The present invention relates to the manufacture of metal beams, and more particularly to a method of manufacturing beams using a laser welding process.
In the past, the manufacture of metal I-beams and metal T-beams has typically been accomplished by one of several different methods, including hot rolling, cold rolling, extrusion, and/or welding. The past welding of I and T beams has been accomplished by using arc welding, such as gas metal arc welding (GMAW) or a hybrid laser-GMAW system. The past welding of I and T beams has also been accomplished using high frequency electric resistance fusion welding.
The present invention provides a new method and system for creating metal beams, such as I-beams, T-beams, and the like that overcomes several disadvantages of prior art methods of making such beams. The system and method utilize laser welding to fusion weld top and bottom flanges to a metal web in a continuous fashion wherein the flanges and web are fed from coils. The system and method utilize no filler material. The system and method allow custom I-beams to be more easily manufactured, as well as allowing I-beams to be more economically manufactured with a smaller factory footprint and with a reduced amount of equipment.
According to a first embodiment, a system for making metal beams is provided. The system includes a coil feed subsystem, a conveyor, a first laser welder, and a second laser welder. The coil subsystem feeds from a pair of coils a metal flange and a metal web to a welding area. The conveyor is positioned in the welding area and continuously moves the metal flange and metal web in a downstream direction away from the coil feed subsystem. The metal flange and metal web are in contact with each other along a junction as they move on the conveyor. The first and second laser welders are both positioned in the welding area. The first laser welder welds the metal flange to the metal web along a first side of the junction as the metal flange and metal web move. The second laser welder welds the metal flange to the metal web along a second side of the junction as the metal flange and metal web move. The first and second laser welders are positioned longitudinally along the conveyor such that they simultaneously weld a common longitudinal position along the junction.
According to another embodiment, a method of manufacturing a metal I-beam is provided. The method includes feeding a bottom metal flange from a first coil to a welding area, feeding a top metal flange from a second coil to the welding area, and feeding a metal web from a third coil to the welding area. The method further includes laser welding the bottom metal flange to the metal web and the top metal flange to the metal web to thereby create an I-beam. The laser welding occurs while the top and bottom metal flanges and the web move on a conveyor. The welded I-beam is further cut into sections downstream of the welding area while the I-beam is in motion.
According to still another embodiment, a system for making metal I-beams is provided. The system includes a coil feed subsystem, a conveyor, and first, second, third, and fourth laser welders. The coil subsystem feeds a top metal flange, a bottom metal flange, and a metal web to a welding area. The top metal flange, bottom metal flange, and metal web are fed from first, second, and third coils, respectively. The conveyor is positioned in the welding area and continuously moves the top metal flange, the bottom metal flange, and the metal web in a downstream direction away from the coil feed subsystem. The top metal flange and metal web are in contact with each other along a first junction as they move on the conveyor. The bottom metal flange and the metal web are in contact with each other along a second junction as they move on the conveyor. The first, second, third, and fourth laser welders are all positioned in the welding area. The first laser welder welds the top metal flange to the metal web along a first side of the first junction as the top metal flange and metal web move. The second laser welder welds the top metal flange to the metal web along a second side of the first junction as the top metal flange and metal web move. The third laser welder welds the bottom metal flange to the metal web along a first side of the second junction as the bottom metal flange and metal web move. The fourth laser welder welds the bottom metal flange to the metal web along a second side of the second junction as the bottom metal flange and metal web move.
According to still other aspects of the invention, pairs of the laser welders may be positioned at common longitudinal locations along the conveyor so that the longitudinal axes of the laser beam pairs intersect each other. The first and second laser welders may be aimed, focused, and powered such that they create weld pools at the junction of the web and flange that intersect with each other. The second and third laser welders may also be aimed, focused, and powered such that they create weld pools at the junction of the web and the other flange that intersect with each other. In some embodiments, the web and flanges may all be made of the same material, such as steel, aluminum, or other metals. In other embodiments, one or more of the web and flanges may be made of a different metal than the other two components of the I-beam. The welding may be accomplished without the use of any filler materials. In at least some embodiments, the laser welders may emit a laser beam that is oriented approximately fifteen degrees from the plane defined by either of the flanges. Other orientations can, of course, be used.
