This invention generally relates to an ultrasound system, and more particularly, to a method and system for variable depth ultrasound treatment.
Many conventional applications of therapeutic ultrasound have employed low frequency transducers. These transducers have operational frequencies that typically range from 500 kHz to 1.5 MHz. Such low frequency transducers are often preferred because they allow for acoustical energy to be focused deep into the body, without harming the overlying tissue structures.
A conventional application of noninvasive therapeutic ultrasound using a low frequency transducer is depicted in
Another undesirable side effect of low-frequency therapy is that the acoustic energy must pass through intervening tissue layers before reaching the desired deep treatment area. The intervening layers tend to defocus the rays and absorb some of the acoustic energy. This causes the focal spot size to widen, making it difficult to control the location of the focal snot.
In accordance with various aspects of the present invention, a variable depth ultrasound treatment method and system are provided. An exemplary method and system comprise a variable depth transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two of a deep treatment region of interest, a superficial region of interest, and/or a subcutaneous region of interest.
In accordance with various exemplary embodiments, a variable depth transducer system can be configured for spatial control, such as by changing the distance from an exemplary transducer to a reflecting surface, or changing the angles of energy focused or unfocused to the region of interest, and/or configured for temporal control, such as by controlling changes in the frequency, drive amplitude and tinting of the exemplary transducer. As a result, changes in the location of the treatment region, the shape and size and/or volume of the spot or region of interest, as well as the thermal conditions, can be dynamically controlled versus time.
In accordance with an exemplary embodiment of the present invention, the variable depth transducer can comprise a transduction element having a piezoelectrically active layer, matching layers and/or other materials for generating radiation or acoustical energy. The variable depth transducer may be configured to operate at moderate frequencies to provide variable depth treatment. For example, an exemplary variable depth transducer system can be configured for providing treatment to a superficial region of interest, and/or to a subcutaneous region of interest utilizing moderate frequencies below 20 MHz, such as within a range from approximately 750 kHz to 20 MHz, or higher frequencies of 35 MHz or more.
In accordance with another exemplary embodiment of the present invention, the transduction element may be configured with a variable depth element comprising one or more materials configured to allow for control and focusing/defocusing of the acoustic energy to more than one region of interest, such as between a deep treatment region of interest and a superficial region of interest, and/or a subcutaneous region of interest. The materials utilized for the variable depth element for control and focusing/defocusing may be configured in a variety of manners and shapes, such as substantially flat, curved, or other arrangements for bending reflecting and/or redirecting radiation and acoustical energy. In addition, the variable depth element may be configured within, or comprise a device coupled to, the transduction element in a variety of manners to provide for focusing/defocusing and control of the treatment energy.
In accordance with another exemplary embodiment of the present invention, an exemplary transducer may be configured to enable energy deposition not only proximate a fundamental frequency of a piezoelectric material within the transduction element, but also at harmonic frequencies of the material, above a fundamental frequency, as well as resonances below a fundamental frequency. These multiple resonances may be controlled and enabled through various focusing techniques and transducer structures, including the adding of matching layers and/or backing layers to shape the resonant characteristics of the transducer.
In accordance with another exemplary embodiment of the present invention, a variable depth acoustic transducer can also be configured for generating high acoustic power for treatment purposes. While also providing for good imaging capabilities. For example, to allow for the treatment spot size to be optimally controlled at various treatment depths, an exemplary embodiment of the present invention may comprise a transducer configured into an array of sub-elements, each sub-element configured for processing acoustic waves with a sufficient bandwidth for good axial resolution.
In accordance with another exemplary embodiment of the present invention, a variable depth transducer may be configured in a probe arrangement to provide treatment. The variable depth transducer may also be configured with various mechanical devices to allow for optimal treatment and therapy, for example to provide controlled positioning of the variable depth transducer, such as through a non-invasive configuration. Further, the variable depth transducer may also be configured for one-dimensional, two-dimensional and annular arrays, and/or for three-dimensional treatment applications.
In accordance with another aspect of the present invention, an exemplary variable depth treatment system and method may also be configured to provide therapeutic heating, cooling and/or imaging of a treatment region as well as acoustically monitoring the temperature profile or other tissue parameter monitoring of the treatment region and the general vicinity thereof. For example, in accordance with an exemplary embodiment, an exemplary variable depth system may be configured with a dynamic feedback arrangement based on monitoring of temperature or other tissue parameters, and/or based on imaging information to suitably adjust the spatial and/or temporal characteristics of the variable depth transducer.
The subject matter of the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, may best be understood by reference to the following description taken in conjunction with the claims and the accompanying drawing figures, in which like parts may be referred to by like numerals:
The present invention may be described herein in terms of various components and processing steps. It should be appreciated that such components and steps may be realized by any number of hardware components configured to perform the specified functions. For example, the present invention may employ various medical treatment devices, visual imaging and display devices, input terminals and the like, which may carry out a variety of functions under the control of one or more control systems or other control devices. In addition, the present invention may be practiced in any number of medical or treatment contexts, and the exemplary embodiments relating to a variable depth ultrasound treatment as described herein are merely a few of the exemplary applications for the invention. For example, the principles, features and methods discussed may be applied to any medical or other tissue or treatment application.
In accordance with various aspects of the present invention, a non-invasive variable depth ultrasound treatment method and system are provided. An exemplary method and system comprise a variable depth acoustic transducer system configured for providing ultrasound treatment to more than one region of interest in a patient. For example, with reference to an exemplary embodiment illustrated in a block diagram of
An exemplary variable depth transducer system 300 is further exemplified in a block diagram illustrated in
Control system 304 may be configured for use within an ultrasound therapy system, an ultrasound imaging system, and/or an ultrasound imaging, therapy and/or treatment monitoring system, including motion control subsystems. In accordance with an exemplary embodiment, a control system 304 may comprise, a processor, a display, and/or one or more input devices. The processor may comprise a personal computer, a Unix system, or any other conventional processing unit. The display may comprise a monitor, LCD screen, or any other device configured to display an image. An input/output device ma comprise a keyboard, a mouse, a touch-screen, or any other device for inputting information. The information from the input device and images displayed may be received or transmitted in any format, such as manually, by analog device, by digital device, and/hr by any other mechanisms. The processor, display, and/of input device may be coupled together in any manner. By coupling, the devices comprising control system 304 may be directly connected to each other or may be connected through one or more other devices or components that allow a signal to travel to/from one component to another. The various coupling components for the devices comprising control system 304 can include but are not limited to the internet, a wireless network, it conventional wire cable, an optical cable or connection through any other medium that conducts signals, and any other coupling device or communication medium.
Coupling system 308 is configured for the coupling ultrasound energy and signals between transducer 302 and variable depth device 306 and a region of interest. Coupling system 308 may facilitate such coupling through use of various coupling mediums, including air and other gases, water and other fluids, gels, solids, and/or any combination thereof, or any other medium that allows for signals to be transmitted between transducer 302/variable depth device 306 and the region of interest. In addition to providing a coupling function, in accordance with an exemplary embodiment, coupling system 308 can also be configured for providing temperature control during the treatment application. For example, coupling system 308 can be configured for controlled cooling of an interface surface or region between transducer 302/variable depth device 306 and the region of interest by suitably controlling the temperature of the coupling medium. The suitable temperature for such coupling medium can be achieved in various manners, and utilize various feedback systems, such as thermocouples, thermistors or any other device or system configured for temperature measurement of a coupling medium. Such controlled cooling can be configured to further facilitate spatial control of variable depth transducer system 300.
Exemplary variable depth transducer 302 can be configured in various manners. For example, a variable depth transducer system can be configured for spatial control, such as by controlled changing of the distance from an exemplary transducer to a reflecting surface or controlled changing of the angles of energy focused or unfocused to the region of interest, e.g., variable depth transducer 302 can be configured with variable depth element 306 comprising a frequency dependent lens configured for control of focal depth and position by changing the frequency of excitation of variable depth transducer 302. In addition, variable depth transducer 302 can also be configured for temporal control, such as by controlling changes in the frequency, drive amplitude and timing of the exemplary transducer. Thus, an exemplary variable depth transducer can be configured with spatial and/or temporal control. As a result, changes in the location of the treatment region, the shape and size and/or volume of the spot or region of interest, as well as the thermal conditions, can be dynamically controlled versus time.
Variable depth element 306 can be suitably coupled to transducer 302 to facilitate variable depth treatment. By coupling, transducer 302 may be directly and/or movably connected to variable depth device 306, or may be connected through one or more various components or elements that enable energy and/or signals to travel to/from one component to another. Transducer 302 and variable depth element 306 may also be combined into a single device, wherein variable depth device 306 is configured within transducer 302 e.g., as a part of as transduction element of transducer 302.
Variable depth element 306 can configured to enable variable depth treatment system 300 to provide treatment to more than one region of interest, such as between a deep treatment region of interest, a superficial region of interest, and/or a subcutaneous region of interest, or other regions in between. Such treatment can occur within a single region of interest, or within more than one region of interest, at the same time. For example, with momentary reference to
During operation, variable depth transducer system 402 may be configured to transmit or receive signals to treat a deep treatment region 410 located at deep depth 406 within a patient. For example, depth 406 for deep treatment region 410 may range from approximately 50 mm to 7 cm or more.
Variable depth transducer system 402 may also be configured to treat a second inner region 422 of a patient. Inner region 422 may comprise a superficial layer 412 of a patient and/or a subcutaneous layer 414 of patient. Inner region 422 is located at a shorter depth 420 within tissue layers of a patient. For example, depth 420 may range from approximately 0 mm to 5 cm or more within a patient, wherein the 0 mm range comprises the outer surface of superficial layer 412 of the patient. In other words, superficial layer 412 of the patient may comprise any area on or near the surface of the patient. Treatment by variable depth treatment system 400 may include treatment of both deep region 410 and inner region 422, or within only one region of interest.
Variable depth element 306 can be configured in various manners to facilitate treatment of more than one region of interest, such as inner region 422 and/or deep-seated region 410. In accordance with an exemplary embodiment of the present invention, transducer 302 may be configured with variable depth element 306 comprising one or more materials configured to allow for control and focusing/defocusing of the acoustic energy to more than one region of interest. For example, with reference to exemplary embodiments illustrated in
Transducer 502 can include a transduction element comprising a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, and/or composite materials, as well as lithium niobate, lead titanate, barium titanate, and/or lead metaniobate. In addition to or instead of a piezoelectrically active material, variable depth transducer 502 may comprise any other materials configured for generating radiation and/or acoustical energy. Variable depth transducer 502 may also comprise one or more matching layers and/or backing layers to suitably shape the resonant character of transducer 502. For example, variable depth transducer 502 may be configured, along with transduction element, with one or more matching layers and/or backing layers coupled to a piezoelectrically active material or any other material configured for generating radiation and/or acoustical energy.
