The present invention relates to file systems, and more particularly, to a system and method for sharing virtual folders.
The sharing of files and folders has always been a difficult task. In known systems, users are often limited to just sharing out entire folders. Users typically do not have the ability to share out individual files or items. In order to share files, a user has typically had to create a folder, organize the desired files in the folder, and then share the folder.
The sharing of files has further been complicated by the fact that users also have to deal with files being in different locations, such as on different devices, on other PCs, or online. Files coming from different locations are often organized differently, and not kept in the same fashion or place. As another example, files stored on a corporate network may inherently be separated from files a user has on a current machine. Users also have to keep track not only of what file data is stored, but where it is stored. For example, for music files, users are forced to keep copies on various systems and to try to track which music files are located where. This can make files difficult to locate, even when they are locally stored.
The sharing of files is also complicated by the fact that it is also sometimes difficult to find and return to files that a user has. A user may find it difficult to recall where and how they stored certain files. Given a set of folders and even a group of similar files, users often find it difficult to quickly find the one that they are looking for. For files stored in a difficult place to find, it is that much more complex to locate. It is also sometimes difficult for users to find or return to files on a network. Users typically have to memorize or map the various sites and names that they need for finding and sharing files on a network.
Organizing and sharing files is also complicated by the fact that name spaces may vary, which can cause confusion to the user as to what is “correct.” This is particularly true on a network where there are different naming conventions, limitations, and so on. For example, certain operating systems may require short names with no spaces in order for them to be visible. Programs also often save files to their own directory or other name spaces, which can make it difficult for users to find their way back to the files. Programs often have default directories and places they save documents. A user often has to search through their hard disk and make guesses about where a file is stored. Related items are also often stored in separate places. Related files that a user has may be stored on different parts of the hard disk, etc. This problem becomes more common with the developments of digital media services that have multiple content types (e.g., pictures, music, video).
The present invention is directed to providing a system and method that overcome the foregoing and other disadvantages. More specifically, the present invention is directed to a system and method for virtual folder sharing.
A system and method for virtual folder sharing, including utilization of static and dynamic lists is provided. The static and dynamic lists may be created as types of virtual folders. In accordance with one aspect of the present invention, a user is able to construct a query, find items, and then share the items with other users. The user is provided with the option to share just the items that were located by the query (a static list) or else to share the located items plus other items that meet the criteria in the future (a dynamic list). These types of lists utilize properties of virtual folders which expose items to users in different views based on their metadata instead of the actual physical underlying file system structure on the disk.
In accordance with another aspect of the invention, a static list comprises a folder of items that are in a specific order and that can optionally have annotations placed on each item. These annotations are not part of the item, but belong to the actual list. Some examples of a static list are a shopping list, a music play list, and a slide show of pictures. In accordance with the present invention, a user is able to share the static list with other users. When the static list is shared, the actual static list is left in place on the sharer's machine or server, while permission is granted to the sharees to access the list and referenced items. The permissions that are granted are determined by what the sharer specifies at the sharing time. For example, the sharer can decide to share out the list to the sharee with just read or read-write access, etc. In the case that the sharer cannot grant permission to the items (since the sharer does not have permission themselves to do this operation) then the sharer is notified at the sharing time that the sharee may not be able to access that item. At the conclusion of the process, the sharee is able to remotely access the list and its referenced items from the sharer's computer. If the sharer later changes the list by adding or removing items, these items are also automatically repermissioned to allow or disallow the sharee's access to the items. In one embodiment, it is also possible to dynamically repermission items as they come and go from the static list, since the actual definition of the static list lives in the database which can be monitored as it changes.
In accordance with another aspect of the invention, a dynamic list comprises a set of items based on a scope plus a set of criteria. For example, a user may create a query with a scope defined as all of the data storage on a local machine, and a criteria of author=X. Once the user has a dynamic list, it can be shared out. When the user shares a dynamic list, the following operations are carried out. An initial determination is made as to whether the user wants to share just the items that are currently in the dynamic list at that time, or else any items that come and go from the dynamic list in the future. If the user wants to share just the items that currently exist in the dynamic list, then a static list representing what is in the dynamic list is generated and that static list is shared. If the user instead wants to share out the true dynamic list, then all of the items that meet the criteria of the dynamic list are shared. This means the items are left in place on the machine where the sharing is occurring and the items are permissioned to allow the sharee to have access to the items. In the case that the sharer cannot grant permission to the items (e.g., the sharer does not have permission themselves to do this operation) then the sharer is notified at the time of the sharing that the sharee may not be able to access the items. At the conclusion of the process, the sharee is able to remotely access the list and its referenced items from the sharer's computer. If any items in the dynamic list have their properties changed such that they no longer meet the criteria of the dynamic list, then these items are appropriately re-permissioned. In the same way, if any items that do not belong to the dynamic list change such that they fall into the scope and meet the criteria of the dynamic list, they are also re-permissioned to grant access to the users with which the dynamic list is shared.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
A system and method for virtual folder sharing, including utilization of static and dynamic lists is provided. The static and dynamic lists may be created as types of virtual folders. Virtual folders utilize the same or similar user interfaces that are currently used for file systems. Virtual folders expose regular files and folders (also known as directories) to users in different views based on their metadata instead of the actual physical underlying file system structure on the disk. Location-independent views are created which allow users to manipulate their files and folders utilizing similar controls as those presently used for managing file systems. In general, this means that users can organize and rearrange their files based on inherent properties in the files themselves, instead of the managing and organization being done as a separate part of the system. Virtual folders may represent files or items from different physical locations, such as from multiple disk drives within the same computer, between multiple computers, or different network locations, such that one view of files or items can expose files or items sitting at different physical locations. In one embodiment, the different items or files need only be connected via an IP network in order to be included.
