Bottom hole assemblies (“BHA”) at the end of a typical drill string used in the drilling and mining industry today may be a complex assembly of technology that includes not only a drill bit, but also an array of serially connected drill string components or tools. The various drill string tools that make up a BHA commonly include a positive displacement motor or “mud motor” as well as other tools such as, but not limited to, tools that include electrically powered systems on a chip (“SoC”) designed to leverage local sensors for the collection, processing and transmission of data that can be used to optimize a drilling strategy. In many cases, the various tools that make up a BHA are in bidirectional communication. One or more of the tools may serve as a power source for one or more of the other tools.
As one might expect, a BHA may be an equipment assembly with a hardened design that can withstand the demands of a drill string. Failure of a BHA, whether mechanically or electrically, inevitably brings about expensive and unwelcomed operating costs as the drilling process may be halted and the drill string retracted from the bore so that the failed BHA can be repaired. In many cases, retraction of a drill string to repair a failed BHA can be very costly.
A common failure point for BHAs is the point of connection from tool to tool, which is naturally prone to failure from adverse fluid ingress and/or misalignment between adjacent tools. While the individual tools may be robust in design, the mechanical and electrical connections between the tools may be a natural “weak point” that often determines the overall reliability of the BHA system.
For instance, in many cases, the transmission of power and/or communications data from a rotary steering system to equipment residing in a drill collar is particularly challenging. In such an application, power and/or communications data transmission via wire can be impractical if not impossible because the drill collar is configured to rotate with respect to the rotary steering system.
Various embodiments of methods and systems for wireless power and data communications transmissions between a cartridge of rotary steering system and components within a drill collar are disclosed. The efficient transfer of electrical power between two otherwise weakly coupled coils, such as coils that may respectively reside in a power cartridge of a rotary steering system and a drill collar, can be accomplished in various embodiments that use resonantly tuned circuits and impedance matching techniques. To compensate for the flux leakage, embodiments resonate inductively coupled primary and secondary coils at the same frequency. Further, in some embodiments, the source resistance is matched to the impedance looking toward the load, and the load resistance is matched to the impedance looking toward the source.
In a certain embodiment, magnetic fields are used to transfer power and data between the cartridge of a rotary steering system and electronics and/or sensors mounted in the drill collar. A first coil is attached to the pressure housing of the rotary steering system by a shaft containing wires. The turbine in the pressure housing provides an alternating current to the first coil, which is attached to the shaft. Consequently, the first coil generates an alternating magnetic field that passes through the ferrite surrounding a second coil that is attached by wires to an annular pressure housing that is attached to the drill collar. The alternating magnetic field generates an emf (electromotive force) in the second coil, which provides power for electronics and sensors mounted in the drill collar. Because the magnetic field is azimuthally symmetric, the cartridge and the drill collar can rotate with respect to each other without affecting the magnetic coupling. Furthermore, the position of the first coil relative to the second coil is not critical, and power can be efficiently transferred from the first coil to the second coil even if their relative positions vary slightly.
The mud flow path is in the center of the annular electronics pressure housing, but it then passes through the gap between the first coil and the second coil and flows in the annular space between the pressure housing and the drill collar. Data may be transmitted between the pressure housing and drill collar electronics by modulating the power signal or by adding data coils as previously described.
In another embodiment, sensors in a drill collar may be powered from a retrievable MWD tool. The power transfer uses an inner coil and an outer coil. The inner coil is wound on the outside of the pressure housing of the MWD tool and the outer coil is mounted to the inner diameter wall (“ID”) of the drill collar. The inner and outer coils have ferrite cores. Consequently, power can be efficiently transferred from the inner coil to the outer coil, which allows for sensors in the drill collar to be powered by a turbine or batteries mounted in the bore of the drill collar. Likewise, power can be transferred from the drill collar to electronics mounted inside the drill collar. Data may also be transferred by modulating the frequency, phase, or amplitude of the power carrying signal. A low value for the coupling coefficient may be offset by resonating the two coils at the same frequency, by designing coils with high quality factors, and/or by matching impedances of the source and of the load to the system.
