Bottom hole assemblies (“BHA”) at the end of a typical drill string used in the drilling and mining industry today may be a complex assembly of technology that includes not only a drill bit, but also an array of serially connected drill string components or tools. The various drill string tools that make up a BHA commonly include electrically powered systems on a chip (“SoC”) designed to leverage local sensors for the collection, processing and transmission of data that can be used to optimize a drilling strategy. In many cases, the various tools that make up a BHA are in bidirectional communication.
As one might expect, a BHA may be an equipment assembly with a hardened design that can withstand the demands of a drill string. Failure of a BHA, whether mechanically or electrically, inevitably brings about expensive and unwelcomed operating costs as the drilling process may be halted and the drill string retracted from the bore so that the failed BHA can be repaired. In many cases, retraction of a drill string to repair a failed BHA can range in cost from hundreds of thousands of dollars to millions of dollars.
A common failure point for BHAs is the point of connection from tool to tool, which is naturally prone to failure from adverse fluid ingress and/or misalignment between adjacent tools. While the individual tools may be robust in design, the mechanical and electrical connections between the tools may be a natural “weak point” that often determines the overall reliability of the BHA system.
Various embodiments of methods and systems for wireless power and data communications transmissions in a BHA are disclosed. The efficient transfer of electrical power and/or communication signals between two otherwise weakly, stationary coupled coils in a BHA may be accomplished in various embodiments that may leverage resonantly tuned circuits and impedance matching techniques. In this way, a wireless coupling may be provided between two fixed or stationary tools so that a direct mechanical connection for power and/or communications is not required when assembling the tools together and while they are operated in a bore hole. A gap between the tuned coils may exist and does not degrade performance of power and communications transfer between the coil. To compensate for any potential flux leakage, embodiments resonate inductively coupled primary and secondary coils at the same frequency. Further, in some embodiments, the source resistance is matched to the transmitting coil impedance and the load resistance is matched to the receiving coil impedance.
Power and/or communications may be transmitted through a stationary annular coil to an inductively coupled stationary second, mandrel coil (it is envisioned that various embodiments may employ any combination of annular and mandrel coils). By using resonantly tuned circuits and impedance matching techniques for the stationary coils, power and/or communications may be transmitted efficiently from one stationary coil to the other despite relative movement/vibration and misalignment of the two stationary coils. For example, to compensate for flux leakage, embodiments resonate inductively coupled primary and secondary coils at the same frequency.
Additionally, in some embodiments, the source resistance is matched to the transmitting coil impedance and the load resistance is matched to the receiving coil impedance.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In the Figures, like reference numerals refer to like parts throughout the various views unless otherwise indicated. For reference numerals with letter character designations such as “102A” or “102B”, the letter character designations may differentiate two like parts or elements present in the same figure. Letter character designations for reference numerals may be omitted when it is intended that a reference numeral to encompass parts having the same reference numeral in figures.
FIGS. 15A1-15C2 are diagrams of tools in a bottom hole assembly of a drill string that are coupled via embodiments of a wireless drilling and mining extender;
The system described below mentions how power and/or communications may flow from one drill collar to another. The inventive system may transmit power and/or communications in either direction and/or in both directions as understood by one of ordinary skill in the art.
Referring initially to
The controller 106 further includes a display 147 for conveying alerts 110A and status information 115A that are produced by an alerts module 110B and a status module 115B. The controller 106 in some instances may communicate directly with the drilling system 104 as indicated by dashed line 99 or the controller 106 may communicate indirectly with the drilling system 104 using the communications network 142
The controller 106 and the drilling system 104 may be coupled to the communications network 142 via communication links 103. Many of the system elements illustrated in
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly (“BHA”) 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string. The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string 12 relative to the hook 18. As is known to one of ordinary skill in the art, a top drive system could alternatively be used instead of the kelly 17 and rotary table 16 to rotate the drill string 12 from the surface. The drill string 12 may be assembled from a plurality of segments 125 of pipe and/or collars threadedly joined end to end.
