The following relates to RFID systems and, more particularly, to a method and apparatus for micro-localization of UHF passive RFID tags moving along a known, unidirectional path.
Radio Frequency Identification (RFID) systems use RFID tags to identify and/or track objects or living things. Typically, the tags are affixed to respective objects and when these tags are excited, they produce or reflect a magnetic or electric field at some frequency. The reflected field is modulated with an identifying code to identify the particular tag, and/or other useful information.
An RFID tag may either be active or passive. Whereas active tags have a self-contained power supply and signal source, a passive tag receives an exciting signal at an exciting frequency from a transmitting antenna of an interrogator or reader positioned. Typically, the transmitting antenna is positioned at a portal. The exciting signal causes the RFID tag to transmit a signal, which is received by a receiving antenna adjacent to the transmitting antenna. The receiving antenna receives the modulated signal (magnetic or electromagnetic) produced by the excited tag and consequently the tag and the object to which it is attached can be identified.
Interest in adopting RFID technology for use in automation systems and requiring minimal manual involvement is increasing rapidly. RFID systems are capable of providing real-time object visibility enabling continuous identification and location of all items and thereby providing real-time data management instead of simple snapshots.
While the use of RFID tags is well known, most current RFID systems do not have the ability to locate fast moving tags (two meters per second i.e. 2 m/s or higher) with the accuracy required in many applications. Complexities are attributable to various factors including that the horizontal and vertical dimensions of the detection volume in which the RFID tags are to be read may contain several tags producing several signals, as well as noise, reflections and polarization losses.
Prior approaches for addressing such complexities include confining the RF waves to a small volume using RF reflecting and absorbent materials, and/or controlling the angular extent of the interrogation zone (and thus the tag transmission zone) by using a two-element antenna to transmit a data signal with a directional sum pattern and a scrambled signal with a complementary difference pattern. Other approaches include the use of techniques relating to Doppler shift and triangulation.
While various techniques for localization of RFID tags are known, improvements are of course desirable.
It is an object of an aspect of the following to provide a method and system for wireless communications that addresses at least one of the above complexities.
Overview
According to one aspect there is provided a method of detecting position of a moving RFID tag relative to an antenna, comprising:
continually receiving a signal from the RFID tag at the antenna;
detecting the phase of the received signal over a time period; and
based on a maximum detected phase detecting the position of the RFID tag relative to the antenna.
Embodiments will now be described more fully with reference to the accompanying drawings, in which:
Referring to
In the Tag 105 (see
Returning to
Using the above techniques, as an example an inexpensive, short-range, bi-directional digital radio communications channel can be implemented.
We discuss know how a Modulated Backscattering system is used to determine the relative position between a Tag and an Interrogator antenna, as an example. For this example, assume that the Tag is moving in a constant direction and at a constant velocity under an Interrogator antenna during the period of time the measurement will be taken. Returning to
φ=a tan(q/i)
where: q is the quadrature-phase component of the demodulated signal; and
i is the in-phase component of the demodulated signal.
The mean phase spatial gradient is represented as:
φ′=dφ/dx
where: dφ is the phase differential; and
dx is the differential displacement.
As can be seen in
For a single signal propagation path, the mean spatial gradient of the phase of the signal equals the mean Doppler, fd. In a practical situation, reflecting structures present in the vicinity of reading point cause a rich multipath radio propagation environment. In multipath channels, the mean phase spatial gradient is commonly denoted ‘random-FM’. The mean Doppler and the mean phase gradient are not always identical in multipath environments. However, this has no practical impact on the detection of the zero crossing point as only relative behavior of phase gradient before and after antenna passing point is needed for the identification of the zero crossing and consequently the antenna passing point.
The multipath effect and measurement noise makes it difficult to detect the peak of the phase trajectory directly from measurements. The multipath propagation causes random phase jumps/steps (for the phase gradient this appears as random-FM transients/‘spikes’). Furthermore, different antennae connected to the same Interrogator may show a different peak position and different overlaid phase jumps.
The phase gradient zero-crossing detection is performed by a Phase Gradient Null Estimator 403 as follows. First, the phase trajectories are found from the raw data received. Obvious outliers (jumps) are then detected, and mean powers around these jumps are measured using a Power Detector 404. The measurements are weighted according to a relationship between instant power and magnitude of phase gradient transient. More particularly, instant power monitoring is used more precisely to identify outliers in phase and phase gradient. Following this, signal smoothing is performed. Finally, the measurements are averaged and a new phase peak estimate is extracted. Higher order phase derivatives can also be used to refine the passing point estimation. For example the 2nd order derivative of the phase (the phase curvature) can be used to identify a turn tangent occurring at the passing point. Furthermore, in more sophisticated implementations, the Phase Peak Estimator 403 can be a Kalman filter followed by a linear regression of the phase gradient to find the phase gradient trajectory zero crossing that also identifies the antenna passing point.
The Phase Peak Information Signal 405a is applied to a Position Estimator 406 along with additional Position Information from Optical and Mechanical sensors 407. Other auxiliary dimension, range or position information may be used and be retrieved from typical sensor systems and sources found in RFID and parcel applications, such as X-ray imaging, weight scale; acoustic/ultra-sound ranging and imaging, visual video and imaging, other radio radar. Finally, the Tag Position Information 211a is passed to the Interrogator Processor 200, along with other Tag information such as Tag identification number.
To narrow the Tag activation zone, the Interrogator antennae can be tilted to steer a null 702 in front of the reading gate (see
Multiple antenna Interrogators can be used to compensate for random phase variation accompanying the envelope abrupt change caused by multipath. Combining phase information acquired by each antenna, one can smooth the phase gradient and compensate for correlated effects such as those caused by equipment imperfections. Speed sensors can be used to take into account tag speed variations.
The method and system may be embodied in a software application including computer executable instructions executed by a processing unit such as a personal computer or other computing system environment. The software application may run as a stand-alone digital image/video editing tool or may be incorporated into other available digital image/video editing applications to provide enhanced functionality to those digital image video editing applications. The software application may comprise program modules including routines, programs, object components, data structures etc. and be embodied as computer readable program code stored on a computer readable medium. The computer readable medium is any data storage device that can store data, which can thereafter be read by a computer system. Examples of computer readable media include for example read-only memory, random-access memory, CD-ROMs, magnetic tape and optical data storage devices. The computer readable program code can also be distributed over a network including coupled computer systems so that the computer readable program code is stored and executed in a distributed fashion.
Although embodiments have been described, those of skill in the art will appreciate that variations and modifications may be made without departing from the spirit and scope of the invention defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5510795 | Koelle | Apr 1996 | A |
5570094 | Armstrong | Oct 1996 | A |
5594448 | d'Hont | Jan 1997 | A |
6046683 | Pidwerbetsky et al. | Apr 2000 | A |
6223606 | Burke et al. | May 2001 | B1 |
6868073 | Carrender | Mar 2005 | B1 |
7119738 | Bridgelall et al. | Oct 2006 | B2 |
7170412 | Knox et al. | Jan 2007 | B2 |
7884753 | Peczalski et al. | Feb 2011 | B2 |
20020113709 | Helms | Aug 2002 | A1 |
20020126013 | Bridgelall | Sep 2002 | A1 |
20020181851 | Brown et al. | Dec 2002 | A1 |
20040257228 | Tsuji | Dec 2004 | A1 |
20050114108 | Cooper et al. | May 2005 | A1 |
20050259769 | Wang et al. | Nov 2005 | A1 |
20070073513 | Posamentier | Mar 2007 | A1 |
20080150699 | Ohara et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 2005081682 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090303006 A1 | Dec 2009 | US |