Data, which includes requested GPS assistance data; 3) Location ID, which includes the cell information of the MS 108; 4) SUPLPOS, which includes a SUPLPOS message; 5) Ver, which includes a hash of the SUPL INIT message; and 6) Position, which includes the location of the MS 108. In some embodiments, the Position parameter includes the location previously stored by the MS 108 at block 435, as well as the timestamp, a location certainty factor, and/or a location confidence factor, and, if the SMLC hadn't successfully determined the location of the MS 108 (e.g., at block 440 of FIG. 4), the reason for the failure. At block 525 the SLP terminates the session with the MS 108 by sending it a SUPL END message. The SUPL END message includes various parameters, such as: 1) Position, which includes the location result of the MS 108; 2) Status Code, which includes the status of the message; and 3) Ver, which includes a hash of the SUPL INIT message. At block 530 the SLP 340 provides the location of the MS 108 to the LBS application 345. The process 500 then ends.


Although described with respect to providing the location of the MS 108 to the LBS application 345 over SUPL, the process 500 can be used to provide the location of any device capable of communicating over a SUPL network to any other device that is also capable of communicating over a SUPL network. Such a device is called a SUPL Enabled Terminal (SET). Examples of SETs include the previously-mentioned MS 108 and the LBS application 345, user equipment (UE) in a Universal Mobile Telecommunications System (UMTS), and a personal computer (PC) over an IP-based network.


4. Mobile Device Registration



FIG. 6 is a call flow diagram 600 depicting the registration of an IP-based telecommunications mobile device (MS). At 605 the MS 108 sends a registration request message to the network controller 325. At 610 the network controller 325 requests a location determination from the SMLC 330. At 615 the SMLC 330 determines the location of the MS 108. At 620 the SMLC 330 returns the location to the network controller 325. At 625 the network controller 325 sends a registration acceptance message with the location to the MS 108. At 630 the MS 108 stores the location. At 635 the SMLC 330 stores the location in the location database 335. At 635 the SMLC 330 (or the network controller 325 or another component, not shown) can also create a mapping between the location and the MAC address of the access point of the MS 108 and store this mapping in the location database 335.


5. Provision of Location Information to LBS Applications



FIG. 7 is a call flow diagram 700 depicting the provision of location information of an IP-based telecommunications mobile device (MS) to an LBS application. At 705 a service discovery process is initiated. At 710 the LBS application 345 requests that the SLP 340 provide a location of the MS 108. At 715 the SLP 340 sends a SUPL INIT message to the MS 108 through the IP-based telecommunications network 320. At 720 the MS 108 sends a SUPL POS INIT message to the SLP 340 through the IP-based telecommunications network 320. At 725 the SLP 340 sends a SUPL END message to the MS 108 through the IP-based telecommunications network 320. At 730 the SLP 340 provides the location to the LBS application 345. At 735 a service delivery process is initiated. The service delivery process can include delivering services from the LBS application 345 to the MS 108. Examples of services include security services, emergency services, advertisements, locating services, directions, etc.


In some embodiments, as an alternative to or in addition to sending the SUPL INIT message to the MS 108, the IP-based telecommunications network 320 (e.g., a component thereof) can get the location of the MS 108 by retrieving it from the location database 335. The SUPL INIT message can include a QoP parameter which includes the quality of location of the MS 108 desired by the LBS application 345. If the QoP parameter indicates a desired or acceptable low quality of location (e.g., a coarse location), at 740 the IP-based telecommunications network 320 can get the stored location of the MS 108 from the location database 335 and provide it to the SLP 340, which in turn provides it to the LBS application 345. The IP-based telecommunications network 320 can thus avoid sending the SUPL INIT message to the MS 108. For example, if the LBS application 345 provides weather information, it may only need to determine the location of the MS 108 within several miles, and thus the LBS application 345 can specify a desired lower quality of location. If the desired quality of location is low, the IP-based telecommunications network 320 may be able to satisfy it by retrieving the location of the MS 108 from the location database 335 and providing the retrieved location to the LBS app 345. Alternatively, the IP-based telecommunications network 320 can send the SUPL INIT message to the MS 108 and receive the SUPL POS INIT message, which includes the position parameter, which includes the location certainty factor and/or the location confidence factor. These factors can be used in determining whether the desired QoP is met.