A beam manufacturing system 20 according to one embodiment is depicted schematically in
While not illustrated in
A top flange straightener 42 and a bottom flange straightener 44 are positioned downstream of coil reels 30 and 32. Straighteners 42 and 44 may be any conventional straightener that is adapted to straighten the metal coils supported on first reel 30 and second reel 32, respectively. Such straightening changes the circular shape of the metal while supported on reels 30 and 32 into a straight, flat shape, suitable for manufacturing a metal beam. While
A web straightener 46 is also present in coil feed subsystem 22. Web straightener 46 straightens the coiled metal of third reel 34 as the metal unwinds therefrom. Web straightener 46 then feeds the straightened metal through a plurality of material twist fixtures 48 before the metal is fed to laser welding area 24. Web straightener 46 and material twist fixtures 48 may both be conventional structures. In the illustrated embodiment, third reel 34 supports the metal web material that forms web 40 of the finished beam 68. First reel 30 supports the coiled metal that is used to make the top flange 36 of the finished beam 68, and second reel 32 supports the coiled metal that is used to make bottom flange 38 of the finished beam 68. The arrangement of which reel supports which material may, of course, be changed.
After the metal coils are unwound and straightened in coil feed subsystem 22, they are fed to laser welding area 24. An example of one suitable embodiment of laser welding area 24 is illustrated in more detail in
Laser welders 50-56 may each include a conventional chiller 58 associated therewith. Chillers 58 may be air or liquid cooled and are adapted to prevent laser welders 50-56 from overheating. Laser welders 50-56 are adapted to weld top flange 36 to web 40, as well as bottom flange 38 to web 40, to thereby create an I-beam. If another type of metal beam is to be created by system 20, such as a T-beam, then fewer laser welders may be used. For example, the manufacture of a T-beam could be accomplished using only two laser welders.
Regardless of the specific number, laser welders 50-56 are adapted to weld the components of the beam while the components are traveling on a conveyor 60 in laser welding area 24. Conveyor 60 may be a belted conveyor, or any other suitable type of conveyor that is capable of supporting and moving the straightened metal from reels 30, 32, and 34. Suitable fixturing ensures that the straightened metal components from the reels are maintained in the correct orientation and position relative to each other as they travel on conveyor 60 so that the components may be welded together by laser welders 50-56 as the components are moving on conveyor 60. Thus, laser welders 50-56 may remain stationary and do not require any moving robotic arms to move along the joints being welded. Conventional controls may be utilized to ensure that the lasers emitted from the laser welders 50-56 impinge the correct weld locations on the metal components of the beam as the components move.
While laser welders 50-56 are shown in
A control panel 62 may be included and in communication with laser welders 50-56 in order to control the welding operation undertaken by welders 50-56. One or more fume collectors 64 may also be present in laser welding area 24 in order to properly vent and/or process fumes created during the welding process. A cooling conveyor 66 may also be positioned downstream of conveyor 60. Cooling conveyor 66 receives the metal beam 68 after its components have been welded together on welding conveyor 60. Because the laser welding performed by laser welders 50-56 is highly focused, the heat generated thereby is not excessive, nor is it spread out over a large area on the beam. Large amounts of space within the plant or factory for cooling are therefore not necessary. Cooling conveyor 66 therefore provides sufficient space to allow sufficient cooling of beam 68 after it has been welded. Cooling conveyor 66 operates continuously and, in addition to allowing beam 68 to cool while traveling thereon, delivers beam 68 to exit subsystem 26.