The virtual folder modeling is also able to be used for traditionally non-file entities. An application of this is to have a set of user interfaces similar to files and folders (that is, objects and containers) to show traditionally non-file entities. One example of such non-file entities would be e-mails, while another would be contact information from a contact database. In this manner, virtual folders provide for a location-independent, metadata-based view system that works regardless of whether the data being shown is from files or non-file entities. In general, these aspects allow more flexibility in terms of letting users manipulate their files and data, using both common user interface techniques (drag and drop, double-click, etc.) as well as leveraging the rich integration of various data types.
With reference to
A number of program modules may be stored on the hard disk 39, magnetic disk 29, optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more application programs 36, other program modules 37 and program data 38. A user may enter commands and information into the personal computer 20 through input devices such as a keyboard 40 and pointing device 42. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 21 through a serial port interface 46 that is coupled to the system bus 23, but may also be connected by other interfaces, such as a parallel port, game port or a universal serial bus (USB). A display in the form of a monitor 47 is also connected to the system bus 23 via an interface, such as a video card or adapter 48. One or more speakers 57 may also be connected to the system bus 23 via an interface, such as an audio adapter 56. In addition to the display and speakers, personal computers typically include other peripheral output devices (not shown), such as printers.
The personal computer 20 may operate in a networked environment using logical connections to one or more personal computers, such as a remote computer 49. The remote computer 49 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the personal computer 20. The logical connections depicted in
When used in a LAN networking environment, the personal computer 20 is connected to the local area network 51 through a network interface or adapter 53. When used in a WAN networking environment, the personal computer 20 typically includes a modem 54 or other means for establishing communications over the wide area network 52, such as the Internet. The modem 54, which may be internal or external, is connected to the system bus 23 via the serial port interface 46. In a networked environment, program modules depicted relative to the personal computer 20 or portions thereof may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary, and other means of establishing a communications link between the computers may be used.
As implemented on a system of the type illustrated in
As illustrated in
The relational database 230 stores properties about all files in the system. It also stores some items, like contacts (i.e., non-file items), entirely. In general, it stores metadata about the types of files and items that it contains. The relational database 230 receives SQL queries from the query builder 220. The relational database 230 also sends SQL roasts to the rowset parser component 218, with one row per item column, columns being the item properties.
The virtual folder descriptions database 232 includes the virtual folder descriptions. The virtual folder descriptions database 232 sends data to the query builder component 220, including a list of types to display in the folder, the initial filter, and the physical locations to show results from (the scopes).
With regard to the other shell folders component 234, the folder processor 210 delegates to existing shell folders from many types of items, including all files, for handlers or properties. The other shell folders component 234 sends properties from other folders to the property factory 224. The other shell folders component also sends handlers to the handler factory 214.
The folder handlers component 236 provides code behavior for the items that exist only in the database, like contacts. This is what allows non-file items to behave akin to files. The folder handlers component 236 sends handlers to the handler factory 214.
For the native handling code component 212, the folder processor 210 directly implements certain handlers based on the properties of the items. The native handling code component 212 sends handlers to the handler factory 214. For the native handling code component 212 and the folder handlers component 236, like all namespaces, virtual folders have to provide a set of handlers (context menu, icon, thumbnail, infotip, . . . ) for their items. For most of these (infotip, data object, drag-drop handler, background context menu . . . ) the virtual folder provides a common (native) handler for all the types it holds. However there are others which the author of the type has to provide (context menu on the item itself, writable property store, . . .). The default handler can also be overridden. Virtual folders reuse this for files and allow non-file items do the same.
The handler factory 214 takes ID lists and produces code behaviors that provide context menus, icons, etc. In general, the folder processor 210 may use native handlers, external handlers, or delegate to other shell folders to get handlers, as described above with respect to the native handling code component 212, the other shell folders component 234, and the folder handlers component 236. The handler factory component 214 sends handlers to the shell browser in view 240, as requested by the view. The handler factory component 214 sends a property handler to the property writer 216.
The property writer 216 converts user intentions such as cut, copy, and paste into property rights to the file or item. A shell browser and view component 240 sends data to the property writer 216, including direct manipulation (cut/copy/paste) or editing of metadata. In general, since virtual folders present an organization based on the properties of an item, operations such as move and copy (drag-drop) become an edit on those properties. For example, moving a document, in a view stacked by author, from Author 1 to Author 2, means changing the author. The property writer component 216 implements this function.
The rowset parser 218 takes database rowsets and stores all item properties into a shell ID list structure. A rowset takes the piecewise definition of the virtual folder and builds a SQL string which can then be issued to the database. The rowset parser component 218 sends ID lists to the enumerator component 222. As described above, the rowset parser component 218 also receives data from the relational database 230, including SQL rowsets, with one row per item, the columns being item properties.
The query builder component 220 builds SQL queries. The query builder component 220 receives data from the enumerator component 222, including new filters from the navigation. The query builder component 220 also receives data from the virtual folder descriptions database 232, including a list of the types to display in the folder, the initial filter, and the physical location to show results from (the scopes). The query builder component 220 sends the SQL queries to the relational database 230.