If instead the QoP parameter indicates a desired high quality of location (e.g., a fine location), the IP-based telecommunications network 320 can request the SMLC 330 (or other system) determine the location of the MS 108 using data from the MS 108 that enables a determination of the location. This enables the IP-based telecommunications network 320 to provide the SLP 340 and the LBS application 345 with a potentially more accurate location of the MS, instead of sending on the location previously-stored by the MS 108 or location database 335, which may not be suitable for a desired high quality of location. For example, if the LBS application 345 provides advertisements, it may need to determine the location of the MS 108 within a very narrow range (e.g., within or adjacent to a retail location), and thus the LBS application 345 can specify a desired high quality of location. The desired high quality of location can require the IP-based telecommunications network 320 to obtain fresher data from the MS 108 that enables a more precise determination of its location. A more precise location can be determined using Global Navigation Satellite System (GNSS), GPS, network-assisted GPS (A-GPS), network measurements, triangulation methods, or any combination of these and/or other location techniques. The more precise location can then be stored in the location database 335, to potentially satisfy future location requests.


The provision of location information of the MS 108 to the LBS application 345 described with reference to FIG. 7 is performed over a user plane (e.g., SUPL, CDMA user plane, etc.). One advantage of performing the provision of location information over a user plane is that a user plane enables the abstraction of many of the underlying network components below the IP layer. This allows an LBS application to communicate with a MS over an all-IP or generally all-IP connection, which can facilitate requesting and providing location-based services. The Open Mobile Alliance (OMA) is another example of a user plane that provides an abstraction above all protocol layers below the IP layer. Thus, the physical and data link layers of a control plane may be ignored, which facilitates creation and delivery of location-based services.


However, the provision of location information of the MS 108 to the LBS application 345 can also be used over a control plane (e.g., CDMA control plane, WCDMA control plane, GSM/3GPP control plane, etc.), which generally use the circuit-switched wireless signaling layer (e.g., SS7). Those of skill in the art will therefore understand that the provision of location information of the MS 108 to the LBS application 345 can be used over both user plane and control plane architectures.


6. Conclusion


As described above, the location provision facility includes many features. For example, it provides services to LBS applications within an IP-based telecommunications architecture. The facility also allows for providing location data to an LBS application over a network employing a user plane such as SUPL. The facility can store location data both in a database associated with an IP-based telecommunications network as well as on the MS. This allows the facility to satisfy requests for location of the MS by retrieving stored location data from the MS, from the database, or from both. When the facility receives a request for more detailed or accurate location data, the facility can calculate a more detailed or accurate location of a MS based upon the request. Location data stored in the database and the MS can be used for LBS applications as well as for other purposes. The facility also provides for other features and advantages.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the system is not intended to be exhaustive or to limit the system to the precise form disclosed above. While specific embodiments of, and examples for, the system are described above for illustrative purposes, various equivalent modifications are possible within the scope of the system, as those skilled in the relevant art will recognize. For example, while processes, messages or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes, messages or blocks may be implemented in a variety of different ways. Also, while processes, messages or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. Further any specific numbers noted herein are only examples; alternative implementations may employ differing values or ranges.


The teachings of the methods and system provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments. Some network elements are described herein as performing certain functions. Those functions could be performed by other elements in the same or differing networks, which could reduce the number of network elements. Alternatively or additionally, network elements performing those functions could be replaced by two or more elements to perform portions of those functions.


Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the technology.


These and other changes can be made to the invention in light of the above Detailed Description. While the above description describes certain embodiments of the technology, and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the technology disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the technology should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the technology with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the invention under the claims.


While certain aspects of the technology are presented below in certain claim forms, the inventors contemplate the various aspects of the technology in any number of claim forms. For example, while only one aspect of the invention is recited as embodied in a computer-readable medium, other aspects may likewise be embodied in a computer-readable medium. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the technology.