The system described below mentions how power may flow from the rotary steerable system (“RSS”) to the drill collar. One of ordinary skill in the art recognizes that power may easily flow in the other direction—from the drill collar to the RSS. The system may transmit power in either directions and/or in both directions as understood by one of ordinary skill in the art.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In the Figures, like reference numerals refer to like parts throughout the various views unless otherwise indicated. For reference numerals with letter character designations such as “102A” or “102B”, the letter character designations may differentiate two like parts or elements present in the same figure. Letter character designations for reference numerals may be omitted when it is intended that a reference numeral to encompass all parts having the same reference numeral in all figures.
Referring initially to
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly (“BHA”) 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string. The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string 12 relative to the hook 18. As is known to one of ordinary skill in the art, a top drive system could alternatively be used instead of the kelly 17 and rotary table 16 to rotate the drill string 12 from the surface. The drill string 12 may be assembled from a plurality of segments 125 of pipe and/or collars threadedly joined end to end.
In the embodiment of
The bottom hole assembly 100 of the illustrated embodiment may include a logging-while-drilling (LWD) module 120, a measuring-while-drilling (MWD) module 130, a rotary-steerable system and motor 150, and drill bit 105.
The LWD module 120 is housed in a special type of drill collar, as is known to one of ordinary skill in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD 120 and/or MWD module 130 can be employed, e.g. as represented at 120A. (References, throughout, to a module at the position of 120A can alternatively mean a module at the position of 120B as well.) The LWD module 120 includes capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the present embodiment, the LWD module 120 includes a directional resistivity measuring device.
The MWD module 130 is also housed in a special type of drill collar, as is known to one of ordinary skill in the art, and can contain one or more devices for measuring characteristics of the drill string 12 and drill bit 105. The MWD module 130 may further include an apparatus (not shown) for generating electrical power to the downhole system 100.
This apparatus may include a mud turbine generator powered by the flow of the drilling fluid 26, it being understood by one of ordinary skill in the art that other power and/or battery systems may be employed. In the embodiment, the MWD module 130 includes one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device.
The foregoing examples of wireline and drill string conveyance of a well logging instrument are not to be construed as a limitation on the types of conveyance that may be used for the well logging instrument. Any other conveyance known to one of ordinary skill in the art may be used, including without limitation, slickline (solid wire cable), coiled tubing, well tractor and production tubing.
k=M/√{square root over (L1L2)} (1)
While a conventional inductive coupler has k≈1, weakly coupled coils may have a value for k less than 1 such as, for example, less than or equal to about 0.9. To compensate for weak coupling, the primary and secondary coils in the various embodiments are resonated at the same frequency. The resonance frequency is calculated as:
At resonance, the reactance due to L1 is cancelled by the reactance due to C1. Similarly, the reactance due to L2 is cancelled by the reactance due to C2. Efficient power transfer may occur at the resonance frequency, f0=ω0/2π. In addition, both coils may be associated with high quality factors, defined as:
The quality factors, Q, may be greater than or equal to about 10 and in some embodiments greater than or equal to about 100. As is understood by one of ordinary skill in the art, the quality factor of a coil is a dimensionless parameter that characterizes the coil's bandwidth relative to its center frequency and, as such, a higher Q value may thus indicate a lower rate of energy loss as compared to coils with lower Q values.
If the coils are loosely coupled such that k<1, then efficient power transfer may be achieved provided the figure of merit, U, is larger than one such as, for example, greater than or equal to about 3:
U=k√{square root over (Q1Q2>>1)}. (4)
The primary and secondary circuits are coupled together via:
V
1
=jωL
1
I
1
+jωMI
2 and V2=jωL2I2+jωMI1, (5)
where V1 is the voltage across the transmitting coil. Note that the current is defined as clockwise in the primary circuit and counterclockwise in the secondary circuit. The power delivered to the load resistance is:
while the maximum theoretical power output from the fixed voltage source VS into a load is:
The power efficiency is defined as the power delivered to the load divided by the maximum possible power output from the source,
In order to optimize the power efficiency, η, the source resistance may be matched to the impedance of the rest of the circuitry. Referring to
When ω=ω0, Z1 is purely resistive and may equal RS for maximum efficiency.