In general, the query builder component 220 includes a set of rows (in other words a table). This is what running the query yields. The rowset parser component 218 takes each row and using the column names transforms the row into an ID list. An ID list is a well-known shell structure which is used to reference items in a namespace. Doing this allows virtual folders to be just like any other namespace to the rest of the shell. Also caching this data helps keep database access, which can be costly, to a minimum.
The enumerator component 222 operates in response to a navigation to a virtual folder. As described above, the enumerator component 222 receives ID lists from the rowset parser component 218, and sends new filters from the navigation to the query builder component 220. The enumerator 222 also sends data to the shell browser and view component 240, including ID lists that are returned to be inserted into the view after a navigation.
The property factory component 224 takes ID lists and property identifiers and returns values for those properties. The property factory component 224 receives data from the handler factory component 214 including the property handler. As described above, the property factory component 224 also receives data from the other shell folders component 234, including properties from other folders. The property factory component 224 also sends data to the shell browser and view component 240, including item properties, as requested by the view.
The shell browser and view component 240 displays the contents of a folder in a window, and handles all the user interaction with the displayed files or items, such as clicking, dragging, and navigating. Thus, the shell browser and view component 240 receives the user actions. The shell browser and view component 240 also gets the data regarding the code behaviors that it needs from the folder, in this case the folder processor 210.
As described above, the virtual folders expose regular files and folders (also known as directories) to users in different views based on their metadata instead of the actual physical underlying file system structure on the disk. Thus, the system is able to take a property that is stored in the database and represent it as a container that is like a folder. Since users are already familiar with working with folders, by presenting the virtual folders in a similar manner, users can adapt to the new system more quickly.
At a block 328, the folder processor takes these results and converts them from the rows and columns of data into an enumerator structure, which is used by the folder view to populate the screen with the resulting virtual folders and items for the user to interact upon. At a decision block 330, a user decides whether to change the view (by issuing a different query or “pivot”). For example, a user could issue a “show all artists” pivot. If the user does want to change the view, then the routine returns to block 324 where the folder processor passes this new query to the relational database, and receives back new rows and columns of results, and constructs a new enumerator structure. The process then continues as described above, as the folder view clears and updates, using the enumerator to draw the “artist” objects to the screen.
In one example, album objects are provided that represent containers that users can navigate into. For example, double-clicking the “Beatles” albums will navigate the view to see all of the Beatles' songs. The folder processor issues the “show all Beatles' songs” query to the relational database, which hands back the rows and columns of data for those songs. The folder processor creates an enumerator of all these songs, which then get drawn to the screen.
The user can also choose the view at any point while browsing virtual folders. From the above example, after narrowing down to just show Beatles songs, a user can change the view to only show the songs as albums. The process of changing the view of items into another representation is called “stacking”. This is because the items are conceptually arranged into “stacks” based on that representation. In this case, the songs are rearranged into stacks for each of the various albums. Users can then navigate into one of these stacks, only seeing the songs from that particular album. Again, the user can rearrange the view of these remaining songs into stacks based on a property (e.g., a rating, for example). If the rating property were selected, the songs from that Beatles album would be shown in stacks for a one-, two-, or a three-star rating.
The results of each query depend on which physical locations are included in the scope. For example, the scope may be made to include only the folders in the user's “my documents” folder. Alternatively, the scope could include all folders on the computer, or even all folders on multiple network connected computers. The user is able to view and change the scope through a scope property sheet. In one example, the scope property sheet could be exposed by right-clicking on the virtual folder and choosing “properties.” The user could add new folders to the scope, or remove folders that were previously added.
One group of users for which virtual folders will provide particular utility is knowledge workers. Virtual folders allow knowledge workers to easily switch between viewing documents by file type, project, case number, author, etc. Since knowledge workers each tend to have a different method for organizing documents, virtual folders can be used to accommodate these different preferences.
As illustrated in
It will be appreciated that a number of obstacles are presented to a user who wishes to navigate a physical folder file structure such as that illustrated in
The quick link elements include an “all categories” quick link 610, on “all authors” quick link 611, a “January work” quick link 612, and a selection for displaying additional quick links 613. As will be described in more detail below, quick links can be selected by a user to perform desired navigations of the virtual folders. Quick links may be provided by the system, and some quick links may be created and saved by a user.
The filter elements include a “filter by” indicator 620, an entry blank 621, a “by date” indicator 622, a “year” selector 623, a “pick an author” selector 624, a “pick a category” selector 625, and a “more filters” selector 626. The “filter by” indicator 620 directs a user to the fact that the items below can be used to filter the virtual folders or items. The entry blank 621 provides an area in which a user can type a desired new filter term. The “by date” indicator 622 directs a user to the fact that by selecting a date from the “year” selector 623, the virtual folders or items can be filtered by the selected year. The “pick an author” selector 624 allows a user to filter according to a specific author. The “pick a category” selector 625 allows a user to filter according to a selected category. The “more filters” selector 626 allows a user to pull up additional filters on the display.
The activity selectors include a “create a new category” selector 630, “activity” selectors 631 and 632, and a “more activities” selector 633. As will be described in more detail below, the activities that are presented may be for generally desirable functions, or may more specifically be directed to activities useful for the type of virtual folders that are currently being displayed. For example, the “create a new category” selector 630 can be selected by the user to create a new category which will be represented by a new stack.