Claims
  • 1. At least one non-transitory computer-readable medium, carrying instructions, execution of which by at least one data processor within an IP-based telecommunications network that includes at least one wireless local area computer network (WLAN) and a cellular phone network, causes operations for providing location information related to one or more wireless handheld devices, the operations comprising: obtaining location information regarding a geographic location of a wireless handheld device, wherein the location information includes at least one location parameter, wherein the location information represents a location within an area as estimated by a component associated with the area in the IP-based telecommunications network, andwherein the handheld device is capable of further communicating over both the cellular phone network under a wireless protocol, and over an internet protocol (IP)-based WLAN under a WLAN protocol;providing the location information to a service provider in response to a first location request from the service provider when the at least one location parameter satisfies the first location request and when the first location request is associated with a quality that is below a threshold, wherein the service provider employs the location information for use with applications that deliver services, andwherein the location information is provided without the IP-based telecommunications network further interacting with the handheld device after the first location request to determine or update the location information;obtaining updated location information in response to a second location request, wherein the second location request is received when the at least one location parameter does not satisfy the first location request, andwherein the location information and the updated location information are obtained, provided, and requested over an IP connection based on one or more commands associated with a user plane.
  • 2. The computer-readable medium of claim 1, wherein the wireless handheld device employs at least a portion of an Unlicensed Mobile Access (UMA) protocol to communicate with the WLAN, wherein providing the location information includes providing the location information over the user plane comprises via Secure User Plane Location (SUPL), and wherein the user plane enables communication based on abstracting network components.
  • 3. The computer-readable medium of claim 1, wherein the operations further comprise: determining whether the at least one location parameter of the obtained location information satisfies a quality of location associated with a location request; andproviding the location information to the service provider if the determining indicates that the location information satisfies the quality of location.
  • 4. The computer-readable medium of claim 1, wherein the location information is provided to the handheld device for local storage.
  • 5. The computer-readable medium of claim 1, wherein the operations further comprise: storing the location information of the handheld device in a database coupled to a server computer;obtaining an electronic address associated with an access point of the WLAN;associating the location information regarding the geographic location of the handheld device with the electronic address; andstoring the associated information in the database coupled to the server computer, wherein the obtaining location information, obtaining an electronic address, associating and providing are performed on the handheld device.
  • 6. The computer-readable medium of claim 1, wherein the operations further comprise receiving a location-based service at the handheld device directly from the service provider over the WLAN via an abstraction platform configured to deliver the location-based service over the cellular phone network and further configured to permit the service provider to program the applications to deliver services by ignoring protocol stack layer below an IP layer, and wherein the operations further include generating commands corresponding to the user plane, wherein the commands facilitate the obtaining of the updated location information.
  • 7. The computer-readable medium of claim 1, wherein the location parameter includes a location certainty factor and/or a location confidence factor, and wherein one or more of the location certainty factor or the location confidence factor is utilized in determining whether the location parameter is satisfied.
  • 8. The computer-readable medium of claim 1, wherein the operations further comprise providing the updated location information to the service provider in response to the second location request if the updated location information satisfies the at least one location parameter.
  • 9. The computer-readable medium of claim 1, wherein the location information includes one or more variable parameters specific to the service provider.
  • 10. The computer-readable medium of claim 1, wherein providing the location information in response to the first location request includes: from a location database, operating a network controller to retrieve previously-obtained location information of the wireless handheld device when the at least one location parameter represents a quality of location below a threshold; andby using the network controller, providing the location information including the previously-obtained location information without requesting a service mobile location center (SMLC) to determine a location of the wireless handheld device.
  • 11. The computer-readable medium of claim 1, wherein obtaining the updated location information includes operating a network controller to request a service mobile location center (SMLC) to determine a real-time location of the wireless handheld device using data from the wireless handheld device.
