This invention generally relates to golf club heads, and more specifically to golf club heads including adjustable overall weighting.
Weights have been incorporated into golf clubs to distribute discretionary mass in order to alter the mass characteristics. For example, weights may be incorporated to provide adjustability in characteristics such as swing weight, location of the center of gravity and manipulation of the moment of inertia of a particular golf club head. Various weight designs have been utilized that allow the manufacturer and/or consumer to alter the mass properties of a golf club head.
One example of a weight incorporated into a club head is described in U.S. Pat. No. 1,167,106 to Palmer for a Golf Club. Palmer describes a golf club that includes a threaded opening that receives threaded weight plugs for varying the weight of a cast metal golf club head. The threaded opening extends through a rear wall of the golf club head and receives a threaded plug which may be just long enough to fill the opening or it may extend further into the golf club head to increase the weight. The threaded opening is tapered so that the plug may be tightened to a desired depth. A disadvantage of the threaded weight plug is that it is constructed as a single piece. As a result, torque applied to the weight plug during use of the golf club is transmitted to the threaded portion and may result in the weight plug becoming disengaged, especially with repeated use.
In another example, described in U.S. Pat. No. 1,167,387 to Daniel, a weight socket is attached to a golf club head and to the end of a golf club shaft. Weights are installed into the socket and a screw on cap is installed on the end of the socket to secure the weights inside.
In another example, described in U.S. Pat. No. 3,075,768, a compartment is incorporated into a proximal end of the golf club adjacent a grip. The compartment holds weighting means so that the balance of the golf club can be altered after the golf club is assembled.
In yet another example, described in U.S. Pat. No. 3,606,327, a capsule is secured to a grip end of a golf club shaft and to a golf club head. Washers having different weights are inserted into each capsule and held in place by a screw. The screw extends through the centers of the washers and is threaded into an aperture at the bottom of the capsule.
Another example of a removable weight is described in U.S. Pat. No. 6,773,360 to Willett et al. for a Golf Club Having a Removable Weight. The removable weight includes a mass element and a fastener that extends through an aperture in the mass element. A golf club head body includes an interior cavity and a recess on a wall of the body. Inside the recess, a threaded opening is provided so that the fastener may extend through the mass element disposed in the recess and into the threaded opening to fasten the mass element in the recess. Because the fastener extends through the mass element and into a threaded opening in the recess, the size of the mass element and the structure of the recess are limited. Additionally, the mass element is visible to the user when installed so less variation is available for the mass element without detrimentally affecting the aesthetics of the club head.
These weight constructions have been used to alter the static mass properties of the golf club. It is desirable to provide a system for weighting a golf club golf club and a method for incorporating that system to alter the dynamic characteristics of a golf club during a swing.
The invention is directed to a golf club head and a removable weight. Several embodiments of the present invention are described below.
In an embodiment, a weight assembly for attachment to a golf club comprises a housing, and a weight member. The housing includes a base, a plurality of flexible cantilevered arms extending distally away from the base, and a threaded portion. The weight member includes a shank that is threaded, and the shank is threaded into the threaded portion of the housing.
In another embodiment, a weight assembly for attachment to a golf club comprises a housing, a weight member, and an actuator. The housing includes a base and a plurality of flexible cantilevered arms extending distally away from the base. The weight member is disposed in the housing, and has a first position relative to the housing and a second position relative to the housing. The actuator is interposed between a portion of the housing and a portion of the weight member, and is movably coupled to the housing and movably coupled to the weight member. In the first position the flexible arms are in a retracted configuration, and in second position the flexible arms are in an expanded configuration wherein a maximum outer dimension of the flexible arms is greater in the expanded configuration than in the retracted configuration.
In another embodiment, a weight assembly for attachment to a golf club comprises a housing, and a weight member. The housing includes a base and a plurality of flexible cantilevered arms extending distally away from the base. The base defines a cavity and each of the flexible arms includes a barb disposed at a distal end that extends outward from an adjacent portion of the flexible arm. The weight member is disposed in the cavity.