As noted above, the activity selectors 631 and 632 may be more specifically directed to the type of folders or items that are being displayed. For example, the present display is of a document library, for which the “activity” selectors 631 and 632 may be directed to activities specifically tailored for documents, such as editing or creating attachments. If the present library had been a photo library, the “activity” selector 631 and 632 could be for activities specifically directed to photos, such as forming photo albums or sharing photos with other users.
The information and control elements include information lines 640 and 641, a control line 642, a backspace control 643, and information lines 644 and 645. The information lines 640 and 641 provide information as to the current navigation of the virtual folders or items. In the present example, the information line 640 indicates that the current navigation is to a document library, while the information line 641 indicates the more complete navigation, showing that the document library is within the storage area. The control line 642 provides a number of standard controls, and the backspace button 643 allows a user to back up through a navigation. The information line 644 provides numerical information about the contents of the present navigation. In the present example, the information line 644 indicates that there are 41 items which take up 100 MB in the stacks of the document library. The information line 645 is available to provide additional information, such as additional information about a file that is selected.
The stacks of the document library include an “ABC Corp.” stack 651, a “backups stack” 652, a “business plans” 'stack 653, an “XYZ Corp.” stack 654, and a “marketing reports” stack 655. The numbers on top of each of the stacks indicate how many items are in each stack. For example, the “ABC Corp.” stack 651 is shown to include 8 items. The total number of items of the stacks adds up to the number of items indicated in the information line 644, which as described above is 41 in the present example. A selection box SB is provided which can be utilized by a user to select a desired item. The selection of the “ABC Corp.” stack 651 yields a view of the items of that stack, as will be described below with respect to
As shown in
Another example of direct manipulation is right clicking an item and selecting delete. In one embodiment, when a deleting function is selected by a user, the user is queried whether the item should be deleted all together, or simply removed from the present virtual folder. If the item is just to be removed from a present virtual folder category stack as noted above, this can be accomplished by removing the desired category from the metadata for the item. In other words, if one of the items that had been copied from the ABC Corp. stack 651 to the West Coast stack 656 was then to be removed from the West Coast stack 656, this could be accomplished by modifying the category data for the particular file to no longer include the “West Coast” category.
As shown in
As shown in
As will be discussed in more detail below, the present invention provides the ability to share out virtual folders which may be static or dynamic. The sharing of static and dynamic lists allows a user to share selected items. A sharee is granted permission to the items in the list, and as the list is changed, the permissions are updated so that the sharee continues to have access to the current items of the list.
At a block 4210, the sharer indicates that the static list should be shared. At a decision block 4220, a determination is made as to whether the sharer has permission to share each item. If some of the items cannot be shared, then the routine continues to a block 4230, where the sharer is notified at the sharing time that the sharee may not be able to access the noted items. If each of the items can be shared, then the routine continues to a decision block 4250.
In the process of determining whether the sharer has permission to share each item, in one embodiment the list itself is the first item that the permission is determined for. In other words, the first step is to determine whether the sharer has permission to share the list itself. If the sharer does not have permission to share the list, then the sharer is notified that they do not have permission to share the list and the routine ends. If the sharer does have permission to share the list, then a determination is made for each of the items that are referenced by the list as to whether the sharer has permission to share each of the items. If the sharer does not have permission to share a particular item, then the sharer is notified that that item can not be shared. At the end of the process, for the set of items that the sharer does have permission to share, the routine continues to block 4250.
At decision block 4250, a determination is made as to whether the sharer has indicated that the sharee should be provided with read and write access as opposed to just read access. If the sharer indicated that read and write access should not be provided, then the routine continues to a block 4260 where the sharee is provided with read permission only. If the sharer indicated that the sharee should have read and write access, then the routine continues to a block 4270, where the sharee is provided with read and write permission. At block 4280, the designated access is granted to the sharee to the static list itself, as well as any items that are referenced in the static list. The sharee is then able to remotely access the static list and its referenced items from the sharer's computer.
As described in more detail above with respect to
In the process of determining whether the sharer has permission to share each item, in one embodiment the list itself is the first item that the permission is determined for. In other words, the first step is to determine whether the sharer has permission to share the list itself. If the sharer does not have permission to share the list, then the sharer is notified that they do not have permission to share the list and the routine ends. If the sharer does have permission to share the list, then a determination is made for each of the items that are referenced by the list as to whether the sharer has permission to share each of the items. If the sharer does not have permission to share a particular item, then the sharer is notified that that item can not be shared. At the end of the process, for the set of items that the sharer does have permission to share, the routine continues to decision block 4640.
At decision block 4640, a determination is made as to whether the sharer wants to share the items only in the static list format. In other words, a determination is made as to whether the sharer wants to share the current items in the form of a static list rather than a dynamic list. If a static list is to be shared, then the routine continues to a block 4650 where a static list that represents what is currently in the dynamic list is generated and that static list is shared as described above with respect to
At block 4660, all of the items that meet the criteria of the dynamic list are shared. This means that the items are left at their respective storage places on the machine where the sharing is occurring and the items are permissioned to allow the sharee to have access to the items. At the conclusion of this process, the sharee is able to remotely access the list and its referenced items from the sharer's computer.