  • 12. A computing system comprising: one or more memory devices including: instructions for providing location information regarding a geographical location of a mobile telecommunications device in response to a first location request received from a service provider, wherein the mobile telecommunications device is configured for communicating over a cellular network and over Internet Protocol (IP)-based wireless local area networks (WLANs),wherein the location information represents a location within an area as estimated by a component associated with the area in the IP-based telecommunications network,wherein the first location request includes at least one location parameter,wherein the location information is provided without the computing system further interacting with the handheld device after the first location request to determine or update the location information when the first location request is associated with a quality that is below a theshold, andwherein the service provider employs the location information for use with applications that deliver services; andinstructions for abstracting network components using a user plane, wherein the user plane enables communication across the cellular phone network and the IP-based WLAN; andinstructions for obtaining, using commands associated with the user plane, updated location information associated with the geographic location of the mobile telecommunications device in response to a second location request, wherein the second location request is generated when the at least one location parameter does not satisfy the first location request; andone or more processors operably coupled to the one or more memories, configured to execute the instructions stored in the one or more memories.
  • 13. The computing system of claim 12, wherein the one or more memory devices further include: instructions for updating the location information as the mobile telecommunications device moves about the cellular network, the WLANs, or a combination thereof,wherein the updating is performed in a Dynamic Host Configuration Protocol (DHCP)-like manner.
  • 14. The computing system of claim 12, wherein the one or more memory devices further include instructions for storing the location information of the mobile telecommunications device in a database coupled to a server computer.
  • 15. The computing system of claim 14, wherein the one or more memory devices further include: instructions for obtaining an electronic address associated with an access point of one of the WLANs;instructions for associating the location information regarding the geographic location of the mobile telecommunications device with the electronic address; andinstructions for storing the associated information in the database coupled to the server computer.
  • 16. The computing system of claim 12, wherein the one or more memory devices further include instructions for receiving a location-based service at the mobile telecommunications device directly from the service provider over one of the WLANs via an abstraction platform configured to deliver services over the cellular network and further configured to permit the service provider to program the applications to deliver services by ignoring protocol stack layers below an IP layer.
  • 17. A communications system operating within a telecommunications network, the system comprising: one or more memory devices including: instructions for providing location information of a wireless handset to a service provider when at least one quality parameter included in a first location request is satisfied, wherein the location information is associated with a geographic location of the wireless handset communicating over the telecommunications network,wherein the location information represents a location within an area as estimated by a component associated with the area in the IP-based telecommunications network,wherein the location information is provided without the communications system further interacting with the handheld device after the first location request to determine or update the location information when the first location request is associated with a quality that is below a threshold, andwherein the first location request is received from the location-based service provider; andinstructions for obtaining updated location information associated with the geographic location of the wireless handset, wherein the updated location information is obtained in response to a second location request, andwherein the updated location information is higher quality than the location information provided in response to the first location request; andone or more processors operably coupled to the one or more memory devices, configured to execute the instructions stored in the one or more memory devices.
  • 18. The system of claim 17, wherein the one or more memory devices further include: instructions for obtaining additional location information associated with geographic locations of multiple wireless handsets operating within the telecommunications network; andinstructions for storing the additional location information in a location database.
  • 19. The system of claim 17, further comprising: instructions for comparing a timing for the location information to a threshold associated with the at least one quality parameter;wherein:the updated location information is received in response to a second location request generated when the timing does not satisfy the threshold associated with the at least one quality parameter; andthe higher quality updated location information comprises a more accurate geographic location of the wireless handset.
  • 20. The system of claim 17, wherein the one or more memory devices further include instructions providing the location information and/or updated location information associated with the geographic location of the wireless handset to the wireless handset for local storage.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation of U.S. patent application Ser. No. 14/550,901 filed Nov. 21, 2014, now U.S. Pat. No. 9,820,089; which is a continuation of U.S. patent application Ser. No. 12/446,454 filed Jan. 10, 2011, now U.S. Pat. No. 8,953,567; which is a national phase application under 35 U.S.C. 371 of International Patent Application PCT/US2007/82136 filed Oct. 22, 2007; which claims benefit of U.S. Provisional Application No. 60/853,086, filed Oct. 20, 2006, the entireties of which are hereby incorporated by reference.