For temporal control, the thickness of the transduction element of variable depth transducer 502 may be selected to provide a center operating frequency of moderate range, for example from approximately 750 kHz to 30 MHz or more. Lower frequencies, e.g., between approximately 750 kHz and 8 MHz, can facilitate deeper penetration and higher frequencies, e.g., between approximately 8 to 20 MHz or more, can facilitate greater resolution. Selecting the frequency for operation can be based on the degree and balance of energy penetration and resolution that is desired for an application.
Electrical leads 510 may be configured to enable power to be transmitted to and signals received from variable depth transducer 502, and can comprise any wiring type, configuration and arrangement for use with ultrasound transducers. Variable depth transducer 502 may also be coupled to electrical leads 510 in various manners. For example, while
To facilitate spatial control, in an exemplary embodiment, variable depth device 528 can comprise one or more reflective materials 504 configured to provide control and focusing of acoustic or radiation energy from variable depth transducer 502 towards a region of interest 518. In accordance with an exemplary embodiment, reflective materials 504 can comprise acoustic mirrors, lenses, reflectors or prisms configured far focusing of acoustic or radiation energy. The exemplary mirrors, reflectors or prisms may comprise any material for reflecting, bending or redirecting acoustic or radiated energy. For example, such materials may include stainless steel, aluminum, or any other metal, alloy, glass, plastic, or any other material capable of bending, redirecting and/or reflecting back acoustical energy from a surface to another direction.
In accordance with one exemplary embodiment, reflective materials 504 may be suitably inclined at approximately a 45 degree angle with respect to variable depth transducer 502; however, reflective materials 504 may be configured to be inclined at any angle with respect to variable depth transducer 502 such that energy transmitted from variable depth transducer 502 is bent, redirected or reflected from reflective materials 504 towards a region of interest 518. Changing the angle of inclination can suitably control the focusing of acoustic energy to any one region of interest 518, such as to a deep treatment region of interest, a superficial region of interest, or a subcutaneous region of interest.
Variable depth devices 528 and 530 may be configured in a variety of manners, such as substantially flat, curved, or other suitable arrangements for reflecting, bending or redirecting acoustic or radiated energy. For example, with reference to
Moreover, while
As a result, an exemplary transducer system 500 can be configured for providing treatment to a superficial region of interest and/or to a subcutaneous region of interest utilizing moderate frequencies below approximately 20 MHz. For example, an exemplary transducer system 500 can provide treatment to superficial regions and/or to subcutaneous regions that are more commonly addressed in cosmetic applications with an operating, frequency range from approximately 750 kHz to 35 MHz or more.
Variable depth transducer system 500 can be configured in various arrangements to provide non-invasive treatment. For example, in accordance with an exemplary embodiment, variable depth devices 528, 530 may be configured with variable depth transducer 502 within a housing 536. Housing 536 can comprise any configuration of transducer housing for containing transducers and for interfacing with a patient to allow treatment, such as facilitate noninvasive treatment. Coupling of signals from transducer 502 and variable depth devices 528, 530 through housing 536 to a region of interest may be facilitated through any coupling medium, such as air and other gases, water and other fluids, gels, solids, any combination thereof, and/or any other medium that allows for signals to be transmitted from transducer 502/variable depth devices 528, 530 to a region of interest.
In addition to comprising separate devices and components, variable depth transducer 302 and variable depth element 306 may also comprise the same device, i.e., variable depth element 306 is configured within transducer 302. For example, with reference to an exemplary embodiment illustrated in
Variable depth transducer 602 may comprise a transduction element comprised of a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, and/or composite materials, as well as lithium niobate, lead titanate, barium titante, and/or lead metaniobate. Variable depth transducer 602 may also comprise one or more matching and/or backing layers configured along with the piezoelectrically active material. In addition to or instead of a piezoelectrically active material, variable depth transducer 602 may comprise any other materials configured for generating radiation and/or acoustical energy.
In accordance with an exemplary embodiment, variable depth transducer 602 is configured in a curved manner to enable focusing of acoustic energy 620 to region of interest 630. The curvature can be substantially spherical and/or symmetric manner, or curved in an aspherical and/or asymmetric manner. Furthermore, variable depth transducer 602 can comprise any other configuration to enable focusing of acoustic energy 620 to region of interest 630, such as to a deep treatment region of interest, a superficial region of interest, and/or a subcutaneous region of interest. For example, variable depth transducer 602 can be configured in an planar or non-planar arrangement.
For temporal control, the thickness of the transduction element of variable depth transducer 602 may be selected to provide a center operating frequency of moderate range, for example from approximately 750 kHz to 20 MHz. Lower frequencies, e.g., between approximately 750 kHz and 8 MHz, can facilitate deeper penetration and higher frequencies, e.g. between, approximately 8 to 30 MHz or more, facilitate greater resolution. As a result, an exemplary transducer system 600 can be configured for providing treatment to a superficial region of interest and/or to a subcutaneous region of interest utilizing moderate frequencies below 20 MHz. For example, an exemplar transducer system 600 can provide treatment to superficial regions and/or to subcutaneous regions that are more commonly addressed in cosmetic applications with an operating frequency range from approximately 750 kHz to 1.5 MHz or more.
Electrical leads 610 are configured to enable power to be transmitted to and signals received from variable depth transducer 602, and can comprise any wiring type, configuration and arrangement for use with ultrasound transducers. Variable depth transducer 602 may also be coupled to electrical leads 610 in various manners. For example, while
In addition to having a variable depth transducer 602 configured as a variable depth device to provide for control and focusing of acoustic energy 620 towards a region of interest 630, in accordance with an exemplary embodiment, a variable depth transducer may also be configured electronically to provide for control and focusing of acoustic energy. For example, with reference to an exemplary embodiment depicted in
In accordance with an exemplary embodiment, variable depth transducer 702 comprises one or more transducers and/or transduction elements that can be activated by various drive frequencies with suitable phase delay. For example, variable depth transducer 702 can be activated by a first drive frequency 704, and then subsequently activated by at least one or more delayed drive frequencies 706 or 708. The phase delay in drive frequencies allows for focusing of acoustical energy to occur both tangentially 720 and axially 730.
The drive frequencies 704, 706, 708 transmitted to variable depth transducer 702 may comprise substantially similar frequencies and/or different frequencies, wherein all frequencies are in the moderate range, i.e., between approximately 750 kHz to 20 MHz. The delay between drive frequencies 704, 706, 708 may range from 0 ms to approximately a full period or the drive frequency. For example, the delay may comprise zero or approximately 1/1000th of a drive frequency period up to 15/16.sup.th, 31/32.sup.nd or more of a drive frequency period, with variations comprising any fraction of a full wavelength in time delay.
Electronic phase delay focusing of variable depth transducer 702 may be done tangentially and/or axially. For example, drive frequencies 704, 706, 708 and/or the phase associated with drive frequencies 704, 706, 708 may be varied to provide focusing tangentially and/or axially. In accordance with an exemplary embodiment, variable depth transducer 702 may comprise subapertures that may be turned on and off to also provide focusing tangentially and/or axially. Phased focusing may prevent over-treatment of a region of interest by automating the focus and treatment times for a treatment region. Thus, for example, electronic control of variable depth transducer 702 may be facilitated by shunting various subapertures together to control the effective acoustic size of the source/receiver.
Thus, an exemplary transducer system can comprise a variable depth transducer 502, 602, 702 or any other transducer configuration for providing control and focus of acoustical and radiation energy to more than one region of interest within a patient. Such an exemplary transducer system can comprise a transducer configured with or coupled to a variable depth device or feature to provide energy to more than one region of interest. Moreover, an exemplary transducer system can provide treatment to superficial regions and/or to subcutaneous regions that are more commonly addressed in cosmetic applications with an operating frequency range below 30 MHz, or more, even from approximately 750 kHz to 8 MHz that is not attainable by prior art low-frequency transducers.
In accordance with another aspect of the present invention, a variable depth acoustic transducer can also be configured for generating high acoustic power for treatment purposes, while also providing for good imaging capabilities. To allow for the treatment spot size to be optimally controlled at various treatment depths, an exemplary embodiment of the present invention may comprise a transducer configured into an array of sub-elements.
For example, in accordance with an exemplary embodiment with reference again to
In accordance with another exemplary embodiment of the present invention, an exemplary variable depth transducer system 300 may be configured to enable energy deposition not only proximate a fundamental frequency of a piezoelectric material within the transduction element, but also at other frequencies, such as harmonic frequencies of the material, above a fundamental frequency, as well as resonances below a fundamental frequency. These harmonic and below fundamental resonances may be controlled and enabled through various focusing techniques and transducer structures, including the adding of matching layers and/or backing layers to shape the resonant characteristics of the transducer.
For example, energy can be suitably provided to a treatment region at a frequency near the peak acoustic output or peak acoustic transmit efficiency of transducer 302 when a piezoelectrically active material is driven near its fundamental frequency. Different sized and shaped piezoelectric materials have different fundamental frequencies for various electrode configurations. In accordance with an exemplary embodiment, energy can also be deposited when the piezoelectric material is driven above its fundamental frequency, e.g., at harmonics, or when driven below the fundamental frequency. The use of the multiple frequency characteristics of transducer 302 may be controlled and enabled through various transducer configurations, acoustic control and/or focusing techniques.
In accordance with an exemplary embodiment, the multiple frequencies may be enabled through the concentration of acoustic energy through the variable depth device 306. Enablement of the multiple frequencies allows for treatment at various depths corresponding to the different frequencies. For example, with additional reference to the acoustic output versus frequency curve illustrated in
In accordance with another aspect of the invention, the variable depth transducer 302 may be configured to provide one, two or three-dimensional treatment applications for focusing acoustic energy to one or more regions of interest. For example, as discussed above, variable depth transducer 302 can be suitably diced to form a one-dimensional array, e.g., transducer 602 comprising a single array of sub-transduction elements.
In accordance with another exemplary embodiment, variable depth transducer 302 may be suitably diced in two-dimensions to form a two-dimensional array. For example, with reference to
In accordance with another exemplary embodiment, variable depth transducer 302 may be suitably configured to provide three-dimensional treatment. For example, to provide-three dimensional treatment of a region of interest, with reference again to
In accordance with an exemplary embodiment, with reference again to
Alternatively, rather than utilizing an adaptive algorithm, such as three-dimensional software, to provide three-dimensional imaging and/or temperature information, an exemplary three-dimensional system can comprise a single variable depth transducer 302 configured within a probe arrangement to operate from various rotational and/or translational positions relative to a target region.