Similarly, the impedance seen by the load looking back toward the source is
When ω=ω0, Z2 is purely resistive and RL should equal Z2 for maximum efficiency
The power delivered to the load is then:
and the power efficiency is the power delivered to the load divided by the maximum possible power output,
The optimum values for RL and RL may be obtained by simultaneously solving
with the result that:
R
S
=R
1√{square root over (1+k2Q1Q2)} and RL=R2√{square root over (1+k2Q1Q2)}. (16)
If the source and load resistances do not satisfy equations (16), then it is envisioned that standard methods may be used to transform the impedances. For example, as shown in the
Turning now to
Returning to
The transmitting coil 232 may be free to move in the axial (z) direction or in the transverse direction (x) with respect to the receiving coil 234. In addition, the transmitting coil 232 may be able to rotate on axis with respect to the receiving coil 234. The region between the two coils 232, 234 may be filled with air, fresh water, salt water, oil, natural gas, drilling fluid (known as “mud”), or any other liquid or gas. The receiving coil 234 may also be mounted inside a metal tube, with minimal affect on the power efficiency because the magnetic flux may be captured by, and returned through, the ferrite shell 238 of the receiving coil 234.
The operating frequency for these coils 232, 234 may vary according to the particular embodiment, but, for the
The variation in k versus axial displacement of the transmitting coil 232 when x=0 may be relatively small, as illustrated by the graph 250 in
The power efficiency may also be calculated for displacements from the center in the z direction in mm (as illustrated by the graph 254 in
Referring now to
It is also envisioned that power may be transmitted from the outer coil to the inner coil of particular embodiments, interchanging the roles of transmitter and receiver. It is envisioned that the same power efficiency would be realized in both cases.
Referring to
Turning to
In lieu of, or in addition to, passing power, data signals may be transferred from one coil to the other in certain embodiments by a variety of means. In the above example, power is transferred using an about 100.0 kHz oscillating magnetic field. It is envisioned that this oscillating signal may also be used as a carrier frequency with amplitude modulation, phase modulation, or frequency modulation used to transfer data from the transmitting coil to the receiving coil. Such would provide a one-way data transfer.
An alternative embodiment includes additional secondary coils to transmit and receive data in parallel with any power transmissions occurring between the other coils described above, as illustrated in
The secondary data coils 268, 266 may be orthogonal to the power coils 232, 234, as illustrated in
Moreover, it is envisioned that the data coils 268, 266 may be wound on a non-magnetic dielectric material in some embodiments. Using a magnetic core for the data coils 268, 266 might result in the data coils' cores being saturated by the strong magnetic fields used for power transmission. Also, the data coils 268, 266 may be configured to operate at a substantially different frequency than the power transmission frequency. For example, if the power is transmitted at about 100.0 kHz in a certain embodiment, then the data may be transmitted at a frequency of about 1.0 MHz or higher. In such an embodiment, high pass filters on the data coils 268, 266 may prevent the about 100.0 kHz signal from corrupting the data signal. In still other embodiments, the data coils 268, 266 may simply be located away from the power coils 232, 234 to minimize any interference from the power transmission. It is further envisioned that some embodiments may use any combination of these methods to mitigate or eliminate adverse effects on the data coils 268, 266 from the power transmission of the power coils 232, 234.
As described above, in drilling and mining applications, sensors and electronics are integrated into drill collars to control the drilling process, to provide information about the drilling process, and to determine the properties of the subsurface formations being penetrated. Such drilling equipment or tools are variously known as Measurement While Drilling (“MWD”), Logging While Drilling (“LWD”), and Directional Drilling (“DD”) equipment. MWD, LWD, and DD equipment having sensors and electrical components require the ability to bi-directionally communicate power and information among themselves. Mechanical or other constraints, however, often limit the ability to run wires from one such device to another.