US Referenced Citations (228)
Number Name Date Kind
5724660 Kauser et al. Mar 1998 A
6002679 Liu et al. Dec 1999 A
6104712 Robert et al. Aug 2000 A
6119012 Amirijoo Sep 2000 A
6161018 Reed et al. Dec 2000 A
6222483 Twitchell et al. Apr 2001 B1
6249252 Dupray Jun 2001 B1
6252545 Da et al. Jun 2001 B1
6463288 Havinis et al. Oct 2002 B1
6542819 Kovacs et al. Apr 2003 B1
6603976 Amirijoo et al. Aug 2003 B1
6603978 Carlsson et al. Aug 2003 B1
6665611 Oran et al. Dec 2003 B1
6671514 Cedarvall et al. Dec 2003 B1
6690659 Ahmed et al. Feb 2004 B1
6711417 Gorman et al. Mar 2004 B1
6801778 Koorapaty et al. Oct 2004 B2
7151941 Vänttinen et al. Dec 2006 B2
7158500 Annamalai Jan 2007 B2
7177399 Dawson et al. Feb 2007 B2
7187923 Mousseau et al. Mar 2007 B2
7194354 Oran et al. Mar 2007 B1
7245900 Lamb et al. Jul 2007 B1
7272500 Walker Sep 2007 B1
7283822 Gallagher et al. Oct 2007 B2
7304985 Sojka et al. Dec 2007 B2
7313143 Bruno Dec 2007 B1
7317910 Niemenmaa et al. Jan 2008 B2
7336668 Adams Feb 2008 B2
7336962 Levitan Feb 2008 B2
7353034 Haney Apr 2008 B2
7369859 Gallagher May 2008 B2
7433673 Everson et al. Oct 2008 B1
7436789 Caliskan et al. Oct 2008 B2
7466986 Halcrow et al. Dec 2008 B2
7577431 Jiang Aug 2009 B2
7593605 King et al. Sep 2009 B2
7606555 Wals. et al. Oct 2009 B2
7610011 Albrett Oct 2009 B2
7613155 Shim Nov 2009 B2
7620404 Chesnais et al. Nov 2009 B2
7640008 Gallagher et al. Dec 2009 B2
7653394 McMillin Jan 2010 B2
7664494 Jiang Feb 2010 B2
7676394 Ramer et al. Mar 2010 B2
7688261 DiEsposti Mar 2010 B2
7714778 Dupray May 2010 B2
7768963 Alizadeh-Shabdiz Aug 2010 B2
7856315 Sheha et al. Dec 2010 B2
7903029 Dupray Mar 2011 B2
7904096 Shyr et al. Mar 2011 B2
7949326 Gallagher et al. May 2011 B2
7974639 Burroughs et al. Jul 2011 B2
8116291 Annamalai et al. Feb 2012 B2
8145183 Barbeau et al. Mar 2012 B2
8213957 Bull et al. Jul 2012 B2
8311557 Annamalai Nov 2012 B2
8364746 Annamalai et al. Jan 2013 B2
8369266 Jin et al. Feb 2013 B2
8509731 Kholaif et al. Aug 2013 B2
8571043 Horner Oct 2013 B2
8693454 Annamalai et al. Apr 2014 B2
8718592 Annamalai May 2014 B2
8737311 Jin et al. May 2014 B2
8908664 Caldwell et al. Dec 2014 B2
8953567 Annamalai Feb 2015 B2
9398418 Annamalai Jul 2016 B2
9661602 Annamalai et al. May 2017 B2
9693189 Caldwell et al. Jun 2017 B2
9820089 Annamalai Nov 2017 B2
9820102 Annarnalai Nov 2017 B2
20020019698 Vilppula et al. Feb 2002 A1
20020064141 Sakakur May 2002 A1
20020077144 Keller et al. Jun 2002 A1
20020123354 Nowak Sep 2002 A1
20030009385 Tucciarone et al. Jan 2003 A1
20030016648 Lindsay et al. Jan 2003 A1
20030032404 Wager et al. Feb 2003 A1
20030058844 Sojka et al. Mar 2003 A1
20030074471 Anderson et al. Apr 2003 A1
20030095069 Stilp May 2003 A1
20030139182 Bakkeby et al. Jul 2003 A1
20030212776 Roberts Nov 2003 A1
20030216143 Roese et al. Nov 2003 A1
20030222819 Karr et al. Dec 2003 A1
20040062264 Adams Apr 2004 A1
20040067759 Spirito et al. Apr 2004 A1
20040076157 Sojka et al. Apr 2004 A1
20040087315 Dufva et al. May 2004 A1
20040102196 Weckstrom et al. May 2004 A1
20040114577 Sojka et al. Jun 2004 A1
20040122730 Tucciarone et al. Jun 2004 A1
20040142704 Scholz Jul 2004 A1
20040157590 Lazaridis et al. Aug 2004 A1
20040162896 Cen et al. Aug 2004 A1
20040166856 Niemenmaa Aug 2004 A1