For example, with reference to
Probe 1010 may be configured to rotate around an axis 1016 to provide three-dimensional information. The rotational movement can comprise movement in either a clockwise or counterclockwise direction, or both. Further, the rotational movement could include complete or partial rotations. Thus, the rotational movement could include movement between only two positions, or between any other number of rotational positions. Still further, probe 1010 can be configured to translate or sweep along axis 1016 to provide a larger field-of-view and this facilitate additional three-dimensional information. Accordingly, the probe system 1000 may comprise rotational and/or translational movement suitably configured to provide three-dimensional information.
Rotational and/or translational movement of probe 1010 may be controlled by maximally placing probe 100 in various desired rotational positions around the treatment region 1014. The movement of variable depth transducer 302 within probe 1010 in various rotational and/or translational positions can also be controlled by any mechanical scanning device now known or hereinafter devised for automated movement. For example, with reference to an exemplary embodiment illustrated in
Probe 1110 may comprise a variable depth transducer system, such as variable depth transducer 302 configured with variable depth device 306. Movement of probe 1110 is mechanically provided through the operation of robotic arm 1112. Robotic arm 1112 may comprise one or more sub-segments that allow precise movement and precise measurement of position in one or more up to any direction. Robotic arm 1112 may be driven by control system 1114. Control system 1114 may comprise a drive box, gears or any other device for providing mechanical movement of robotic arm 1112. Control system 1114 may also comprise a processor, a display, and/or an input/output device. Probe 1110 may be further coupled to control system 1114 through a wire or optical cable configured alongside or within robotic arm 1112, a wireless connection, or any other device capable of sending and/or receiving information from control system 1114 to variable depth transducer 302 and variable depth device 306 housed within niche 1110.
Control system 1114 may provide movement and control of robotic arm 1112 with up to six degrees of freedom. Control system 1114 rosy allow fin movement of robotic arm 1112 to be referenced with one or more fixed positions in space. Control system 1114 may also allow for movement of robotic arm 1112 to be referenced with one or more fixed positions on a patient.
While the three-dimensional systems may include a single acoustic transducer configured with a two-dimensional array 900 and an adaptive algorithm to provide three-dimensional imaging, temperature monitoring and therapeutic heating to a treatment region; the three-dimensional system may also be configured to include both an adaptive algorithm and rotational and/or translational movement to provide additional information. As such, an even larger area of treatment may be obtained through the use of both the adaptive algorithm and the rotational and/or translational movement.
Continuing with this example, the three-dimensional system can be suitably configured to capture imaging and temperature information and provide therapeutic heating from variable depth transducer 302 once variable depth transducer 302 becomes fixedly maintained at various rotational positions. The three-dimensional system can also be suitably configured to capture imaging and temperature information and provide therapeutic heating just prior to, or just after, becoming fixedly positioned. The three-dimensional system can also be configured to capture imaging and temperature information and provide therapy during movement around the various rotational positions.
In addition to one, two or three-dimensional arrays, an exemplary variable depth transducer can also be configured within an annular array to provide planar, focused and/or defocused acoustical energy to more than one region of interest. For example, in accordance with an exemplary embodiment, with reference to
In accordance with another exemplary embodiment of the present invention, exemplary variable depth treatment system and method may also be configured to provide therapeutic heating, cooling and/or imaging of a treatment region as well as acoustically monitoring the temperature profile or other tissue parameter monitoring of the treatment region and the general vicinity thereof. In accordance with an exemplary embodiment, an exemplary variable depth system may be configured with a dynamic feedback arrangement based on monitoring of temperature or other tissue parameters, and/or based on imaging information to suitably adjust the spatial and/or temporal characteristics of the variable depth transducer. Such imaging and other temperature or tissue parameter information can be suitably collected from ultrasound signals transmitted from an exemplary variable depth transducer, or from separate devices configured for collecting such information, e.g., a laser device configured with a receiver for profiling temperature, imaging or other such information.
For example, with reference again to
Feedback information may be suitably generated or provided by any one or more acoustical sources, such as B-scan images, A-lines, Doppler or color flow images, surface acoustic wave devices, hydrophones, elasticity measurement, or shear wave based devices. In addition, optical sources can also be utilized, such as video and/or infrared cameras, laser Doppler imagers, optical coherence tomography hungers, and temperature sensors. Further, feedback information can also be suitably provided by semiconductors, such as thermistors or solid state temperature sensors, by electronic and electromagnetic sensors, such as impedance and capacitance measurement devices and/or thermocouples, and by mechanical sensors, such as stiffness gages, strain gages or stress measurement sensors, or any suitably combination thereof. Moreover, various other switches, acoustic or other sensing mechanisms and methods may be suitably employed to enable transducer 402 to be acoustically coupled to one or more regions of interest.
The present invention has been described above with reference to various exemplary embodiments. However those skilled in the art will recognize that changes and modifications may be made to the exemplary embodiments without departing from the scope of the present invention. For example, the various operational steps, as well as the components for carrying out the operational steps, may be implemented in alternate ways depending upon the particular application or in consideration of any number of cost functions associated with the operation of the system, e.g. various of the steps may be deleted, modified, or combined with other steps. Further, it should be noted that while the method and system for ultrasound treatment with a variable depth transducer as described above is suitable for use by a medical practitioner proximate the patient, the system can also be accessed remotely, i.e., the medical practitioner can view through a remote display having imaging information transmitted in various manners of communication, such as by satellite/wireless or by wired connections such as IP or digital cable networks and the like, and can direct a local practitioner as to the suitable placement for the transducer. Moreover, while the various exemplary embodiments may comprise non-invasive configurations, an exemplary variable depth transducer system can also be configured for at least some level of invasive treatment application. These and other changes or modifications are intended to be included within the scope of the present invention, as set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 12/834,754 entitled “SYSTEM AND METHOD FOR VARIABLE DEPTH ULTRASOUND TREATMENT” filed on Jul. 12, 2010, issued as U.S. Pat. No. 8,708,915 on Apr. 29, 2014, which is a continuation of U.S. patent application Ser. No. 10/944,500 entitled “SYSTEM AND METHOD FOR VARIABLE DEPTH ULTRASOUND TREATMENT” filed on Sep. 16, 2004, issued as U.S. Pat. No. 7,824,348 on Nov. 2, 2010, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2427348 | Bond et al. | Sep 1947 | A |
3913386 | Saglio | Oct 1975 | A |
3965455 | Hurwitz | Jun 1976 | A |
3992925 | Perilhou | Nov 1976 | A |
4039312 | Patru | Aug 1977 | A |
4059098 | Murdock | Nov 1977 | A |
4101795 | Fukumoto | Jul 1978 | A |
4166967 | Benes et al. | Sep 1979 | A |
4211948 | Brisken et al. | Jul 1980 | A |
4211949 | Brisken et al. | Jul 1980 | A |
4213344 | Rose | Jul 1980 | A |
4276491 | Daniel | Jun 1981 | A |
4315514 | Drewes et al. | Feb 1982 | A |
4325381 | Glenn | Apr 1982 | A |
4343301 | Indech | Aug 1982 | A |