In another embodiment, a golf club comprises a golf club head, a shaft, a grip and a weight member. The golf club head includes a ball striking face and a hosel. The shaft includes an elongate body having a proximal end and a distal end, and the distal end is coupled to the hosel. The grip includes a recess extending into the grip from an outer surface of the grip and is coupled to the proximal end of the elongate body. The recess is open outwardly. The weight member is disposed in the recess, and the weight member has a shape that complements the shape of the recess.
In the accompanying drawings, which form a part of the specification and are to be read in conjunction therewith and in which like reference numerals are used to indicate like parts in the various views:
The present invention is directed to a weight system for a golf club. The removable weight is provided for use with a golf club to alter the mass properties of the golf club. Several embodiments of the present invention are described below.
Other than in the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, moments of inertias, center of gravity locations, loft and draft angles, and others in the following portion of the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.
The system and method of the present invention utilize weights in a golf club to adjust the overall club weight. Preferably, the system is constructed so that the overall club weight can be altered without changing properties like the swing weight, the shaft flex, the shaft kick point, the location of the center-of-gravity (CG) of the golf club or golf club head, or the coefficient of restitution (COR) of the golf club head.
Players react to overall club mass in different ways. Some people find that they swing a lighter golf club faster. Other players find that they swing a heavier golf club faster. The faster golf swing generally results in a greater outgoing ball speed which translates into greater distance. Additionally, the overall mass of the golf club may be used to alter the swing tempo of a player, which can alter the club head speed and/or orientation at impact and can improve the feel of impact.
Players also generally find that particular shafts provide bending and twisting profiles during a golf swing that provides desired performance during a golf swing. For example, players will often find that a shaft that matches their swing allows better accuracy or desired launch angle and/or backspin. However, the mass of the shaft is not always desired because it may add too much or too little to the overall mass of the golf club, or it may have a center of gravity that detrimentally affects the balance of the golf club.
Referring to
The system of the present invention may also be used to create a training system. For example a golf club is fit to a user having a mass. Weights are selected to be added to the golf club to increase the overall mass by about 15% to form a heavy club. Additional weight combinations are determined to decrease the golf club by about 15% to form a light club. The player may then practice with the golf club in the three configurations to increase swing strength and to manipulate the tempo of their swing.
Various weight attachments may be used in the system of the present invention. Referring to
Referring to
In another embodiment, illustrated in
In other embodiments, the entire weight assembly may be removable and is constructed to provide an adjustable friction engagement with the inner wall of the shaft. For example, weight assembly 50 includes a housing 51 and an expansion member 52, as shown in
Alternative housing constructions to the weight assembly shown in
Referring now to
In another embodiment, shown in
A weight retainer 106 may be included to limit the travel of weight member 102 on actuator 103. In the present embodiment, weight retainer 106 is a snap ring that is disposed in a circumferential groove included on a distal portion of actuator 103. The retainer is located distal of the threaded bore of weight member 102 and prevents weight member 102 from fully disengaging from actuator 103.
Additionally, an actuator retainer 107 may be included so that actuator 103 is rotatably coupled to base 104. In particular, retainer 107 may be a snap ring that extends across the interface between a head of actuator 103 and base 104 so that actuator can rotate relative to the housing 101, but can not translate relative to the housing 101. As an alternative, a cap may be coupled to base 104 that captures actuator 103 while allowing access to a tool receiving feature in actuator 103.
Additional embodiments of expanding weight member are illustrated in
In another expanding weight member embodiment, a cam mechanism is utilized to operate a weight member as shown in
Weight assembly 120 is actuated by the interaction between cam 122 and moveable member 123. In particular, the translation of moveable member 123 away from base portion 124 causes body 121 to expand by flexing flexible arms 125 outward. Cam 122 is rotatably coupled to base portion 124 and is accessible through an access port 126 included in base portion 124, so that cam 122 may be manually rotated relative to body 121 using a tool. The rotation of cam 122 and the abutment of cam 122 with moveable member 123 causes moveable member 123 to translate and to expand body 121.