A programming interface may be utilized as part of the list sharing process. As will be described in more detail below with respect to
Notionally, a programming interface may be viewed generically, as shown in
Aspects of such a programming interface may include the method whereby the first code segment transmits information (where “information” is used in its broadest sense and includes data, commands, requests, etc.) to the second code segment; the method whereby the second code segment receives the information; and the structure, sequence, syntax, organization, schema, timing and content of the information. In this regard, the underlying transport medium itself may be unimportant to the operation of the interface, whether the medium be wired or wireless, or a combination of both, as long as the information is transported in the manner defined by the interface. In certain situations, information may not be passed in one or both directions in the conventional sense, as the information transfer may be either via another mechanism (e.g., information placed in a buffer, file, etc., separate from information flow between the code segments) or non-existent, as when one code segment simply accesses functionality performed by a second code segment. Any or all of these aspects may be important in a given situation, e.g., depending on whether the code segments are part of a system in a loosely coupled or tightly coupled configuration, and so this list should be considered illustrative and non-limiting.
This notion of a programming interface is known to those skilled in the art and is clear from the foregoing detailed description of the invention. There are, however, other ways to implement a programming interface, and, unless expressly excluded, these too are intended to be encompassed by the claims set forth at the end of this specification. Such other ways may appear to be more sophisticated or complex than the simplistic view of
It is also noted that the above-described scenarios for achieving the same or similar result as an interface via alternative embodiments may also be combined in various ways, serially and/or in parallel, or with other intervening code. Thus, the alternative embodiments presented above are not mutually exclusive and may be mixed, matched and combined to produce the same or equivalent scenarios to the generic scenarios presented in
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/403,174, filed Mar. 27, 2003, priority from the filing date of which is hereby claimed under 35 U.S.C. § 120.
Number | Name | Date | Kind |
---|---|---|---|
5241671 | Reed et al. | Aug 1993 | A |
5333315 | Saether et al. | Jul 1994 | A |
5388196 | Pajak et al. | Feb 1995 | A |
5461710 | Bloomfield et al. | Oct 1995 | A |
5499364 | Klein et al. | Mar 1996 | A |
5504852 | Thompson-Rohrlich | Apr 1996 | A |
5513306 | Mills et al. | Apr 1996 | A |
5559948 | Bloomfield et al. | Sep 1996 | A |
5598524 | Johnston, Jr. et al. | Jan 1997 | A |
5630042 | McIntosh et al. | May 1997 | A |
5680563 | Edelman | Oct 1997 | A |
5696486 | Poliquin et al. | Dec 1997 | A |
5757925 | Faybishenko | May 1998 | A |
5790121 | Sklar et al. | Aug 1998 | A |
5802516 | Shwarts et al. | Sep 1998 | A |
5831606 | Nakajima et al. | Nov 1998 | A |
5835094 | Ermel et al. | Nov 1998 | A |
5838317 | Bolnick et al. | Nov 1998 | A |
5838322 | Nakajima et al. | Nov 1998 | A |
5867163 | Kurtenbach | Feb 1999 | A |
5875446 | Brown et al. | Feb 1999 | A |
5878410 | Zbikowski et al. | Mar 1999 | A |
5899995 | Millier et al. | May 1999 | A |
5907837 | Ferrel et al. | May 1999 | A |
5923328 | Griesmer | Jul 1999 | A |
5929854 | Ross | Jul 1999 | A |
5933139 | Feigner et al. | Aug 1999 | A |
5935210 | Stark | Aug 1999 | A |
5987454 | Hobbs | Nov 1999 | A |
5987506 | Carter et al. | Nov 1999 | A |
6003040 | Mital et al. | Dec 1999 | A |
6008806 | Nakajima et al. | Dec 1999 | A |
6014137 | Burns | Jan 2000 | A |
6021262 | Cote et al. | Feb 2000 | A |
6023708 | Mendez et al. | Feb 2000 | A |
6025843 | Sklar | Feb 2000 | A |
6037944 | Hugh | Mar 2000 | A |