20040198386 Dupray Oct 2004 A1
20040202120 Hanson Oct 2004 A1
20040202194 Annamalai Oct 2004 A1
20040203853 Sheynblat Oct 2004 A1
20040203915 van Diggelen et al. Oct 2004 A1
20040224702 Chaskar Nov 2004 A1
20040240430 Lin et al. Dec 2004 A1
20040259566 Maanoja et al. Dec 2004 A1
20050003831 Anderson Jan 2005 A1
20050055578 Wright et al. Mar 2005 A1
20050059415 Easo et al. Mar 2005 A1
20050066044 Chaskar et al. Mar 2005 A1
20050070306 Kim et al. Mar 2005 A1
20050075116 Laird et al. Apr 2005 A1
20050079821 Bi Apr 2005 A1
20050105496 Ambrosino May 2005 A1
20050130673 Annamalai Jun 2005 A1
20050136943 Banerjee et al. Jun 2005 A1
20050138144 Sethi Jun 2005 A1
20050148342 Sylvain Jul 2005 A1
20050153687 Niemenmaa et al. Jul 2005 A1
20050159153 Mousseau et al. Jul 2005 A1
20050170851 Melpignano et al. Aug 2005 A1
20050181805 Gallagher Aug 2005 A1
20050186948 Gallagher et al. Aug 2005 A1
20050192024 Sheynblat Sep 2005 A1
20050232189 Loushine Oct 2005 A1
20050255866 Dupuy et al. Nov 2005 A1
20050272424 Gallagher et al. Dec 2005 A1
20050280557 Jha et al. Dec 2005 A1
20050286466 Tagg et al. Dec 2005 A1
20060009235 Sheynblat et al. Jan 2006 A1
20060014517 Barclay et al. Jan 2006 A1
20060014548 Bolin et al. Jan 2006 A1
20060015513 Poyhonen et al. Jan 2006 A1
20060025158 Leblanc et al. Feb 2006 A1
20060029296 King et al. Feb 2006 A1
20060030290 Rudolf et al. Feb 2006 A1
20060052115 Khushu Mar 2006 A1
20060062363 Albrett Mar 2006 A1
20060098899 King et al. May 2006 A1
20060105776 Burke May 2006 A1
20060121916 Aborn et al. Jun 2006 A1
20060172732 Nylander et al. Aug 2006 A1
20060178146 Lee et al. Aug 2006 A1
20060194594 Ruutu et al. Aug 2006 A1
20060212217 Sheha et al. Sep 2006 A1
20060245406 Shim Nov 2006 A1
20060258365 Cha et al. Nov 2006 A1
20060258369 Burroughs et al. Nov 2006 A1
20060276201 Dupray Dec 2006 A1
20060286984 Bonner Dec 2006 A1
20060293066 Edge et al. Dec 2006 A1
20070002813 Tenny Jan 2007 A1
20070004379 Stanners Jan 2007 A1
20070032249 Krishnamurthi et al. Feb 2007 A1
20070060097 Edge et al. Mar 2007 A1
20070060114 Ramer et al. Mar 2007 A1
20070061198 Ramer et al. Mar 2007 A1
20070061242 Ramer et al. Mar 2007 A1
20070061243 Ramer et al. Mar 2007 A1
20070061244 Ramer et al. Mar 2007 A1
20070061245 Ramer et al. Mar 2007 A1
20070061246 Ramer et al. Mar 2007 A1
20070061247 Ramer et al. Mar 2007 A1
20070061303 Ramer et al. Mar 2007 A1
20070061317 Ramer et al. Mar 2007 A1
20070072624 Niemenmaa et al. Mar 2007 A1
20070073717 Ramer et al. Mar 2007 A1
20070073718 Ramer et al. Mar 2007 A1
20070073719 Ramer et al. Mar 2007 A1
20070073722 Ramer et al. Mar 2007 A1
20070073723 Ramer et al. Mar 2007 A1
20070123237 Cacioppo et al. May 2007 A1
20070149211 Dunn et al. Jun 2007 A1
20070155489 Beckley et al. Jul 2007 A1
20070167174 Halcrow et al. Jul 2007 A1
20070178913 Niemenmaa et al. Aug 2007 A1
20070189497 Bareis Aug 2007 A1
20070192294 Ramer et al. Aug 2007 A1
20070192318 Ramer et al. Aug 2007 A1
20070198485 Ramer et al. Aug 2007 A1
20070217454 Horner Sep 2007 A1
20070239685 Howell Oct 2007 A1
20070239724 Ramer et al. Oct 2007 A1
20070288427 Ramer et al. Dec 2007 A1
20080009268 Ramer et al. Jan 2008 A1
20080014956 Balasubramanian Jan 2008 A1
20080045236 Nahon et al. Feb 2008 A1
20080076420 Khetawat et al. Mar 2008 A1