4372296 | Fahim | Feb 1983 | A |
4379145 | Masuho et al. | Apr 1983 | A |
4381007 | Doss | Apr 1983 | A |
4381787 | Hottinger | May 1983 | A |
4397314 | Vaguine | Aug 1983 | A |
4409839 | Tanezer | Oct 1983 | A |
4431008 | Wanner et al. | Feb 1984 | A |
4441486 | Pounds | Apr 1984 | A |
4452084 | Taenzer | Jun 1984 | A |
4484569 | Driller et al. | Nov 1984 | A |
4507582 | Glenn | Mar 1985 | A |
4513749 | Kino | Apr 1985 | A |
4513750 | Heyman et al. | Apr 1985 | A |
4527550 | Ruggers et al. | Jul 1985 | A |
4528979 | Marchenko | Jul 1985 | A |
4534221 | Fife et al. | Aug 1985 | A |
4566459 | Umemura et al. | Jan 1986 | A |
4567895 | Putzke | Feb 1986 | A |
4586512 | Do-Huu | May 1986 | A |
4601296 | Yerushalmi | Jul 1986 | A |
4620546 | Aida et al. | Nov 1986 | A |
4637256 | Sugiyama et al. | Jan 1987 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4663358 | Hyon | May 1987 | A |
4668516 | Duraffourd et al. | May 1987 | A |
4672591 | Breimesser et al. | Jun 1987 | A |
4680499 | Umemura et al. | Jul 1987 | A |
4697588 | Reichenberger | Oct 1987 | A |
4754760 | Fukukita et al. | Jul 1988 | A |
4757820 | Itoh | Jul 1988 | A |
4771205 | Mequio | Sep 1988 | A |
4801459 | Liburdy | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4807633 | Fry | Feb 1989 | A |
4817615 | Fukukita et al. | Apr 1989 | A |
4858613 | Fry et al. | Aug 1989 | A |
4860732 | Hasegawa et al. | Aug 1989 | A |
4865041 | Hassler | Sep 1989 | A |
4865042 | Umemura | Sep 1989 | A |
4867169 | Machida | Sep 1989 | A |
4874562 | Hyon | Oct 1989 | A |
4875487 | Seppi | Oct 1989 | A |
4891043 | Zeimer et al. | Jan 1990 | A |
4893624 | Lele | Jan 1990 | A |
4896673 | Rose | Jan 1990 | A |
4900540 | Ryan et al. | Feb 1990 | A |
4901729 | Saitoh et al. | Feb 1990 | A |
4917096 | Englehart | Apr 1990 | A |
4973096 | Jaworski | Apr 1990 | A |
4932414 | Coleman et al. | Jun 1990 | A |
4938216 | Lele | Jul 1990 | A |
4938217 | Lele | Jul 1990 | A |
4947046 | Kawabata et al. | Aug 1990 | A |
4951653 | Fry et al. | Aug 1990 | A |
4955365 | Fry et al. | Sep 1990 | A |
4958626 | Nambu | Sep 1990 | A |
4976709 | Sand | Dec 1990 | A |
4979501 | Valchanov | Dec 1990 | A |
4992989 | Watanabe et al. | Feb 1991 | A |
5012797 | Liang | May 1991 | A |
5018508 | Fry et al. | May 1991 | A |
5030874 | Saito et al. | Jul 1991 | A |
5036855 | Fry et al. | Aug 1991 | A |
5040537 | Katakura | Aug 1991 | A |
5054310 | Flynn | Oct 1991 | A |
5054470 | Fry et al. | Oct 1991 | A |
5070879 | Herres | Dec 1991 | A |
5088495 | Miyagawa | Feb 1992 | A |
5115814 | Griffith | May 1992 | A |
5117832 | Sanghvi et al. | Jun 1992 | A |
5123418 | Saurel | Jun 1992 | A |
5143063 | Feltner | Sep 1992 | A |
5143074 | Dory | Sep 1992 | A |
5149319 | Unger | Sep 1992 | A |
5150711 | Dory | Sep 1992 | A |
5150714 | Green | Sep 1992 | A |
5152294 | Mochizuki et al. | Oct 1992 | A |
5156144 | Iwasaki | Oct 1992 | A |
5158536 | Sekins | Oct 1992 | A |
5159931 | Pini | Nov 1992 | A |
5163421 | Bernstein | Nov 1992 | A |
5163436 | Saitoh et al. | Nov 1992 | A |
5178135 | Uchiyama et al. | Jan 1993 | A |
5190518 | Takasu | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5191880 | McLeod | Mar 1993 | A |
5205287 | Erbel et al. | Apr 1993 | A |
5209720 | Unger | May 1993 | A |
5212671 | Fujii et al. | May 1993 | A |
5215680 | Arrigo | Jun 1993 | A |
5224467 | Oku | Jul 1993 | A |
5230334 | Klopotek | Jul 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5247924 | Suzuki et al. | Sep 1993 | A |
5255681 | Ishimura et al. | Oct 1993 | A |
5257970 | Dougherty | Nov 1993 | A |
5265614 | Hayakawa | Nov 1993 | A |
5267985 | Shimada et al. | Dec 1993 | A |
5269297 | Weng | Dec 1993 | A |
5282797 | Chess | Feb 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5295486 | Wollschlaeger et al. | Mar 1994 | A |
5304169 | Sand | Apr 1994 | A |
5305756 | Entrekin et al. | Apr 1994 | A |
5321520 | Inga et al. | Jun 1994 | A |
5323779 | Hardy et al. | Jun 1994 | A |
5327895 | Hashimoto et al. | Jul 1994 | A |
5348016 | Unger et al. | Sep 1994 | A |
5360268 | Hayashi | Nov 1994 | A |
5370121 | Reichenberger et al. | Dec 1994 | A |
5371483 | Bhardwaj | Dec 1994 | A |
5375602 | Lancee et al. | Dec 1994 | A |
5379773 | Hornsby | Jan 1995 | A |
5380280 | Peterson | Jan 1995 | A |
5380519 | Schneider et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5391140 | Schaetzle et al. | Feb 1995 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5392259 | Bolorforosh | Feb 1995 | A |
5396143 | Seyed-Bolorforosh et al. | Mar 1995 | A |
5398689 | Connor et al. | Mar 1995 | A |
5406503 | Williams, Jr. et al. | Apr 1995 | A |
5417216 | Tanaka | May 1995 | A |
5419327 | Rohwedder | May 1995 | A |
5423220 | Finsterwald et al. | Jun 1995 | A |
5435311 | Umemura et al. | Jul 1995 | A |
5438998 | Hanafy | Aug 1995 | A |
5458596 | Lax | Oct 1995 | A |
5460179 | Okunuki et al. | Oct 1995 | A |
5460595 | Hall et al. | Oct 1995 | A |
5469854 | Unger et al. | Nov 1995 | A |
5471488 | Fujio | Dec 1995 | A |
5487388 | Rello et al. | Jan 1996 | A |
5492126 | Hennige et al. | Feb 1996 | A |
5496256 | Bock | Mar 1996 | A |
5501655 | Rolt et al. | Mar 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5520188 | Hennige | May 1996 | A |
5522869 | Burdette et al. | Jun 1996 | A |
5523058 | Umemura | Jun 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5524624 | Tepper | Jun 1996 | A |
5524625 | Okazaki et al. | Jun 1996 | A |
5526624 | Berg | Jun 1996 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5526814 | Cline et al. | Jun 1996 | A |
5526815 | Granz et al. | Jun 1996 | A |
5529070 | Augustine et al. | Jun 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5560362 | Sliwa et al. | Oct 1996 | A |
5575291 | Hayakawa | Nov 1996 | A |
5575807 | Faller | Nov 1996 | A |
5577502 | Darrow et al. | Nov 1996 | A |
5577507 | Snyder et al. | Nov 1996 | A |
5577991 | Akui et al. | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5603323 | Pflugrath et al. | Feb 1997 | A |
5609562 | Kaali | Mar 1997 | A |
5615091 | Palatnik | Mar 1997 | A |
5617858 | Taverna et al. | Apr 1997 | A |
5618275 | Bock | Apr 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5622175 | Sudol et al. | Apr 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5643179 | Fujimoto | Jul 1997 | A |
5644085 | Lorraine et al. | Jul 1997 | A |
5647373 | Paltieli | Jul 1997 | A |
5655535 | Friemel et al. | Aug 1997 | A |
5655538 | Lorraine | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5658328 | Johnson | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662116 | Kondo et al. | Sep 1997 | A |
5665053 | Jacobs | Sep 1997 | A |
5665141 | Vago | Sep 1997 | A |
5671746 | Dreschel et al. | Sep 1997 | A |
5673699 | Trahey et al. | Oct 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5687737 | Branham et al. | Nov 1997 | A |
5690608 | Watanabe | Nov 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5697897 | Buchholtz et al. | Dec 1997 | A |
5701900 | Shehada et al. | Dec 1997 | A |
5704361 | Seward et al. | Jan 1998 | A |
5706252 | Le Verrier et al. | Jan 1998 | A |
5706564 | Rhyne | Jan 1998 | A |
5715823 | Wood et al. | Feb 1998 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5722411 | Suzuki et al. | Mar 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5746005 | Steinberg | May 1998 | A |
5746762 | Bass | May 1998 | A |
5748767 | Raab | May 1998 | A |
5749364 | Sliwa et al. | May 1998 | A |
5755228 | Wilson et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5763886 | Schulte | Jun 1998 | A |
5769790 | Watkins et al. | Jun 1998 | A |
5779644 | Eberle et al. | Jul 1998 | A |
5792058 | Lee et al. | Aug 1998 | A |
5795297 | Daigle | Aug 1998 | A |
5795311 | Wess | Aug 1998 | A |
5810009 | Mine et al. | Sep 1998 | A |
5810888 | Fenn | Sep 1998 | A |
5814599 | Mitragotri et al. | Sep 1998 | A |
5817013 | Ginn et al. | Oct 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5820564 | Slayton | Oct 1998 | A |
5823962 | Schaetzle et al. | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5839751 | Bonin | Nov 1998 | A |
5840032 | Hatfield et al. | Nov 1998 | A |
5844140 | Seale | Dec 1998 | A |
5853367 | Chalek et al. | Dec 1998 | A |
5869751 | Bonin | Feb 1999 | A |
5871524 | Knowlton | Feb 1999 | A |
5873902 | Sanghvi et al. | Feb 1999 | A |
5876431 | Spehr et al. | Mar 1999 | A |
5879303 | Averkiou et al. | Mar 1999 | A |
5882557 | Hayakawa | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5899861 | Friemel et al. | May 1999 | A |
5904659 | Duarte | May 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5923099 | Bilir | Jul 1999 | A |
5924989 | Polz | Jul 1999 | A |
5928169 | Schaetzle et al. | Jul 1999 | A |
5931805 | Brisken | Aug 1999 | A |
5938606 | Bonnefous | Aug 1999 | A |
5938612 | Kline-Schoder | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5957844 | Dekel | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5968034 | Fulmer | Oct 1999 | A |