6061692 | Thomas et al. | May 2000 | A |
6061695 | Slivka et al. | May 2000 | A |
6078924 | Ainsbury et al. | Jun 2000 | A |
6097389 | Morris et al. | Aug 2000 | A |
6144968 | Zellweger | Nov 2000 | A |
6147601 | Sandelman et al. | Nov 2000 | A |
6181342 | Niblack | Jan 2001 | B1 |
6202061 | Khosla et al. | Mar 2001 | B1 |
6237011 | Ferguson et al. | May 2001 | B1 |
6240421 | Stolarz | May 2001 | B1 |
6243094 | Sklar | Jun 2001 | B1 |
6243724 | Mander et al. | Jun 2001 | B1 |
6246411 | Strauss | Jun 2001 | B1 |
6256031 | Meijer et al. | Jul 2001 | B1 |
6275829 | Angiulo et al. | Aug 2001 | B1 |
6308173 | Glasser et al. | Oct 2001 | B1 |
6317142 | Decoste et al. | Nov 2001 | B1 |
6324551 | Lamping et al. | Nov 2001 | B1 |
6339767 | Rivette et al. | Jan 2002 | B1 |
6341280 | Glass et al. | Jan 2002 | B1 |
6356863 | Sayle | Mar 2002 | B1 |
6363377 | Kravets et al. | Mar 2002 | B1 |
6363400 | Chtchetkine et al. | Mar 2002 | B1 |
6401097 | McCotter et al. | Jun 2002 | B1 |
6411311 | Rich et al. | Jun 2002 | B1 |
6430575 | Dourish et al. | Aug 2002 | B1 |
6437807 | Berquist et al. | Aug 2002 | B1 |
6438590 | Gartner et al. | Aug 2002 | B1 |
6448985 | McNally | Sep 2002 | B1 |
6453311 | Powers, III | Sep 2002 | B1 |
6453319 | Mattis et al. | Sep 2002 | B1 |
6466238 | Berry et al. | Oct 2002 | B1 |
6466932 | Dennis et al. | Oct 2002 | B1 |
6480835 | Light | Nov 2002 | B1 |
6505233 | Hanson et al. | Jan 2003 | B1 |
6513038 | Hasegawa et al. | Jan 2003 | B1 |
6526399 | Coulson et al. | Feb 2003 | B1 |
6535229 | Kraft | Mar 2003 | B1 |
6535230 | Celik | Mar 2003 | B1 |
6539399 | Hazama et al. | Mar 2003 | B1 |
6544295 | Bodnar | Apr 2003 | B1 |
6549217 | De Greef et al. | Apr 2003 | B1 |
6549916 | Sedlar | Apr 2003 | B1 |
6563514 | Samar | May 2003 | B1 |
6573906 | Harding et al. | Jun 2003 | B1 |
6573907 | Madrane | Jun 2003 | B1 |
6583799 | Manolis et al. | Jun 2003 | B1 |
6590585 | Suzuki et al. | Jul 2003 | B1 |
6606105 | Quartetti | Aug 2003 | B1 |
6613101 | Mander et al. | Sep 2003 | B2 |
6628309 | Dodson et al. | Sep 2003 | B1 |
6636238 | Amir et al. | Oct 2003 | B1 |
6636250 | Gasser | Oct 2003 | B1 |
6662198 | Satyanarayanan et al. | Dec 2003 | B2 |
6684222 | Cornelius et al. | Jan 2004 | B1 |
6735623 | Prust | May 2004 | B1 |
6738770 | Gorman | May 2004 | B2 |
6745206 | Mandler et al. | Jun 2004 | B2 |
6754829 | Butt et al. | Jun 2004 | B1 |
6762776 | Huapaya | Jul 2004 | B2 |
6762777 | Carroll | Jul 2004 | B2 |
6763458 | Watanabe et al. | Jul 2004 | B1 |
6768999 | Prager et al. | Jul 2004 | B2 |
6784900 | Dobronsky et al. | Aug 2004 | B1 |
6795094 | Watanabe et al. | Sep 2004 | B1 |
6801919 | Hunt et al. | Oct 2004 | B2 |
6803926 | Lamb et al. | Oct 2004 | B1 |
6813474 | Robinson et al. | Nov 2004 | B2 |
6816863 | Bates et al. | Nov 2004 | B2 |
6823344 | Isensee et al. | Nov 2004 | B1 |
6847959 | Arrouye et al. | Jan 2005 | B1 |
6853391 | Bates et al. | Feb 2005 | B2 |
6865568 | Chau | Mar 2005 | B2 |
6871348 | Cooper | Mar 2005 | B1 |
6876996 | Czajkowski et al. | Apr 2005 | B2 |
6880132 | Uemura | Apr 2005 | B2 |
6883009 | Yoo | Apr 2005 | B2 |
6883146 | Prabhu et al. | Apr 2005 | B2 |
6906722 | Hrebejk et al. | Jun 2005 | B2 |
6922709 | Goodman | Jul 2005 | B2 |
6938207 | Haynes | Aug 2005 | B1 |
6944647 | Shah et al. | Sep 2005 | B2 |
6947959 | Gill | Sep 2005 | B1 |
6950818 | Dennis et al. | Sep 2005 | B2 |
6952714 | Peart | Oct 2005 | B2 |
6952724 | Prust | Oct 2005 | B2 |
6980993 | Horvitz et al. | Dec 2005 | B2 |
7010755 | Anderson et al. | Mar 2006 | B2 |
7043472 | Aridor et al. | May 2006 | B2 |
7051291 | Sciammarella et al. | May 2006 | B2 |
7062500 | Hall et al. | Jun 2006 | B1 |
7068291 | Roberts et al. | Jun 2006 | B1 |
7139811 | Lev Ran et al. | Nov 2006 | B2 |
7149729 | Kaasten et al. | Dec 2006 | B2 |
7168051 | Robinson et al. | Jan 2007 | B2 |
7203948 | Mukundan et al. | Apr 2007 | B2 |
20010034771 | Hutsch et al. | Oct 2001 | A1 |
20010047368 | Oshinsky et al. | Nov 2001 | A1 |
20010049675 | Mandler et al. | Dec 2001 | A1 |
20010053996 | Atkinson | Dec 2001 | A1 |
20010056434 | Kaplan et al. | Dec 2001 | A1 |