20080076429 Comstock et al. Mar 2008 A1
20080081620 Lu et al. Apr 2008 A1
20080096594 Vinding Apr 2008 A1
20080108319 Gallagher May 2008 A1
20080146245 Appaji Jun 2008 A1
20080192696 Sachs et al. Aug 2008 A1
20080254810 Fok et al. Oct 2008 A1
20080280624 Wrappe Nov 2008 A1
20090005061 Ward et al. Jan 2009 A1
20090054070 Gallagher et al. Feb 2009 A1
20090171583 DiEsposti Jul 2009 A1
20090177730 Annamalai et al. Jul 2009 A1
20090185669 Zitnik et al. Jul 2009 A1
20090275348 Weinreich et al. Nov 2009 A1
20090311987 Edge et al. Dec 2009 A1
20100046406 Annamalai et al. Feb 2010 A1
20100069099 Dunn et al. Mar 2010 A1
20100150120 Schlicht et al. Jun 2010 A1
20100220697 Liu Sep 2010 A1
20100220700 Hodroj et al. Sep 2010 A1
20100289640 Annamalai Nov 2010 A1
20100291947 Annamalal Nov 2010 A1
20100331017 Ariga Dec 2010 A1
20110039576 Prakash et al. Feb 2011 A1
20110047033 Mahaffey et al. Feb 2011 A1
20110051658 Jin et al. Mar 2011 A1
20110051665 Huang Mar 2011 A1
20110111726 Kholaif et al. May 2011 A1
20110159886 Kangas et al. Jun 2011 A1
20110200022 Annamalai Aug 2011 A1
20120096490 Barnes, Jr. et al. Apr 2012 A1
20120116677 Higgison et al. May 2012 A1
20120140749 Caldwell et al. Jun 2012 A1
20120320888 Annamalai et al. Dec 2012 A1
20130150085 Jin et al. Jun 2013 A1
20130237250 Annamalai et al. Sep 2013 A1
20140045596 Vaughan et al. Feb 2014 A1
20140295894 Annamalai et al. Oct 2014 A1
20150181375 Annamalai Jun 2015 A1
20160165392 Caldwell et al. Jun 2016 A1
20170289811 Caldwell et al. Oct 2017 A1
20170325192 Annamalai et al. Nov 2017 A1
Foreign Referenced Citations (9)
Number Date Country
2051556 Apr 2009 EM
1583374 Oct 2005 EP
10239416 Sep 1998 JP
1020040063234 Jul 2004 KR
2000027143 May 2000 WO
2005004520 Jan 2005 WO
2005004528 Jan 2005 WO
2005060292 Jun 2005 WO
2006102784 Oct 2006 WO
Non-Patent Literature Citations (31)
Entry
European Patent Office, Extended European Search Report, EP Patent Application 07868537.7, dated Mar. 7, 2017, 9 pages.
European Patent Office, Extended European Search Report, EP Patent Application 10775643.9, dated Dec. 1, 2016, 10 pages.
“Enabler Release Definition for Secure UserPlane for Location,” Candidate Version 1.0, Open Mobile Alliance, Jan. 22, 2007, 17 pages.
“Google Search of Location of Mobile,” http://www.google.com/search?q=location+of+mibile&sourceid=ie7&ris=com.microsoft:en-us:IE-SearchBox&ie=&oe= [Last Accessed Jun. 8, 2010], 2 pages.
“IP Multimedia Subsystem,” Wikipedia, http://wikipedia.org/wiki/IP_Multimedia_Subsystem, 13 pages [Last Accessed May 5, 2010].
“Secure User Plane for Location Requirements,” Candidate Version 1,0, Open Mobile Alliance, Jun. 16, 2006, 80 pages.
“Secure UserPlane for Location Architecture,” Candidate Version 1.0, Open Mobile Alliance, Jan. 22, 2007, 80 pages.
“The 3GPP Standard for Convergence-Diagram,” UMA Universal Mobile Access, http://www.urnatoday.com/img/diagrams/umaServices.jpg, [First Accessed Oct. 17, 2007], 1 page.
“The 3GPP Standard for Convergence-Dual Mode Handsets,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“The 3GPP Standard for Convergence-Femtocells,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“The 3GPP Standard for Convergence-Softmobiles,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“The 3GPP Standard for Convergence-Terminal Adaptors,” UMA Universal Mobile Access, UMA Today, 2007, 2 pages.