5971949 | Levin | Oct 1999 | A |
5977538 | Unger et al. | Nov 1999 | A |
5984882 | Rosenschein et al. | Nov 1999 | A |
5990598 | Sudol et al. | Nov 1999 | A |
5992236 | White | Nov 1999 | A |
5997471 | Gumb et al. | Dec 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
5999843 | Anbar | Dec 1999 | A |
6004262 | Putz et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6013032 | Savord | Jan 2000 | A |
6016255 | Bolan et al. | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6022308 | Williams | Feb 2000 | A |
6022327 | Chang | Feb 2000 | A |
6036646 | Barthe | Mar 2000 | A |
6039048 | Silberg | Mar 2000 | A |
6039689 | Lizzi | Mar 2000 | A |
6042556 | Beach | Mar 2000 | A |
6049159 | Barthe | Apr 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6059727 | Fowlkes | May 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6080108 | Dunham | Jun 2000 | A |
6083148 | Williams | Jul 2000 | A |
6086535 | Ishibashi et al. | Jul 2000 | A |
6086580 | Mordon et al. | Jul 2000 | A |
6090054 | Tagishi | Jul 2000 | A |
6093883 | Sanghvi | Jul 2000 | A |
6101407 | Groezinger | Aug 2000 | A |
6106469 | Suzuki et al. | Aug 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6120452 | Barthe | Sep 2000 | A |
6123081 | Durette | Sep 2000 | A |
6126619 | Peterson et al. | Oct 2000 | A |
6135971 | Hutchinson et al. | Oct 2000 | A |
6139499 | Wilk | Oct 2000 | A |
6159150 | Yale et al. | Dec 2000 | A |
6171244 | Finger et al. | Jan 2001 | B1 |
6176840 | Nishimura | Jan 2001 | B1 |
6183426 | Akisada | Feb 2001 | B1 |
6183502 | Takeuchi | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6190323 | Digs | Feb 2001 | B1 |
6190336 | Duarte | Feb 2001 | B1 |
6193658 | Wendelken et al. | Feb 2001 | B1 |
6210327 | Brackett et al. | Apr 2001 | B1 |
6213948 | Barthe | Apr 2001 | B1 |
6216029 | Paltieli | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6234990 | Rowe et al. | May 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6251074 | Averkiou | Jun 2001 | B1 |
6251088 | Kaufman et al. | Jun 2001 | B1 |
6268405 | Yao | Jul 2001 | B1 |
6273864 | Duarte | Aug 2001 | B1 |
6280402 | Ishibashi et al. | Aug 2001 | B1 |
6287257 | Matichuk | Sep 2001 | B1 |
6296619 | Brisken | Oct 2001 | B1 |
6301989 | Brown et al. | Oct 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6315741 | Martin | Nov 2001 | B1 |
6322509 | Pan et al. | Nov 2001 | B1 |
6322532 | D'Sa | Nov 2001 | B1 |
6325540 | Lounsberry et al. | Dec 2001 | B1 |
6325758 | Carol et al. | Dec 2001 | B1 |
6325769 | Klopotek | Dec 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6338716 | Hossack et al. | Jan 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6356780 | Licato et al. | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6370411 | Osadchy et al. | Apr 2002 | B1 |
6375672 | Aksan | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6390982 | Bova et al. | May 2002 | B1 |
6405090 | Knowlton | Jun 2002 | B1 |
6409720 | Hissong | Jun 2002 | B1 |
6413216 | Cain et al. | Jul 2002 | B1 |
6413253 | Koop | Jul 2002 | B1 |
6413254 | Hissong | Jul 2002 | B1 |
6419648 | Vitek | Jul 2002 | B1 |
6423007 | Lizzi et al. | Jul 2002 | B2 |
6425865 | Salcudean | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6428477 | Mason | Aug 2002 | B1 |
6428532 | Doukas | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432057 | Mazess et al. | Aug 2002 | B1 |
6432067 | Martin et al. | Aug 2002 | B1 |
6432101 | Weber | Aug 2002 | B1 |
6436061 | Costantino | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6440071 | Slayton | Aug 2002 | B1 |
6440121 | Weber | Aug 2002 | B1 |
6443914 | Constantino | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6488626 | Lizzi et al. | Dec 2002 | B1 |
6491657 | Rowe | Dec 2002 | B2 |
6500121 | Slayton | Dec 2002 | B1 |
6500141 | Ilion | Dec 2002 | B1 |
6508774 | Acker et al. | Jan 2003 | B1 |
6511427 | Sliwa, Jr. et al. | Jan 2003 | B1 |
6511428 | Azuma | Jan 2003 | B1 |
6514244 | Pope | Feb 2003 | B2 |
6517484 | Wilk et al. | Feb 2003 | B1 |
6524250 | Weber | Feb 2003 | B1 |
6666835 | Martin | Mar 2003 | B2 |
6540679 | Slayton | Apr 2003 | B2 |
6540685 | Rhoads et al. | Apr 2003 | B1 |
6540700 | Fujimoto et al. | Apr 2003 | B1 |
6554771 | Buil et al. | Apr 2003 | B1 |
6569099 | Babaev | May 2003 | B1 |
6569108 | Sarvazyan et al. | May 2003 | B2 |
6572552 | Fukukita | Jun 2003 | B2 |
6575956 | Brisken et al. | Jun 2003 | B1 |
6595934 | Hissong | Jul 2003 | B1 |
6599256 | Acker | Jul 2003 | B1 |
6607498 | Eshel | Aug 2003 | B2 |
6618620 | Freundlich et al. | Sep 2003 | B1 |
6623430 | Slayton | Sep 2003 | B1 |
6626854 | Friedman | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6638226 | He et al. | Oct 2003 | B2 |
6645162 | Friedman | Nov 2003 | B2 |
6662054 | Kreindel | Dec 2003 | B2 |
6663627 | Francischelli | Dec 2003 | B2 |
6665806 | Shimizu | Dec 2003 | B1 |
6669638 | Miller et al. | Dec 2003 | B1 |
6685640 | Fry | Feb 2004 | B1 |
6692450 | Coleman | Feb 2004 | B1 |
6699237 | Weber | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6719449 | Laughlin | Apr 2004 | B1 |
6719694 | Weng et al. | Apr 2004 | B2 |
6726627 | Lizzi et al. | Apr 2004 | B1 |
6825176 | Mourad | Apr 2004 | B2 |
6733449 | Krishnamurthy et al. | May 2004 | B1 |
6749624 | Knowlton | Jun 2004 | B2 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6775404 | Pagoulatos et al. | Aug 2004 | B1 |
6790187 | Thompson et al. | Sep 2004 | B2 |
6824516 | Batten et al. | Nov 2004 | B2 |
6835940 | Morikawa et al. | Dec 2004 | B2 |
6846290 | Lizzi et al. | Jan 2005 | B2 |
6875176 | Mourad et al. | Apr 2005 | B2 |
6882884 | Mosk et al. | Apr 2005 | B1 |
6887239 | Elstrom et al. | May 2005 | B2 |
6889089 | Behl | May 2005 | B2 |
6896657 | Willis | May 2005 | B2 |
6902536 | Manna et al. | Jun 2005 | B2 |
6905466 | Salgo | Jun 2005 | B2 |
6918907 | Kelly | Jul 2005 | B2 |
6920883 | Bessette | Jul 2005 | B2 |
6921371 | Wilson | Jul 2005 | B2 |
6932771 | Whitmore | Aug 2005 | B2 |
6932814 | Wood | Aug 2005 | B2 |
6936044 | McDaniel | Aug 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6945937 | Culp et al. | Sep 2005 | B2 |
6948843 | Laugharn et al. | Sep 2005 | B2 |
6953941 | Nakano et al. | Oct 2005 | B2 |
6958043 | Hissong | Oct 2005 | B2 |
6971994 | Young et al. | Dec 2005 | B1 |
6974417 | Lockwood et al. | Dec 2005 | B2 |
6976492 | Ingle | Dec 2005 | B2 |
6992305 | Maezawa et al. | Jan 2006 | B2 |
6997923 | Anderson | Feb 2006 | B2 |
7006874 | Knowlton | Feb 2006 | B2 |
7020528 | Neev | Mar 2006 | B2 |
7022089 | Ooba | Apr 2006 | B2 |
7058440 | Heuscher et al. | Jun 2006 | B2 |
7063666 | Weng | Jun 2006 | B2 |
7070565 | Vaezy et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7094252 | Koop | Aug 2006 | B2 |
7108663 | Talish et al. | Sep 2006 | B2 |
7115123 | Knowlton | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7142905 | Slayton | Nov 2006 | B2 |
7165451 | Brooks et al. | Jan 2007 | B1 |
7179238 | Hissong | Feb 2007 | B2 |
7189230 | Knowlton | Mar 2007 | B2 |
7229411 | Slayton | Jun 2007 | B2 |
7235592 | Muratoglu | Jun 2007 | B2 |
7258674 | Cribbs | Aug 2007 | B2 |
7273459 | Desilets | Sep 2007 | B2 |
7294125 | Phalen et al. | Nov 2007 | B2 |
7297117 | Trucco | Nov 2007 | B2 |
7303555 | Makin et al. | Dec 2007 | B2 |
7327071 | Nishiyama et al. | Feb 2008 | B2 |
7331951 | Eshel et al. | Feb 2008 | B2 |
7332985 | Larson, III et al. | Feb 2008 | B2 |
7347855 | Eshel | Mar 2008 | B2 |
RE40403 | Cho et al. | Jun 2008 | E |
7393325 | Barthe | Jul 2008 | B2 |
7398116 | Edwards | Jul 2008 | B2 |
7399279 | Abend et al. | Jul 2008 | B2 |
7491171 | Barthe et al. | Feb 2009 | B2 |
7510536 | Foley et al. | Mar 2009 | B2 |
7530356 | Slayton | May 2009 | B2 |
7530958 | Slayton | May 2009 | B2 |
7571336 | Barthe | Aug 2009 | B2 |
7601120 | Moilanen et al. | Oct 2009 | B2 |
7615015 | Coleman | Nov 2009 | B2 |
7615016 | Barthe | Nov 2009 | B2 |
7686763 | Vaezy et al. | Mar 2010 | B2 |
7695437 | Quistgaard et al. | Apr 2010 | B2 |
7758524 | Barthe | Jul 2010 | B2 |
7789841 | Huckle et al. | Sep 2010 | B2 |
7824348 | Barthe | Nov 2010 | B2 |
7846096 | Mast et al. | Dec 2010 | B2 |
7857773 | Desilets et al. | Dec 2010 | B2 |
7875023 | Eshel et al. | Jan 2011 | B2 |
7914453 | Slayton et al. | Mar 2011 | B2 |
7914469 | Torbati | Mar 2011 | B2 |
7931611 | Novak et al. | Apr 2011 | B2 |
7955281 | Pedersen et al. | Jun 2011 | B2 |
7967764 | Lidgren et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
8057389 | Barthe et al. | Nov 2011 | B2 |
8057465 | Sliwa, Jr. et al. | Nov 2011 | B2 |
8066641 | Barthe et al. | Nov 2011 | B2 |
8123707 | Huckle et al. | Feb 2012 | B2 |
8128618 | Gliklich et al. | Mar 2012 | B2 |
8133180 | Slayton et al. | Mar 2012 | B2 |
8133191 | Rosenberg et al. | Mar 2012 | B2 |
8166332 | Barthe et al. | Apr 2012 | B2 |
8197409 | Foley et al. | Jun 2012 | B2 |
8206299 | Foley et al. | Jun 2012 | B2 |