20010056508 | Arneson et al. | Dec 2001 | A1 |
20020010736 | Marques et al. | Jan 2002 | A1 |
20020019935 | Andrew et al. | Feb 2002 | A1 |
20020033844 | Levy et al. | Mar 2002 | A1 |
20020046232 | Adams et al. | Apr 2002 | A1 |
20020046299 | Lefeber et al. | Apr 2002 | A1 |
20020049717 | Routtenberg et al. | Apr 2002 | A1 |
20020052885 | Levy | May 2002 | A1 |
20020054167 | Hugh | May 2002 | A1 |
20020059199 | Harvey | May 2002 | A1 |
20020062310 | Marmor et al. | May 2002 | A1 |
20020075310 | Prabhu et al. | Jun 2002 | A1 |
20020075312 | Amadio et al. | Jun 2002 | A1 |
20020075330 | Rosenzweig et al. | Jun 2002 | A1 |
20020087740 | Castanho et al. | Jul 2002 | A1 |
20020087969 | Brunheroto et al. | Jul 2002 | A1 |
20020089540 | Geier et al. | Jul 2002 | A1 |
20020091679 | Wright | Jul 2002 | A1 |
20020091697 | Huang et al. | Jul 2002 | A1 |
20020091739 | Ferlitsch et al. | Jul 2002 | A1 |
20020095416 | Schwols | Jul 2002 | A1 |
20020097278 | Mandler et al. | Jul 2002 | A1 |
20020103998 | DeBruine | Aug 2002 | A1 |
20020104069 | Gouge et al. | Aug 2002 | A1 |
20020107973 | Lennon et al. | Aug 2002 | A1 |
20020111942 | Campbell et al. | Aug 2002 | A1 |
20020113821 | Hrebejk et al. | Aug 2002 | A1 |
20020120505 | Henkin et al. | Aug 2002 | A1 |
20020120757 | Sutherland et al. | Aug 2002 | A1 |
20020129033 | Hoxie et al. | Sep 2002 | A1 |
20020138552 | DeBruine et al. | Sep 2002 | A1 |
20020138582 | Chandra et al. | Sep 2002 | A1 |
20020138744 | Schleicher et al. | Sep 2002 | A1 |
20020144155 | Bate et al. | Oct 2002 | A1 |
20020152262 | Arkin et al. | Oct 2002 | A1 |
20020152267 | Lennon | Oct 2002 | A1 |
20020156895 | Brown | Oct 2002 | A1 |
20020161800 | Eld et al. | Oct 2002 | A1 |
20020163572 | Center et al. | Nov 2002 | A1 |
20020169678 | Chao et al. | Nov 2002 | A1 |
20020184357 | Traversat et al. | Dec 2002 | A1 |
20020188605 | Adya et al. | Dec 2002 | A1 |
20020188735 | Needham et al. | Dec 2002 | A1 |
20020194252 | Powers, III | Dec 2002 | A1 |
20020196276 | Corl et al. | Dec 2002 | A1 |
20020199061 | Friedman et al. | Dec 2002 | A1 |
20030009484 | Hamanaka et al. | Jan 2003 | A1 |
20030014415 | Weiss et al. | Jan 2003 | A1 |
20030018657 | Monday | Jan 2003 | A1 |
20030018712 | Harrow et al. | Jan 2003 | A1 |
20030028610 | Pearson | Feb 2003 | A1 |
20030041178 | Brouk et al. | Feb 2003 | A1 |
20030046260 | Satyanarayanan et al. | Mar 2003 | A1 |
20030069893 | Kanai et al. | Apr 2003 | A1 |
20030069908 | Anthony et al. | Apr 2003 | A1 |
20030074356 | Kaler et al. | Apr 2003 | A1 |
20030078918 | Souvignier et al. | Apr 2003 | A1 |
20030093321 | Bodmer et al. | May 2003 | A1 |
20030093531 | Yeung et al. | May 2003 | A1 |
20030093580 | Thomas et al. | May 2003 | A1 |
20030097361 | Huang et al. | May 2003 | A1 |
20030101200 | Koyama et al. | May 2003 | A1 |
20030105745 | Davidson et al. | Jun 2003 | A1 |
20030110188 | Howard et al. | Jun 2003 | A1 |
20030115218 | Bobbitt et al. | Jun 2003 | A1 |
20030117403 | Park et al. | Jun 2003 | A1 |
20030117422 | Hiyama et al. | Jun 2003 | A1 |
20030120928 | Cato et al. | Jun 2003 | A1 |
20030120952 | Tarbotton et al. | Jun 2003 | A1 |
20030122873 | Dieberger et al. | Jul 2003 | A1 |
20030126136 | Omoigui | Jul 2003 | A1 |
20030126212 | Morris et al. | Jul 2003 | A1 |
20030135495 | Vagnozzi | Jul 2003 | A1 |
20030135517 | Kauffman | Jul 2003 | A1 |
20030135659 | Bellotti et al. | Jul 2003 | A1 |
20030140115 | Mehra | Jul 2003 | A1 |
20030154185 | Suzuki et al. | Aug 2003 | A1 |
20030158855 | Farnham et al. | Aug 2003 | A1 |
20030177422 | Tararoukhine et al. | Sep 2003 | A1 |
20030184587 | Ording et al. | Oct 2003 | A1 |
20030210281 | Ellis et al. | Nov 2003 | A1 |
20030212680 | Bates et al. | Nov 2003 | A1 |
20030212710 | Guy | Nov 2003 | A1 |
20030222915 | Marion et al. | Dec 2003 | A1 |
20030225796 | Matsubara | Dec 2003 | A1 |
20030227487 | Hugh | Dec 2003 | A1 |
20030233419 | Beringer | Dec 2003 | A1 |
20040001106 | Deutscher et al. | Jan 2004 | A1 |
20040002993 | Toussaint et al. | Jan 2004 | A1 |
20040003247 | Fraser et al. | Jan 2004 | A1 |
20040008226 | Manolis et al. | Jan 2004 | A1 |