In additional embodiments, a weight assembly includes a housing that is mounted in a golf club shaft, and a weight member that is coupled to the housing. In an embodiment, a weight assembly 130 includes a housing 132 and a weight member 134, and is shown in
The connection mechanism included in housing 132 and on the weight member 134 is preferably configured so that the weight member can be selectively coupled to the housing. For example, the weight member and weight receptacle 137 may be threaded, as shown by weight member 134a. As an alternative, the weight member and weight receptacle may include a bayonet style of fastener that includes a spring load and projections 138 on the weight member 134c that are received in a J-shaped slot in weight receptacle 137. As a still further alternative, the weight member and weight receptacle 137 may be configured to have a magnetic attachment as shown by weight member 134b.
In another embodiment, shown in
In the present embodiment, the connection mechanism between housing 142 and weight member 144 includes threaded portions in each of the housing and the weight member, an undercut portion 149 in the housing and an expansion portion 151 in the weight member. The threaded portion 148 in housing 142 is coupled to the threaded portion 150 of weight member 144. Expansion portion 151 includes a plurality of flexible cantilevered arms 152. As the weight member is threaded into the housing, the expansion portion 151 of weight member 144 engages the undercut portion 149 of housing 142. As the weight member further engages the housing the threaded portion 150 abuts the expansion portion 151 and applies a radial force to the flexible arms 152, thereby preventing the expansion portion 151 from disengaging the undercut portion 149 of housing 142. Weight member 144 also includes an alignment member 153 that maintains threaded portion 150 centered relative to expansion portion 151 during installation and removal.
In additional embodiments, a weight system includes a weight member that is configured to couple to a feature included in a grip of a golf club. In a first embodiment, shown in
In another embodiment, illustrated in
In another embodiment, shown in
A plurality of weight members 206 having different masses may be provided so that a desired amount of grip weighting may be incorporated into the golf club and that weighting may be utilized for counterweighting and/or altering the overall mass and/or swingweight of the golf club. The weight members 206 may be constructed from one or more materials, such as metallic or non-metallic materials, so that a weight member 206 having a desired mass may be constructed. Examples of materials suitable for the construction of weight members 206 include steel, aluminum, tungsten, titanium, rubber and plastic. The golf grip may have a core size ranging generally between about 0.58 inch and about 0.64 inch. Additionally the diameter of weight member 206 may be between about 0.1 inch and about 1.0 inch, the depth of weight member 206 may be between about 0.1 inch and about 10.0 inch, and the mass of the weight member 206 is preferably between about 1 g and about 1 kg.
In another embodiment of an overall golf club weighting system, an automatic swing weight compensation device permits the length of the golf club to be adjusted while the system automatically adjusts the weighting so that the swingweight remains constant. As illustrated in
Swingweight is determined by calculating the moment produced by all of the golf club components about a point on the golf club defined as the fulcrum which is located at 14 inches from the proximal end of the golf club, which generally corresponds to the butt end of the golf club grip. Because the fulcrum is located by measuring from the proximal end of the golf club a distance of 14″, and because golf clubs generally have grips, the contribution to swingweight of the grip remains constant in a golf club having adjustable length. However, in a club having adjustable length, the change in length results in the positions of the center of gravity of the shaft and the center of gravity of the golf club head altering the swingweight. In particular, as the length of the golf club is increased, the contributions of the shaft and golf club head increase the swingweight. The actuator and mass member are configured to counteract the increased contribution of the shaft and head by reducing the contribution of the mass member. The contribution of the mass member is reduced by moving the mass member closer to the proximal end of the golf club so that the distance between the center of gravity of the weight member and the fulcrum is reduced. The amount of change in the contribution to swingweight of the shaft and head caused by the change in length must be equally counteracted by the change in contribution to swingweight of the mass member to maintain a constant swing weight, however, it should be appreciated that the system may alternatively be configured to reduce the impact on swingweight by counteracting a portion of the change in swingweight caused by the length change. For example, to maintain a constant swing weight the relationship Δlw·mw=(ms+mh)·ΔlT must be maintained.