“UserPlane for Location Protocol,” Candidate Version 1.0, Open Mobile Alliance, Jan. 22, 2007, 56 pages.
Annamalai, Magesh, “Method and Delivery of UMA Value Added Location Services Via SUPL,” U.S. Appl. No. 60/853,086, filed Oct. 20, 2006, 15 pages.
Dyoub, J. et al., “Dueling Architectures: Control plane vs. User-plane,” HP invent, 2004, 2 pages.
European Patent Office, Extended European Search Report, EP Patent Application 06826444.9, dated Sep. 12, 2012, 8 pages.
European Patent Office, Extended European Search Report, EP Patent Application 07760606.9, dated Jan. 23, 2013, 8 pages.
Gum, Arnold et al., “Infrastructure Wireless Choices for LBS,” GPS World, Mar. 2, 2006, http://www.gpsworld.com/wireless/infrastructure/wireless-choices-lbs-3750?print=1, [Last Accessed Apr. 28, 2010], 5 pages.
International Search Report and Written Opinion, International Application No. PCT/US2007/82133, Applicant: T-Mobile USA, Inc., Flied on Oct. 22, 2007, dated Apr. 29, 2008, 9 pages.
International Search Report and Written Opinion, International Application No. PCT/2006/41226, Filed on Oct. 20, 2006, Applicant: T-Mobile USA, Inc., dated Dec. 4, 2007, 18 pages.
International Search Report and Written Opinion, International Application No. PCT/2007/82156, Filed on Oct. 22, 2007, Applicant: T-Mobile USA, Inc., dated May 28, 2008, 12 pages.
International Search Report and Written Opinion, International Application No. PCT/US2007/66579, Filed on Apr. 12, 2007, Applicant: T-Mobile, Inc., dated Sep. 9, 2008, 9 pages.
International Search Report and Written Opinion, International Application No. PCT/US2007/82136, Applicant: T-Mobile USA, Inc., Flied on Oct. 22, 2007, dated Mar. 11, 2008, 11 pages.
International Search Report and Written Opinion, International Application No. PCT/US2010/035010, Applicant: T-Mobile USA, Inc., Flied on May 14, 2010, dated Dec. 22, 2010, 10 pages.
International Search Report and Written Opinion, International Application No. PCT/US2010/035014, Applicant: T-Mobile USA, Inc., Flied on May 14, 2010, dated Dec. 28, 2010, 11 pages.
Martin-Escalona, et al., “Delivery of Non-Standardized Assistance Data in E-OTD/GNSS Hybrid Location Systems,” IEEE 2002, pp. 1-5.
Raja, K., et al., “We Know,” IEEE Communication Engineer, Jun./Jul. 2004, 6 pages.
Schulzrinne et al. “Emergency Services for Internet Telephony Systems,” Oct. 18, 2004, Network Working Group, Internet Draft, pp. 1-20.
Spinney, Jonathan, “Wireless Location Uses in the User Plane and Control Plane,” The Location Based Services Community, Jun. 27, 2005, 3 pages.
Steinfield, “The Developement of Location Based Services in Mobile Commerce,” Elife after the dot.com bust, Berlin, Springer, 2004, pp. 1-15.
ETSI TS 101 724 Technical Specification, “Digital cellular telecommunications system (Phase 2+); Location Services (LCS); Functional description; Stage 2.” 3GPP TS 03.71 version 8.2.0 Release 1999. (Jun. 2001). 109 pages.
Related Publications (1)
Number Date Country
20180070204 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
60853086 Oct 2006 US
Continuations (2)
Number Date Country
Parent 14550901 Nov 2014 US
Child 15810568 US
Parent 12446454 US
Child 14550901 US