20040019584 | Greening et al. | Jan 2004 | A1 |
20040019655 | Uemura et al. | Jan 2004 | A1 |
20040030731 | Iftode et al. | Feb 2004 | A1 |
20040044696 | Frost | Mar 2004 | A1 |
20040044776 | Larkin | Mar 2004 | A1 |
20040054674 | Carpenter et al. | Mar 2004 | A1 |
20040056896 | Doblmayr et al. | Mar 2004 | A1 |
20040068524 | Aboulhosn et al. | Apr 2004 | A1 |
20040070612 | Sinclair et al. | Apr 2004 | A1 |
20040083433 | Takeya | Apr 2004 | A1 |
20040085581 | Tonkin | May 2004 | A1 |
20040088374 | Webb et al. | May 2004 | A1 |
20040091175 | Beyrouti | May 2004 | A1 |
20040098370 | Garland et al. | May 2004 | A1 |
20040098379 | Huang | May 2004 | A1 |
20040098742 | Hsieh et al. | May 2004 | A1 |
20040103280 | Balfanz et al. | May 2004 | A1 |
20040117358 | Von Kaenel et al. | Jun 2004 | A1 |
20040133572 | Bailey et al. | Jul 2004 | A1 |
20040133588 | Kiessig et al. | Jul 2004 | A1 |
20040148434 | Matsubara et al. | Jul 2004 | A1 |
20040153451 | Phillips et al. | Aug 2004 | A1 |
20040153968 | Ching et al. | Aug 2004 | A1 |
20040167942 | Oshinsky et al. | Aug 2004 | A1 |
20040177116 | McConn et al. | Sep 2004 | A1 |
20040177148 | Tsimelzon, Jr. | Sep 2004 | A1 |
20040177319 | Horn | Sep 2004 | A1 |
20040183824 | Benson et al. | Sep 2004 | A1 |
20040189704 | Walsh et al. | Sep 2004 | A1 |
20040189707 | Moore et al. | Sep 2004 | A1 |
20040193594 | Moore et al. | Sep 2004 | A1 |
20040193600 | Kaasten et al. | Sep 2004 | A1 |
20040193621 | Moore et al. | Sep 2004 | A1 |
20040193672 | Samji et al. | Sep 2004 | A1 |
20040193673 | Samji et al. | Sep 2004 | A1 |
20040199507 | Tawa | Oct 2004 | A1 |
20040205168 | Asher | Oct 2004 | A1 |
20040205625 | Banatwala et al. | Oct 2004 | A1 |
20040205633 | Martinez et al. | Oct 2004 | A1 |
20040205698 | Schliesmann et al. | Oct 2004 | A1 |
20040215600 | Aridor et al. | Oct 2004 | A1 |
20040220899 | Barney et al. | Nov 2004 | A1 |
20040223057 | Oura et al. | Nov 2004 | A1 |
20040225650 | Cooper et al. | Nov 2004 | A1 |
20040230572 | Omoigui | Nov 2004 | A1 |
20040230599 | Moore et al. | Nov 2004 | A1 |
20040230917 | Bales et al. | Nov 2004 | A1 |
20040249902 | Tadayon et al. | Dec 2004 | A1 |
20040255048 | Lev Ran et al. | Dec 2004 | A1 |
20050004928 | Hamer et al. | Jan 2005 | A1 |
20050010860 | Weiss et al. | Jan 2005 | A1 |
20050015405 | Plastina et al. | Jan 2005 | A1 |
20050027757 | Kiessig et al. | Feb 2005 | A1 |
20050050470 | Hudson et al. | Mar 2005 | A1 |
20050055306 | Miller et al. | Mar 2005 | A1 |
20050080807 | Beilinson et al. | Apr 2005 | A1 |
20050097477 | Camara et al. | May 2005 | A1 |
20050114672 | Duncan et al. | May 2005 | A1 |
20050120242 | Mayer et al. | Jun 2005 | A1 |
20050131903 | Margolus et al. | Jun 2005 | A1 |
20050131905 | Margolus et al. | Jun 2005 | A1 |
20050149481 | Hesselink et al. | Jul 2005 | A1 |
20050166159 | Mondry et al. | Jul 2005 | A1 |
20050171947 | Gautestad | Aug 2005 | A1 |
20050192953 | Neale et al. | Sep 2005 | A1 |
20050192966 | Hilbert et al. | Sep 2005 | A1 |
20050243993 | McKinzie et al. | Nov 2005 | A1 |
20050246331 | De Vorchik et al. | Nov 2005 | A1 |
20050246643 | Gusmorino et al. | Nov 2005 | A1 |
20050246664 | Michelman et al. | Nov 2005 | A1 |
20050256909 | Aboulhosn et al. | Nov 2005 | A1 |
20050257169 | Tu | Nov 2005 | A1 |
20050283476 | Kaasten et al. | Dec 2005 | A1 |
20060004692 | Kaasten et al. | Jan 2006 | A1 |
20060020586 | Prompt et al. | Jan 2006 | A1 |
20060036568 | Moore et al. | Feb 2006 | A1 |
20060080308 | Carpentier et al. | Apr 2006 | A1 |
20060129627 | Phillips et al. | Jun 2006 | A1 |
20060173873 | Prompt et al. | Aug 2006 | A1 |
20060200466 | Kaasten et al. | Sep 2006 | A1 |
20060200832 | Dutton | Sep 2006 | A1 |
20060218122 | Poston et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
1421800 | Nov 2001 | CN |
2329492 | Mar 1999 | GB |
9938092 | Jul 1999 | WO |
9938092 | Jul 1999 | WO |
WO 0225420 | Mar 2002 | WO |
WO 2004107151 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040193672 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10403174 | Mar 2003 | US |
Child | 10691841 | US |