8211017 | Foley et al. | Jul 2012 | B2 |
8262591 | Pedersen et al. | Sep 2012 | B2 |
8273037 | Kreindel et al. | Sep 2012 | B2 |
8282554 | Makin et al. | Oct 2012 | B2 |
8333700 | Barthe et al. | Dec 2012 | B1 |
8366622 | Slayton et al. | Feb 2013 | B2 |
8409097 | Slayton et al. | Apr 2013 | B2 |
8444562 | Barthe et al. | May 2013 | B2 |
8480585 | Slayton et al. | Jul 2013 | B2 |
8506486 | Slayton et al. | Aug 2013 | B2 |
8523775 | Barthe et al. | Sep 2013 | B2 |
8535228 | Slayton et al. | Sep 2013 | B2 |
8585618 | Hunziker et al. | Nov 2013 | B2 |
8636665 | Slayton et al. | Jan 2014 | B2 |
8641622 | Barthe et al. | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
8672848 | Slayton et al. | Mar 2014 | B2 |
8690778 | Slayton et al. | Apr 2014 | B2 |
8690779 | Slayton et al. | Apr 2014 | B2 |
8690780 | Slayton et al. | Apr 2014 | B2 |
8708935 | Barthe et al. | Apr 2014 | B2 |
8715186 | Slayton et al. | May 2014 | B2 |
8726781 | Eckhoff et al. | May 2014 | B2 |
20010009997 | Pope | Jul 2001 | A1 |
20010009999 | Kaufman et al. | Jul 2001 | A1 |
20010014780 | Martin et al. | Aug 2001 | A1 |
20010014819 | Ingle et al. | Aug 2001 | A1 |
20010031922 | Weng et al. | Oct 2001 | A1 |
20010039380 | Larson et al. | Nov 2001 | A1 |
20010041880 | Brisken | Nov 2001 | A1 |
20020000763 | Jones | Jan 2002 | A1 |
20020002345 | Marlinghaus | Jan 2002 | A1 |
20020040199 | Klopotek | Apr 2002 | A1 |
20020040442 | Ishidera | Apr 2002 | A1 |
20020052550 | Madsen et al. | May 2002 | A1 |
20020055702 | Atala | May 2002 | A1 |
20020062077 | Emmenegger et al. | May 2002 | A1 |
20020062142 | Knowlton | May 2002 | A1 |
20020072691 | Thompson et al. | Jun 2002 | A1 |
20020082528 | Friedman et al. | Jun 2002 | A1 |
20020082529 | Suorsa et al. | Jun 2002 | A1 |
20020082589 | Friedman et al. | Jun 2002 | A1 |
20020087080 | Slayton et al. | Jul 2002 | A1 |
20020095143 | Key | Jul 2002 | A1 |
20020099094 | Anderson | Jul 2002 | A1 |
20020115917 | Honda et al. | Aug 2002 | A1 |
20020128648 | Weber | Sep 2002 | A1 |
20020143252 | Dunne et al. | Oct 2002 | A1 |
20020156400 | Babaev | Oct 2002 | A1 |
20020161357 | Anderson | Oct 2002 | A1 |
20020165529 | Danek | Nov 2002 | A1 |
20020168049 | Schriever | Nov 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20020169442 | Neev | Nov 2002 | A1 |
20020173721 | Grunwald et al. | Nov 2002 | A1 |
20020193784 | Mchale et al. | Dec 2002 | A1 |
20020193831 | Smith | Dec 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030014039 | Barzell et al. | Jan 2003 | A1 |
20030018255 | Martin | Jan 2003 | A1 |
20030028111 | Vaezy et al. | Feb 2003 | A1 |
20030028113 | Gilbert et al. | Feb 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030036706 | Slayton | Feb 2003 | A1 |
20030040739 | Koop | Feb 2003 | A1 |
20030060736 | Martin et al. | Feb 2003 | A1 |
20030050678 | Sierra | Mar 2003 | A1 |
20030055417 | Truckai et al. | Mar 2003 | A1 |
20030040442 | Ishidera | Apr 2003 | A1 |
20030065313 | Koop | Apr 2003 | A1 |
20030074023 | Kaplan | Apr 2003 | A1 |
20030083536 | Eshel | May 2003 | A1 |
20030092988 | Makin | May 2003 | A1 |
20030097071 | Halmann et al. | May 2003 | A1 |
20030099383 | Lefebvre | May 2003 | A1 |
20030125629 | Ustuner | Jul 2003 | A1 |
20030139790 | Ingle et al. | Jul 2003 | A1 |
20030171678 | Batten et al. | Sep 2003 | A1 |
20030171701 | Babaev | Sep 2003 | A1 |
20030176790 | Slayton | Sep 2003 | A1 |
20030191396 | Sanghvi | Oct 2003 | A1 |
20030200481 | Stanley | Oct 2003 | A1 |
20030212129 | Liu et al. | Nov 2003 | A1 |
20030212351 | Hissong | Nov 2003 | A1 |
20030212393 | Knowlton | Nov 2003 | A1 |
20030216795 | Harth | Nov 2003 | A1 |
20030220536 | Hissong | Nov 2003 | A1 |
20030220585 | Hissong | Nov 2003 | A1 |
20030229331 | Brisken et al. | Dec 2003 | A1 |
20030233085 | Giammarusti | Dec 2003 | A1 |
20030236487 | Knowlton | Dec 2003 | A1 |
20040000316 | Knowlton | Jan 2004 | A1 |
20040001809 | Brisken | Jan 2004 | A1 |
20040002705 | Knowlton | Jan 2004 | A1 |
20040010222 | Nunomura et al. | Jan 2004 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040030227 | Littrup | Feb 2004 | A1 |
20040039312 | Hillstead | Feb 2004 | A1 |
20040039418 | Elstrom | Feb 2004 | A1 |
20040041563 | Lewin et al. | Mar 2004 | A1 |
20040041880 | Ikeda et al. | Mar 2004 | A1 |
20040042168 | Yang et al. | Mar 2004 | A1 |
20040044375 | Diederich et al. | Mar 2004 | A1 |
20040049134 | Tosaya et al. | Mar 2004 | A1 |
20040049734 | Simske | Mar 2004 | A1 |
20040059266 | Fry | Mar 2004 | A1 |
20040068186 | Ishida et al. | Apr 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040073113 | Salgo | Apr 2004 | A1 |
20040073115 | Horzewski et al. | Apr 2004 | A1 |
20040073116 | Smith | Apr 2004 | A1 |
20040073204 | Ryan et al. | Apr 2004 | A1 |
20040077977 | Ella et al. | Apr 2004 | A1 |
20040082857 | Schonenberger et al. | Apr 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040102697 | Evron | May 2004 | A1 |
20040105559 | Aylward et al. | Jun 2004 | A1 |
20040122323 | Vortman et al. | Jun 2004 | A1 |
20040122493 | Ishbashi et al. | Jun 2004 | A1 |
20040143297 | Ramsey | Jul 2004 | A1 |
20040152982 | Hwang et al. | Aug 2004 | A1 |
20040158150 | Rabiner et al. | Aug 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040189155 | Funakubo | Sep 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040217675 | Desilets | Nov 2004 | A1 |
20040249318 | Tanaka | Dec 2004 | A1 |
20040254620 | Lacoste et al. | Dec 2004 | A1 |
20040267252 | Washington et al. | Dec 2004 | A1 |
20050033201 | Takahashi | Feb 2005 | A1 |
20050033316 | Kertz | Feb 2005 | A1 |
20050038340 | Vaezy et al. | Feb 2005 | A1 |
20050055073 | Weber | Mar 2005 | A1 |
20050061834 | Garcia et al. | Mar 2005 | A1 |
20050070961 | Maki | Mar 2005 | A1 |
20050074407 | Smith | Apr 2005 | A1 |
20050080469 | Larson | Apr 2005 | A1 |
20050091770 | Mourad et al. | May 2005 | A1 |
20050096542 | Weng et al. | May 2005 | A1 |
20050104690 | Larson, III et al. | May 2005 | A1 |
20050113689 | Gritzky | May 2005 | A1 |
20050134314 | Prather et al. | Jun 2005 | A1 |
20050137656 | Malak | Jun 2005 | A1 |
20050143677 | Young et al. | Jun 2005 | A1 |
20050154313 | Desilets | Jul 2005 | A1 |
20050154314 | Quistgaard | Jul 2005 | A1 |
20050154332 | Zanelli | Jul 2005 | A1 |
20050154431 | Quistgaard | Jul 2005 | A1 |
20050187495 | Quistgaard | Aug 2005 | A1 |
20050191252 | Mitsui | Sep 2005 | A1 |
20050193451 | Quistgaard et al. | Sep 2005 | A1 |
20050197681 | Barolet et al. | Sep 2005 | A1 |
20050228281 | Nefos | Oct 2005 | A1 |
20050240170 | Zhang et al. | Oct 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20050256406 | Barthe | Nov 2005 | A1 |
20050261584 | Eshel | Nov 2005 | A1 |
20050261585 | Makin et al. | Nov 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20050288748 | Li et al. | Dec 2005 | A1 |
20060004306 | Altshuler | Jan 2006 | A1 |
20060020260 | Dover et al. | Jan 2006 | A1 |
20060025756 | Francischelli | Feb 2006 | A1 |
20060042201 | Curry | Mar 2006 | A1 |
20060058664 | Barthe | Mar 2006 | A1 |
20060058671 | Vitek et al. | Mar 2006 | A1 |
20060058707 | Barthe | Mar 2006 | A1 |
20060058712 | Altshuler et al. | Mar 2006 | A1 |
20060074309 | Bonnefous | Apr 2006 | A1 |
20060074313 | Slayton et al. | Apr 2006 | A1 |
20060074314 | Slayton | Apr 2006 | A1 |
20060074355 | Slayton | Apr 2006 | A1 |
20060079816 | Barthe | Apr 2006 | A1 |
20060079868 | Makin | Apr 2006 | A1 |
20060084891 | Barthe | Apr 2006 | A1 |
20060089632 | Barthe | Apr 2006 | A1 |
20060089688 | Panescu | Apr 2006 | A1 |
20060094988 | Tosaya et al. | May 2006 | A1 |
20060111744 | Makin | May 2006 | A1 |
20060116583 | Ogasawara et al. | Jun 2006 | A1 |
20060116671 | Slayton | Jun 2006 | A1 |
20060122508 | Slayton | Jun 2006 | A1 |
20060122509 | Desilets | Jun 2006 | A1 |
20060161062 | Arditi et al. | Jul 2006 | A1 |
20060184069 | Vaitekunas | Aug 2006 | A1 |
20060184071 | Klopotek | Aug 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060206105 | Chopra | Sep 2006 | A1 |
20060229514 | Wiener | Oct 2006 | A1 |
20060241440 | Eshel | Oct 2006 | A1 |
20060241442 | Barthe | Oct 2006 | A1 |
20060241470 | Novak et al. | Oct 2006 | A1 |
20060250046 | Koizumi et al. | Nov 2006 | A1 |
20060261584 | Eshel | Nov 2006 | A1 |
20060282691 | Barthe | Dec 2006 | A1 |
20060291710 | Wang et al. | Dec 2006 | A1 |
20070032784 | Gliklich et al. | Feb 2007 | A1 |
20070035201 | Desilets | Feb 2007 | A1 |
20070055154 | Torbati | Mar 2007 | A1 |
20070055155 | Owen et al. | Mar 2007 | A1 |
20070055156 | Desilets | Mar 2007 | A1 |
20070065420 | Johnson | Mar 2007 | A1 |
20070083120 | Cain et al. | Apr 2007 | A1 |
20070087060 | Dietrich | Apr 2007 | A1 |
20070088245 | Babaev et al. | Apr 2007 | A1 |
20070088346 | Mirizzi et al. | Apr 2007 | A1 |
20070161902 | Dan | Jul 2007 | A1 |
20070166357 | Shaffer et al. | Jul 2007 | A1 |
20070167709 | Slayton | Jul 2007 | A1 |
20070208253 | Slayton | Sep 2007 | A1 |