In the embodiment of
The BHA 100 of the illustrated embodiment may include a logging-while-drilling (“LWD”) module 120, a measuring-while-drilling (“MWD”) module 130, a roto-steerable system (“RSS”) and motor 150 (also illustrated as 280 in
The LWD module 120 is housed in a special type of drill collar, as is known to one of ordinary skill in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD 120 and/or MWD module 130 can be employed, e.g. as represented at 120A. (References, throughout, to a module at the position of 120A can alternatively mean a module at the position of 120B as well.) The LWD module 120 includes capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the present embodiment, the LWD module 120 includes a directional resistivity measuring device.
The MWD module 130 is also housed in a special type of drill collar, as is known to one of ordinary skill in the art, and can contain one or more devices for measuring characteristics of the drill string 12 and drill bit 105. The MWD module 130 may further include an apparatus (not shown) for generating electrical power to the BHA 100.
This apparatus may include a mud turbine generator powered by the flow of the drilling fluid 26, it being understood by one of ordinary skill in the art that other power and/or battery systems may be employed. In the embodiment, the MWD module 130 includes one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device.
The foregoing examples of wireline and drill string conveyance of a well logging instrument are not to be construed as a limitation on the types of conveyance that may be used for the well logging instrument. Any other conveyance known to one of ordinary skill in the art may be used, including without limitation, slickline (solid wire cable), coiled tubing, well tractor and production tubing.
k=M/√{square root over (L1L2)} (1)
While a conventional inductive coupler has k≈1, weakly coupled coils may have a value for k less than 1 such as, for example, less than or equal to about 0.9. To compensate for weak coupling, the primary and secondary coils in the various embodiments are resonated at the same frequency. The resonance frequency is calculated as:
At resonance, the reactance due to L1 is cancelled by the reactance due to C1. Similarly, the reactance due to L2 is cancelled by the reactance due to C2. Efficient power transfer may occur at the resonance frequency, f0=ω0/2π. In addition, both coils may be associated with high quality factors, defined as:
The quality factors, Q, may be greater than or equal to about 10 and in some embodiments greater than or equal to about 100. As is understood by one of ordinary skill in the art, the quality factor of a coil is a dimensionless parameter that characterizes the coil's bandwidth relative to its center frequency and, as such, a higher Q value may thus indicate a lower rate of energy loss as compared to coils with lower Q values.
If the coils are loosely coupled such that k<1, then efficient power transfer may be achieved provided the figure of merit, U, is larger than one such as, for example, greater than or equal to about 3:
U=k√{square root over (Q1Q2)}>>1. (4)
The primary and secondary circuits are coupled together via:
V
1
=jωL
1
I
1
+jωM I
2 and V2=jωL2I2+jωM I1, (5)
where V1 is the voltage across the transmitting coil. Note that the current is defined as clockwise in the primary circuit and counterclockwise in the secondary circuit. The power delivered to the load resistance is:
P
L=½RL|I2|2, (6)
while the maximum theoretical power output from the fixed voltage source VS into a load is:
The power efficiency is defined as the power delivered to the load divided by the maximum possible power output from the source,
In order to optimize the power efficiency, η, the source resistance may be matched to the impedance of the rest of the circuitry. Referring to
When ω=ω0, Z1 is purely resistive and may equal RS for maximum efficiency.
Similarly, the impedance seen by the load looking back toward the source is
When ω=ω0, Z2 is purely resistive and RL should equal Z2 for maximum efficiency
The power delivered to the load is then:
and the power efficiency is the power delivered to the load divided by the maximum possible power output,
The optimum values for RL and RL may be obtained by simultaneously solving
with the result that:
R
S
=R
1√{square root over (1+k2Q1Q2)} and RL=R2√{square root over (1+k2Q1Q2)}. (16)
If the source and load resistances do not satisfy equations (16), then it is envisioned that standard methods may be used to transform the impedances. For example, as shown in the
Turning now to
Returning to
The receiving coil 232 may be free to move in the axial (z) direction or in the transverse direction (x) with respect to the transmitting coil 234. In addition, the receiving coil 232 may be able to rotate on axis with respect to the transmitting coil 234. The region between the two coils 232, 234 may be filled with air, fresh water, salt water, oil, natural gas, drilling fluid (known as “mud”), or any other liquid or gas. The transmitting coil 234 may also be mounted inside a metal tube, with minimal affect on the power efficiency because the magnetic flux may be captured by, and returned through, the ferrite shell 238 of the transmitting coil 234.