One illustrative arrangement of an exit subsystem 26 is illustrated in greater detail in
In the example shown in
Beam manufacturing system 20 is set up, in at least one embodiment, such that first laser welder 50 and second laser welder 52 are positioned such that their respective welding occurs at substantially the same longitudinal location of beam 68. This may more easily be understood with respect to
In the example illustrated in
Beam manufacturing system 20 may be used to create beams that are made entirely of a single type of metal, such as steel, aluminum, or other metals. In other embodiments, system 20 may be used to create composite beams 68—i.e. beams that have components made from different types of metal. For example, system 20 could be used to manufacture beams 68 in which web 40 might be made from a different metal than top and bottom flanges 36 and 38. In still other embodiments, each of the three components of an I-beam (top flange 36, bottom flange 38, and web 40) might be made from a metal that is different from the other two components. In still other embodiments, one of the flanges 36 or 38 could be made from a metal that differs from both the other flange and web 40.
As would be understood by one skilled in the art, each of the laser welders 50-56 may be configured in a manner suitable for creating the desired welds. Such configuration may involve choosing the focal length of the laser welder, the laser spot size, the focus position, the power setting, any offset of the center of the laser beam from the junction of the two components being welded together, and other factors. Such factors may vary depending upon the metal being welded, the speed of conveyor 60, the thickness of the components being welded, the type of laser welder, and other factors. In at least one embodiment, where top and bottom flanges 36 and 38 were both 0.120 inches thick and web 40 was 0.090 inches thick (all from 80 ksi steel), a sufficient weld was created at a line speed of twelve meters per second using a laser welder with a 400 micron laser spot size focused on the surface of the metal and angled at fifteen degrees (theta=15) with an offset of 0.008 inches (above the junction between the web and flange). Other laser spot sizes, offsets, and/or angles may also be used for the same line speed, material, and material thicknesses. Of course, system 20 may also be used with other materials, other material thicknesses, other line speeds, other angles, other offsets, and still other parameters.
System 20 may be modified to punch holes at selected locations, or otherwise remove selected amounts of material at selected locations, along beam 68 after its components have been welded together. Such removal of material may be beneficial in reducing the weight of the final beam sections that are created. The location of the material that is removed may be chosen so as to not decrease the desired structural properties of the beam beyond acceptable standards. Because system 20 utilizes laser welders that focus their welding heat, beams 68 cool off at a faster rate than other types of welding, such as gas metal arc welding. This faster cooling rate allows further processing to be performed while the beam 68 is still moving on the line, if desired. Such processing may include, for example, the removal of material, as noted, or it may involve other procedures. Thus, system 20 may, in one embodiment, remove material from the manufactured beam 68 while the beam is still moving down the line. Alternatively, the material may be removed after beam 68 has been cut into sections by flying cutoff station 72.
Beam manufacturing system 20 may provide a more flexible system for manufacturing metal beams, such as, but not limited to, I-beams. System 20 may be easily adapted to allow the customized creation of I-beams. By changing the laser welder settings appropriately and/or the line speeds, I-beams having flanges and webs of different thicknesses, as well as differing types of materials, may be easily manufactured in an economical manner. Further, control panel 62 may be configured with a controller that stores the various laser welder settings, the line speed, and/or other features of the manufacturing process such that an operator can recall the settings for later use. This allows an operator to create a batch of customized beams for a customer at a first time period and then, if desired, electronically recall those settings from the controller at a later time to create another batch of the same customized beams. The controller may be further configured to automatically implement the saved settings on all of the equipment used in the system 20, thereby enabling customized system 20 to switch to manufacturing a different type of beam with little manual effort.
As would be understood by one skilled in the art, additional changes and modifications in the specifically described embodiments may be carried out with departing from the principles of the present invention, which is intended to be limited only by the scope of appended claims, as interpreted according to the principles of patent law, including the doctrine of equivalents.
Number | Date | Country | |
---|---|---|---|
61258807 | Nov 2009 | US |