20070219604 | Yaroslaysky et al. | Sep 2007 | A1 |
20070219605 | Yaroslaysky et al. | Sep 2007 | A1 |
20070238994 | Stecco et al. | Oct 2007 | A1 |
20070239075 | Rosenberg et al. | Oct 2007 | A1 |
20070239079 | Manstein et al. | Oct 2007 | A1 |
20070239142 | Altshuler et al. | Oct 2007 | A1 |
20080027328 | Klopotek et al. | Jan 2008 | A1 |
20080039724 | Seip et al. | Feb 2008 | A1 |
20080071255 | Barthe | Mar 2008 | A1 |
20080086054 | Slayton | Apr 2008 | A1 |
20080097253 | Pederson | Apr 2008 | A1 |
20080139974 | Da Silva | Jun 2008 | A1 |
20080146970 | Litman et al. | Jun 2008 | A1 |
20080167556 | Thompson et al. | Jul 2008 | A1 |
20080183077 | Moreau-Gobard et al. | Jul 2008 | A1 |
20080188745 | Chen et al. | Aug 2008 | A1 |
20080195000 | Spooner et al. | Aug 2008 | A1 |
20080200810 | Buchalter | Aug 2008 | A1 |
20080200813 | Quistgaard | Aug 2008 | A1 |
20080214966 | Slayton | Sep 2008 | A1 |
20080221491 | Slayton | Sep 2008 | A1 |
20080223379 | Stuker et al. | Sep 2008 | A1 |
20080243035 | Crunkilton | Oct 2008 | A1 |
20080269608 | Anderson et al. | Oct 2008 | A1 |
20080275342 | Barthe | Nov 2008 | A1 |
20080281206 | Bartlett et al. | Nov 2008 | A1 |
20080281236 | Eshel et al. | Nov 2008 | A1 |
20080281237 | Slayton | Nov 2008 | A1 |
20080281255 | Slayton | Nov 2008 | A1 |
20080294073 | Barthe et al. | Nov 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090005680 | Jones et al. | Jan 2009 | A1 |
20090012394 | Hobelsberger et al. | Jan 2009 | A1 |
20090043198 | Milner et al. | Feb 2009 | A1 |
20090043293 | Pankratov et al. | Feb 2009 | A1 |
20090069677 | Chen et al. | Mar 2009 | A1 |
20090093737 | Chomas et al. | Apr 2009 | A1 |
20090156969 | Santangelo | Jun 2009 | A1 |
20090171252 | Bockenstedt et al. | Jul 2009 | A1 |
20090177122 | Peterson | Jul 2009 | A1 |
20090177123 | Peterson | Jul 2009 | A1 |
20090182231 | Barthe et al. | Jul 2009 | A1 |
20090216159 | Slayton et al. | Aug 2009 | A1 |
20090226424 | Hsu | Sep 2009 | A1 |
20090227910 | Pedersen et al. | Sep 2009 | A1 |
20090253988 | Slayton et al. | Oct 2009 | A1 |
20090299175 | Bernstein et al. | Dec 2009 | A1 |
20090318909 | Debenedictis et al. | Dec 2009 | A1 |
20100011236 | Barthe et al. | Jan 2010 | A1 |
20100022919 | Peterson | Jan 2010 | A1 |
20100022922 | Barthe et al. | Jan 2010 | A1 |
20100042020 | Ben-Ezra | Feb 2010 | A1 |
20100049178 | Deem et al. | Feb 2010 | A1 |
20100063422 | Hynynen et al. | Mar 2010 | A1 |
20100130891 | Taggart et al. | May 2010 | A1 |
20100160782 | Slayton et al. | Jun 2010 | A1 |
20100160837 | Hunziker et al. | Jun 2010 | A1 |
20100168576 | Poland et al. | Jul 2010 | A1 |
20100191120 | Kraus et al. | Jul 2010 | A1 |
20100241035 | Barthe et al. | Sep 2010 | A1 |
20100280420 | Barthe et al. | Nov 2010 | A1 |
20100286518 | Lee et al. | Nov 2010 | A1 |
20110040171 | Foley et al. | Feb 2011 | A1 |
20110040190 | Jahnke et al. | Feb 2011 | A1 |
20110087099 | Eshel et al. | Apr 2011 | A1 |
20110087255 | Mccormack et al. | Apr 2011 | A1 |
20110112405 | Barthe et al. | May 2011 | A1 |
20110178444 | Slayton et al. | Jul 2011 | A1 |
20110190745 | Uebelhoer et al. | Aug 2011 | A1 |
20110264012 | Lautzenhiser et al. | Oct 2011 | A1 |
20120004549 | Barthe et al. | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120029353 | Slayton et al. | Feb 2012 | A1 |
20120035475 | Barthe et al. | Feb 2012 | A1 |
20120035476 | Barthe et al. | Feb 2012 | A1 |
20120046547 | Barthe et al. | Feb 2012 | A1 |
20120053458 | Barthe et al. | Mar 2012 | A1 |
20120111339 | Barthe et al. | May 2012 | A1 |
20120143056 | Slayton et al. | Jun 2012 | A1 |
20120165668 | Slayton et al. | Jun 2012 | A1 |
20120165848 | Slayton et al. | Jun 2012 | A1 |
20120197120 | Makin et al. | Aug 2012 | A1 |
20120197121 | Slayton et al. | Aug 2012 | A1 |
20120215105 | Slayton et al. | Aug 2012 | A1 |
20120271294 | Barthe et al. | Oct 2012 | A1 |
20120296240 | Azhari et al. | Nov 2012 | A1 |
20120316426 | Foley et al. | Dec 2012 | A1 |
20120330197 | Makin et al. | Dec 2012 | A1 |
20120330222 | Barthe et al. | Dec 2012 | A1 |
20120330223 | Makin et al. | Dec 2012 | A1 |
20130012755 | Slayton | Jan 2013 | A1 |
20130012816 | Slayton et al. | Jan 2013 | A1 |
20130012838 | Jaeger et al. | Jan 2013 | A1 |
20130012842 | Barthe | Jan 2013 | A1 |
20130018286 | Slayton et al. | Jan 2013 | A1 |
20130046209 | Slayton et al. | Feb 2013 | A1 |
20130066208 | Barthe et al. | Mar 2013 | A1 |
20130066237 | Smotrich et al. | Mar 2013 | A1 |
20130072826 | Slayton et al. | Mar 2013 | A1 |
20130096471 | Slayton et al. | Apr 2013 | A1 |
20130190659 | Slayton et al. | Jul 2013 | A1 |
20130211258 | Barthe et al. | Aug 2013 | A1 |
20130281853 | Slayton et al. | Oct 2013 | A1 |
20130281891 | Slayton et al. | Oct 2013 | A1 |
20130296697 | Slayton et al. | Nov 2013 | A1 |
20130296700 | Slayton et al. | Nov 2013 | A1 |
20130303904 | Barthe et al. | Nov 2013 | A1 |
20130303905 | Barthe et al. | Nov 2013 | A1 |
20130310863 | Barthe et al. | Nov 2013 | A1 |
20140082907 | Barthe | Mar 2014 | A1 |
20140142430 | Slayton et al. | May 2014 | A1 |
20140148834 | Barthe et al. | May 2014 | A1 |
20140180174 | Slayton et al. | Jun 2014 | A1 |
20140187944 | Slayton et al. | Jul 2014 | A1 |
20140188015 | Slayton et al. | Jul 2014 | A1 |
20140188145 | Slayton et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
4029175 | Mar 1992 | DE |
10140064 | Mar 2003 | DE |
10219217 | Nov 2003 | DE |
10219297 | Nov 2003 | DE |
20314479 | Mar 2004 | DE |
0344773 | Dec 1989 | EP |
1479412 | Nov 1991 | EP |
0473553 | Mar 1992 | EP |
0661029 | Jul 1995 | EP |
1050322 | Nov 2000 | EP |
1234566 | Aug 2002 | EP |
1262160 | Dec 2002 | EP |
1374944 | Jan 2004 | EP |
2113099 | Aug 1983 | GB |
63036171 | Feb 1988 | JP |
03048299 | Mar 1991 | JP |
3123559 | May 1991 | JP |
03136642 | Jun 1991 | JP |
4089058 | Mar 1992 | JP |
04150847 | May 1992 | JP |
7080087 | Mar 1995 | JP |
07505793 | Jun 1995 | JP |
7222782 | Aug 1995 | JP |
09047458 | Feb 1997 | JP |
11505440 | May 1999 | JP |
11506636 | Jun 1999 | JP |
2000166940 | Jun 2000 | JP |
2001170068 | Jun 2001 | JP |
2002078764 | Mar 2002 | JP |
2002515786 | May 2002 | JP |
2002521118 | Jul 2002 | JP |
2002537939 | Nov 2002 | JP |
2003050298 | Feb 2003 | JP |
2003204982 | Jul 2003 | JP |
2004147719 | May 2004 | JP |
2005503388 | Feb 2005 | JP |
2005527336 | Sep 2005 | JP |
2005323213 | Nov 2005 | JP |
2006520247 | Sep 2006 | JP |
2007505793 | Mar 2007 | JP |
2009518126 | May 2009 | JP |
2010517695 | May 2010 | JP |
1020010024871 | Mar 2001 | KR |
100400870 | Oct 2003 | KR |
1020060113930 | Nov 2006 | KR |
1020070065332 | Jun 2007 | KR |
1020070070161 | Jul 2007 | KR |
1020070098856 | Oct 2007 | KR |
1020070104878 | Oct 2007 | KR |
1020070114105 | Nov 2007 | KR |
9625888 | Aug 1996 | WO |
9639079 | Dec 1996 | WO |
9735518 | Oct 1997 | WO |
9832379 | Jul 1998 | WO |
9933520 | Jul 1999 | WO |
9949788 | Oct 1999 | WO |
0006032 | Feb 2000 | WO |
0015300 | Mar 2000 | WO |
0021612 | Apr 2000 | WO |
0053113 | Sep 2000 | WO |
0128623 | Apr 2001 | WO |
0182777 | Nov 2001 | WO |
0182778 | Nov 2001 | WO |
0187161 | Nov 2001 | WO |
0209813 | Feb 2002 | WO |
02024050 | Mar 2002 | WO |
02092168 | Nov 2002 | WO |
020292168 | Nov 2002 | WO |
03053266 | Jul 2003 | WO |
03065347 | Aug 2003 | WO |
03070105 | Aug 2003 | WO |
03077833 | Aug 2003 | WO |
03086215 | Oct 2003 | WO |
03096883 | Nov 2003 | WO |
03099177 | Dec 2003 | WO |
03101530 | Dec 2003 | WO |
2004000116 | Dec 2003 | WO |
2004080147 | Sep 2004 | WO |
2004110558 | Dec 2004 | WO |
2005011804 | Feb 2005 | WO |
2005065408 | Jul 2005 | WO |
2005090978 | Sep 2005 | WO |
2006036870 | Apr 2006 | WO |
2006042163 | Apr 2006 | WO |
2006042168 | Apr 2006 | WO |
2006042201 | Apr 2006 | WO |
2006065671 | Jun 2006 | WO |
2006082573 | Aug 2006 | WO |
2007067563 | Jun 2007 | WO |
2008024923 | Feb 2008 | WO |
2008036622 | Mar 2008 | WO |
2009013729 | Jan 2009 | WO |
2009149390 | Dec 2009 | WO |
2014055708 | Apr 2014 | WO |
Entry |
---|
PCT International Search Report and Written Opinion, PCT/US2014/030779, dated Sep. 1, 2014, 8 pages. |
European Patent Office, Examination Report, EP 07814933.3, dated Aug. 5, 2014, 5 pages. |
European Patent Office, Examination Report, EP 05798870.1, dated Oct. 20, 2014, 5 pages. |
European Patent Office, Examination Report, EP 10185100.4, dated Oct. 24, 2014, 4 pages. |
European Patent Office, Examination Report, EP 10185112.9, dated Oct. 24, 2014, 5 pages. |
European Patent Office, Examination Report, EP 10185117.8, dated Oct. 24, 2014, 5 pages. |
European Patent Office, Examination Report, EP 10185120.2, dated Oct. 24, 2014, 4 pages. |
Sanghvi, N.T., et al., “Transrectal Ablation of Prostrate Tissue Using Focused Ultrasound,” 1993 Ultrasonics Symposium, IEEE, pp. 1207-1210. |
Sassen, Sander, “ATI's R520 architecture, the new king of the hill?” http://www.hardwareanalysis.com/content/article/1813, Sep. 16, 2005, 2 pages. |