The operating frequency for these coils 232, 234 may vary according to the particular embodiment, but, for the
The variation in k versus axial displacement of the receiving coil 232 when x=0 may be relatively small, as illustrated by the graph 250 in
The power efficiency may also be calculated for displacements from the center in the z direction in mm (as illustrated by the graph 254 in
Referring now to
It is also envisioned that power may be transmitted from the inner coil to the outer coil of particular embodiments, interchanging the roles of transmitter and receiver. It is envisioned that the same power efficiency would be realized in both cases.
Referring to
Turning to
In lieu of, or in addition to, passing power, data signals may be transferred from one coil to the other in certain embodiments by a variety of means. In the above example, power is transferred using an about 100.0 kHz oscillating magnetic field. It is envisioned that this oscillating signal may also be used as a carrier frequency with amplitude modulation, phase modulation, or frequency modulation used to transfer data from the transmitting coil to the receiving coil. Such would provide a one-way data transfer.
An alternative embodiment includes additional secondary coils to transmit and receive data in parallel with any power transmissions occurring between the other coils described above, as illustrated in
The secondary data coils 266, 268 may be orthogonal to the power coils 232, 234, as illustrated in
Moreover, it is envisioned that the data coils 266, 268 may be wound on a non-magnetic dielectric material in some embodiments. Using a magnetic core for the data coils 266, 268 might result in the data coils' cores being saturated by the strong magnetic fields used for power transmission. Also, the data coils 266, 268 may be configured to operate at a substantially different frequency than the power transmission frequency. For example, if the power is transmitted at about 100.0 kHz in a certain embodiment, then the data may be transmitted at a frequency of about 1.0 MHz or higher. In such an embodiment, high pass filters on the data coils 266, 268 may prevent the about 100.0 kHz signal from corrupting the data signal. In still other embodiments, the data coils 266, 268 may simply be located away from the power coils 232, 234 to minimize any interference from the power transmission. It is further envisioned that some embodiments may use any combination of these methods to mitigate or eliminate adverse effects on the data coils 266, 268 from the power transmission of the power coils 232, 234.
FIGS. 15A1-16C2 are diagrams of tools 305, 310 in a bottom hole assembly 100 of a drill string 12 that are coupled via embodiments of a wireless drilling and mining (“D&M”) extender 301. Advantageously, a wireless D&M extender 301 provides for replacement of a physical pin connection of the conventional art with a stationary tuned-inductive coupler mechanism configured to pass power and data communication transmissions from tool to tool. As is understood by one of ordinary skill in the art of inductive coupling or magnetic coupling, a change in current flow through one coil may induce a voltage across an adjacent coil through electromagnetic induction.
The amount of inductive coupling between two conductors is measured by their mutual inductance. Inductive coupling may be leveraged in this manner between two wires, however one of ordinary skill in the art will recognize that the coupling between two wires can be increased by winding them into coils and placing them close together on a common axis, so the magnetic field of one coil passes through an and in and me the other coil.
It is envisioned that embodiments of a wireless D&M extender may include separate stationary coils or wires for power and data communications transmission. Power exchanged between the stationary coils would have a frequency in hundreds of kiloHertz (kHz) while data transmissions between the stationary coils would likely occur in the megahertz (MHz) range as understood by one of ordinary skill in the art.
As described above, smaller stationary coils, such as coils 266, 268 of
Returning to FIGS. 15A1-15C2, FIG. 15A1 depicts a stationary/fixed “mandrel to mandrel” embodiment of a wireless D&M extender 301A for stationary tools that do not move, translate, or rotate relative to each other. In the FIG. 15A1 embodiment, tool 310A includes a mandrel type coil 311A that is communicatively coupled to a mandrel type coil 306A of tool 305A via a tuned-inductive coupler arrangement. As explained above, power and/or data communications may be transmitted between tools 305A, 310A via inductive coupling between coils 306A, 311A for tool 305, 310 that are generally fixed or do not move relative to each other.