A described above, the actuator 228 is constructed to alter the relationship of the weight member relative to the fulcrum to compensate for the change in golf club length. For example, the actuator may be constructed as a mechanical, electromechanical and/or pneumatic system. A first mechanical example is illustrated in
In another example, as shown schematically in
In a still further embodiment, illustrated schematically in
Although the inventive weight is illustrated in a wood-type golf club, it should be appreciated that the weight may be incorporated in any type of golf club. For example, the inventive weight may be included in drivers, fairway woods, utility clubs, hybrids, iron-type golf clubs, wedges and putters.
While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objectives stated above, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Elements from one embodiment can be incorporated into other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present invention.
This application is a divisional of U.S. patent application Ser. No. 14/982,730, filed Dec. 29, 2015, now U.S. Pat. No. 10,046,217 the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1167106 | Palmer | Jan 1916 | A |
1167387 | Daniel | Jan 1916 | A |
2517245 | Scott | Aug 1950 | A |
3075768 | Karns | Jan 1963 | A |
3606327 | Gorman | Sep 1971 | A |
6379265 | Hirakawa et al. | Apr 2002 | B1 |
6773360 | Willett et al. | Aug 2004 | B2 |
7294065 | Liang et al. | Nov 2007 | B2 |
7699718 | Lindner | Apr 2010 | B2 |
7704161 | Lindner | Apr 2010 | B2 |
7717804 | Beach et al. | May 2010 | B2 |
8177658 | Johnson | May 2012 | B1 |
8292757 | Soracco | Oct 2012 | B2 |
8388465 | de la Cruz et al. | Mar 2013 | B2 |
8540589 | Bezilla et al. | Sep 2013 | B2 |
8684863 | Bezilla et al. | Apr 2014 | B2 |
9089748 | Morales et al. | Jul 2015 | B2 |
9421421 | Knutson et al. | Aug 2016 | B2 |
9421432 | Galvan et al. | Aug 2016 | B2 |
9504884 | Bennett et al. | Nov 2016 | B2 |
9700767 | Zimmerman et al. | Jul 2017 | B2 |
9700770 | Cleghorn et al. | Jul 2017 | B2 |
9707458 | Luttrell et al. | Jul 2017 | B2 |
9731173 | Bezilla et al. | Aug 2017 | B2 |
9737770 | Bennett et al. | Aug 2017 | B2 |
9744415 | Frame et al. | Aug 2017 | B2 |
9827470 | Knutson et al. | Nov 2017 | B2 |
9937397 | Barksdale et al. | Apr 2018 | B2 |
10046217 | Golden | Aug 2018 | B2 |
20050079925 | Cheng et al. | Apr 2005 | A1 |
20100105498 | Johnson | Apr 2010 | A1 |
20130165249 | Margoles | Jun 2013 | A1 |
20150360101 | Solhaug | Dec 2015 | A1 |
20170282029 | Cleghorn et al. | Oct 2017 | A1 |
20170312600 | Luttrell et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
194823 | Mar 1923 | GB |
2006187489 | Jul 2006 | JP |
2006198251 | Aug 2006 | JP |
2006239154 | Sep 2006 | JP |
Entry |
---|
US. Appl. No. 16/132,053, filed Sep. 14, 2018, Luttrell et al. |
Number | Date | Country | |
---|---|---|---|
20180256953 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14982730 | Dec 2015 | US |
Child | 15980607 | US |