Seip, Ralf, et al., “Noninvasive Detection of Thermal Effects Due to Highly Focused Ultrasonic Fiels,” IEEE Symposium, pp. 1229-1232, vol. 2, Oct. 3-Nov. 1993. |
Seip, Ralf, et al., “Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 8, Aug. 1995, pp. 828-839. |
Simon et al., “Applications of Lipid-Coated Microbubble Ultrasonic Contrast to Tumor Therapy,” Ultrasound in Med. & Biol. vol. 19, No. 2, pp. 123-125 (1993). |
Smith, Nadine Barrie, et al., “Non-Invasive In Vivo Temperature Mapping of Ultrasound Heating Using Magnetic Resonance Techniques”, 1994 Ultrasonics Symposium, pp. 1829-1832, vol. 3. |
Surry et al., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol., Dec. 6, 2004, pp. 5529-5546, vol. 49. |
Syka J. E. P. et al., “Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectometry,” Proceedings of the National Academy of Sciences of USA, National Academy of Aceince, Washington, DC, vol. 101, No. 26, Jun. 29, 2004, pp. 9528-9533. |
Talbert, D. G., “An Add-On Modification for Linear Array Real-Time Ultrasound Scanners to Produce 3D Displays,” UTS Int'l 1977 Brighton, England (Jun. 28-30, 1977) pp. 57-67. |
Tata et al., “Interaction of Ultrasound and Model Membrane Systems: Analyses and Predictions,” American Chemical Society, Phys. Chem. 1992, 96, pp. 3548-3555. |
Ueno, S., et al., “Ultrasound Thermometry in Hyperthermia”, 1990 Ultrasonic Symposium, pp. 1645-1652. |
Wang, H., et al., “Limits on Focused Ultrasound for Deep Hyperthermia”, 1994 Ultrasonic Symposium, Nov. 1-4, 1994, pp. 1869-1872, vol. 3. |
Wasson, Scott, “NVIDIA's GeFroce 7800 GT graphics processor Power MADD,” http://techreport.com/reviews/2005q2/geforce-7800gtx/index.x?pg=1, Jun. 22, 2005, 4 pages. |
White et al “Selective Creation of Thermal Injury Zones in the Superficial Musculoaponeurotic System Using Intense Ultrasound Therapy,” Arch Facial Plastic Surgery, Jan./Feb. 2007, vol. 9, No. 1. |
Alster, Tinas S., Tanzi, Elizabeth L., “Cellulite Treatment using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic & Laser Therapy, Jun. 2005, vol. 7, Issue 2, pp. 81-85. |
Arthur et al., “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J. Hyperthermia, Sep. 2005, 21(6), pp. 589-600. |
Barthe et al., “Ultrasound therapy system and ablation results utilizing miniature imaging/therapy arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1792-1795, vol. 3. |
Calderhead et al., One Mechanism Behind LED Photo-Therapy for Wound Healing and Skin Rejuvenation: Key Role of the Mast Cell, Laser Therapy, Jul. 2008, pp. 141-148, 17.3. |
Chen, L. et al., ““Effect of Blood Perfusion on the ablation of liver perenchyma with high intensity focused ultrasound,”” Phys. Med. Biol; 38:1661-1673; 1993b. |
Coon, Joshua et al., “Protein identification using sequential ion/ion reactions and tandem mass spectometry” Proceedings of the National Academy of Sciences of the USA, vol. 102, No. 27, Jul. 5, 2005, pp. 9463-9468. |
European Examination Report in related Application No. 05808908.7 dated Jun. 29, 2009. |
European Examination Report in related Application No. 05810308.6 dated Jun. 29, 2009. |
European Examination Report in related Application No. 09835856.7 dated Apr. 11, 2004. |
European Examination Report in related Application No. 10185100.4 dated Jan. 6, 2014. |
European Examination Report in related Application No. 10185120.2 dated Jan. 22, 2014. |
Corry, Peter M., et al., “Human Cancer Treatment with Ultrasound”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 444,456. |
Damianou et al., Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery,“” 1993 IEEE Ultrasound Symposium, pp. 1199-1202. |
Daum et al., “Design and Evaluation of a Feedback Based Phased Array System for Ultrasound Surgery,” IEEE Transactions on Ultrasonics, Feroelectronics, and Frequency Control, vol. 45, No. 2, Mar. 1998, pp. 431-438. |
Davis, Brian J., et al., “An Acoustic Phase Shift Technique for the Non-Invasive Measurement of Temperature Changes in Tissues”, 1985 Ultrasonics Symposium, pp. 921-924. |
Decision of the Korean Intellectual Property Tribunal dated Jun. 28, 2013 regarding Korean Patent No. 10-1142108, wich is related to the pending application and/or application identified in the Table on the pages 2-5 of the information Disclosure Statement herein (English translation, English translation certification, and Korean decision included). |
Fry, W.J. et al., “Production of Focal Destructive Lesions in the Central Nervous System with Ultrasound,” J. Neurosurg., 11:471-478; 1954. |
Gliklich et al., Clinical Pilot Study of Intense Ultrasound therapy to Deep Dermal Facial Skin and Subcutaneous Tissues, Arch Facial Plastic Surgery, Mar. 1, 2007, vol. 9. |
Harr, G.R. et al., “Tissue Destruction with Focused Ultrasound in Vivo,” Eur. Urol. 23 (suppl. 1):8-11; 1993. |
Hassan et al., “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” advanced in Polymer Science, 2000, pp. 37-65, vol. 153. |
Hassan et al., “Structure and Morphology of Freeze/Thawed PVA Hydrogels,” Macromolecules, Mar. 11, 2000, pp. 2472-2479, vol. 33, No. 7. |
Husseini et al, “The Role of Cavitation in Acoustically Activated Drug Delivery,” J. Control Release, Oct. 3, 2005, pp. 253-261, vol. 107(2). |
Husseini et al. “Investigating the mechanism of accoustically activated uptake of drugs from Pluronic micelles,” BMD Cancer 2002, 2:20k, Aug. 30, 2002, pp. 1-6. |
International Search Report and Written Opinion dated Jan. 23, 2014 in Application No. PCT/US2012/046122. |
International Search Report and Written Opinion dated Jan. 23, 2014 in Application No. PCT/US2012/046123. |
International Search Report and Written Opinion dated Jan. 28, 2012 in Application No. PCT/US2012/046327. |
International Search Report and Written Opinion dated Jan. 28, 2013 in Application No. PCT/US2012/046125. |
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001361. |
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001362. |
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001366. |
International Search Report and Written Opinion dated Apr. 6, 2012 in Application No. PCT/US2011/001366. |
International Search Report and Written Opinion dated Apr. 6, 2012 in Application No. PCT/US2011/001367. |
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE. Ultrasonics Symposium, pp. 925-928. |
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE Ultrasonics Symposium, pp. 925-928. |
Jenne, J., et al., “Temperature Mapping for High Energy US-Therapy”, 1994 Ultrasonics Symposium, pp. 1879-1882. |
Johnson, S.A., et al., “Non-Intrusive Measurement of Microwave and Ultrasound-Induced Hyperthermia by Acoustic temperature Tomography”, Ultrasonics Symposium Proceedings, pp. 977-982. |
Madersbacher, S. et al., “Tissue Ablation in Bening Prostatic Hyperlasia with High Intensity Focused Ultrasound,” Dur. Urol., 23, (suppl. 1):39-43;1993. |
Makin et al, “B-Scan Imaging and Thermal Lesion Monitoring Using Miniaturized Dual-Functionality Ultrasound Arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1788-1791, vol. 3. |
Makin et al, “Miniaturized Ultrasound Arrays for Interstitial Ablation and Imaging,” UltraSound Med. Biol. 2005, Nov. 1, 2005, pp. 1539-1550, vol. 31(11). |
Makin et al., “Confirmal Bulk Ablation and Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays”, 4th International Symposium on Therapeutic Ultrasound, Sep. 19, 2004. |
Manohar et al, “Photoaccoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Journal of Biomedical Optics, Nov./Dec. 2004, pp. 1172-1181, vol. 9, No. 6. |
Mast et al, “Bulk Ablation of Soft Tissue with Intense Ultrasound; Modeling nad Experiments,” J. Acoust. Soc. Am., Oct. 1, 2005, pp. 2715-2724, vol. 118(4). |
Mitragotri, Samir; “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nature Reviews; Drug Delivery, pp. 255-260, vol. 4. |
Paradossi et al., “Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications,” Journal of Materials Science: Materials in Medicine, 2003, pp. 687-691, vol. 14. |
PCT/US2012/046122 International Search Report dated Jan. 30, 2013. |
PCT/US2012/046123 International Search Report dated Jan. 28, 2013. |
PCT/US2012/046125 International Search Report dated Jan. 28, 2013. |
Reid, Gavin, et al., “Tandem Mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions,” Analytical Chemistry. Feb. 1, 2002, vol. 74, No. 3, pp. 577-583. |
Righetti et al, “Elastographic Characterization of HIFU-Induced Lesions in Canine Livers,” 1999, Ultrasound in Med & Bio, vol. 25, No. 7, pp. 1099-1113. |
Saad et al., “Ultrasound-Enhanced Effects of Adriamycin Against Murine Tumors,” Ultrasound in Med. & Biol. vol. 18, No. 8, pp. 715-723 (1992). |
Number | Date | Country | |
---|---|---|---|
20140236049 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12834754 | Jul 2010 | US |
Child | 14264732 | US | |
Parent | 10944500 | Sep 2004 | US |
Child | 12834754 | US |