Advantageously, although stationary coils 306A, 311A may be juxtaposed such that a change in current flow in one coil induces a voltage in the other, the coils 306A, 311A are not required to be mechanically coupled or rigidly aligned when the tools 305, 311 are connected together. That is, it is envisioned that in a wireless D&M extender, a gap (not easily seen in FIG. 15A1 but see FIG. 15A2) may exist between coils 306A and 311A even though the tools 305, 310 may have a fixed coupling 323 (see FIG. 15A2), such as screw threads, rivets, or welds for engaging each other. As such, mechanical wear, misalignment, and/or vibration in the physical connections between various tools 305A, 310A of a given BHA may not adversely affect or otherwise cause the failure of the communications bus.
FIG. 15A2 depicts an enlarged view of the stationary “mandrel to mandrel” embodiment of a wireless D&M extender 301A. The fixed coupling 323 between the two tools 310A and 305A, in which the first tool 310A may include a drill collar pin connection while the second tool 305A may include a drill collar box connection, is illustrated in further detail. The coupling 323 between tools 305, 310 may include screw threads and/or other secure mechanical fasteners, like bolts, screws, rivets, welds, and other similar fasteners as understood by one of ordinary skill the art. The coupling 323 is designed to provide a rigid and non-moving connection between the tools 305, 310.
Meanwhile, the stationary coils 311A, 306A may be coupled to respective and extenders 1605. The extenders 1605 may be coupled to respective pressure housings (not illustrated) which enclose or shield electronics that generate at least one of communication signals and power signals. The extender 1605 may be made from a metal that is non-magnetic, such as stainless steel. A gap distance g may exist between the two coils 311C, 306C. The gap distance g is usually not greater than twice the diameter T of a respective ferrite core 235.
In the
That is, it is envisioned that in a wireless D&M extender, a gap 315 may exist between coils 306B and 311B. As such, mechanical wear, misalignment, and/or vibration in the physical connections between various tools 305B, 310B of a given BHA may not adversely affect or otherwise cause the failure of the communications bus. The stationary annular type coil 311B is described in more detail above in connection with
In the FIG. 15C1 embodiment, tool 310C includes a stationary annular type coil 311C that is communicatively coupled to a stationary annular type coil 306C of tool 305C via a tuned-inductive coupler arrangement. As explained above, power and/or data communications may be transmitted between tools 305C, 310C via inductive coupling between coils 306C, 311C. Advantageously, although coils 306C, 311C are juxtaposed such that a change in current flow in one coil induces a voltage in the other, the coils 306C, 311C are not required to be mechanically coupled or rigidly aligned.
That is, it is envisioned that in a wireless D&M extender, a gap (not easily seen in FIG. 15C1 but see FIG. 15C2) may exist between coils 306C and 311C. As such, mechanical wear, misalignment, and/or vibration in the physical connections between various tools 305C, 310C of a given BHA may not adversely affect or otherwise cause the failure of the communications bus.
FIG. 15C2 provides an enlarged view of the stationary annular type coil 311C that is communicatively coupled to a stationary annular type coil 306C of tool 305C in FIG. 15C1. The ferrite cores 235 of this arrangement may have a hollow cylindrical shape. As noted previously, a gap distance g may exist between the two coils 311C, 306C. The gap distance g is usually not greater than twice the thickness T of a respective ferrite core 235.
Although a few embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the embodiments without materially departing from this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, sixth paragraph for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/704,820, entitled “System And Method For Wireless Drilling And Mining Extenders In A Drilling Operation, and filed on Sep. 24, 2012, U.S. Provisional Patent Application Ser. No. 61/704,805, entitled “System And Method for Wireless Power And Data Transmission In A Mud Motor,” and filed on Sep. 24, 2012, and U.S. Provisional Patent Application Ser. No. 61/704,758, entitled “Positive Displacement Motor Rotary Steerable System And Apparatus,” and filed on Sep. 24, 2012, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61704820 | Sep 2012 | US | |
61704805 | Sep 2012 | US | |
61704758 | Sep 2012 | US |