The rotary steerable system 150 has a pressure housing 286 containing electronics 288 that is mounted on marine bearings 290 inside a drill collar 282. The marine bearings 290 are attached to drill collar 282 with bolts 291. The bearings 290 may permit the cartridge 292 to rotate freely with regard to the drill collar 282. The pressure housing 286 may contain any number of control electronics 288 including, but not necessarily limited to, magnetometers, inclinometers, a turbine, a processor and various other electronics. Torquer blades 294 may be mounted on the pressure housing 286 and used to control the tool face (i.e., the orientation of the cartridge 292 with respect to vertical or a downward direction). The blades 294 may also provide electrical power by driving a turbine, as understood by one of ordinary skill in the art. To steer the well, a drive shaft 296 may be attached to the pressure housing 286. The drive shaft 296 may control a spider valve 298 that includes a small disk with an opening suitable to allow drilling fluid (“mud”) to enter a series of hydraulic tubes 299.
In the rotary steerable system 150, there may be three hydraulic tubes 299 arranged at 120 degree intervals. Each hydraulic tube 299 may connect to a hydraulic piston 297, which in turn pushes against a hinged pad 295. As understood by one of ordinary skill in the art, when a spider valve 298 allows mud to enter one hydraulic tube 299, a corresponding piston 297 may be energized and thereby cause exertion of a strong sideways force on the RSS 150 via an actuation of the hinged pad 295. Because the other two pads in the 120 degree arrangement may remain closed, actuation of the given hinged pad 295 may operate to deflect the drill bit 284 in a direction substantially opposite to that of the actuated hinged pad 295.
Notably, to drill a curved borehole in a particular direction, the spider valve 298 may activate the hinged pad 295 that is located on a side of the RSS 150 that is substantially opposite to the desired direction. Because the pressure housing 286 may be held stationary by the torque blades 294 as described above, i.e. stationary with respect to tool face, the spider valve 298 opening may be maintained in substantially the same position. Meanwhile as the drill collar 282 continues to rotate, the three pads 295 may alternately open and shut as the corresponding hydraulic tubes 299 pass by the spider valve 298 opening. As such, to drill a straight borehole, the pressure housing 286 may rotate at a low RPM so that the spider valve 298 opening continually rotates and the average direction of the side forces exerted from the pads 295 effectively average to zero.
The cartridge 292 may generate its electrical power from a turbine and alternator driven by drilling mud flowing past the cartridge. The cartridge's power supply may be used to power sensors, antennas, and electronics mounted in the drill collar 282. However, because the drill collar 282 rotates with respect to the cartridge 292, it is not possible to simply run wires from the cartridge 292 to the drill collar 282. One option might be to use slip rings to connect the cartridge 292 and the drill collar 282. However, use of slip rings in such an application is complex and unreliable for at least the reason that the slip rings must be maintained in an oil-filled environment with rotating O-ring seals. Furthermore, such a slip ring arrangement may reduce the reliability of a rotary steerable system.
Turning now to
The alternating magnetic field may generate an emf (electromotive force) in Coil 2, which provides power for electronics 308 and sensors 310 mounted in the drill collar 282. Coil 2 may be attached by wires 304 to an annular pressure housing that is attached to the drill collar 282. Notably, because the magnetic field B may be azimuthally symmetric, the cartridge 292 and the drill collar 282 may rotate with respect to each other without affecting the magnetic coupling. Furthermore, as described previously, the position of Coil 1 relative to Coil 2 is not critical and, as such, power may be efficiently transferred from Coil 1 to Coil 2 even if their relative positions vary.
The mud flow path 306 may be in the center of the annular electronics pressure housing 312 before passing through a gap between Coil 1 and Coil 2 and flowing in the annular space between the pressure housing 286 and the drill collar 282. Notably, data may be transmitted between the pressure housing 286 and drill collar electronics 308 by modulating the power signal or by adding data coils as previously described. The sensors 310 mounted in the drill collar 282 wall may include, but are not limited to including: a borehole pressure sensor, a sensor to measure the weight on bit, a sensor to measure the torque on bit, a gamma-ray detector with azimuthal sensitivity, a resistivity sensor, among other possibilities. The positions of hinged pads 295 (see
Referring to
Referring to
Referring to
Near the top, the MWD tool 400 may have a modulator 410 (or mud pulser) that is used to transmit data to the surface via pressure pulses in the drilling fluid. The top of the MWD tool 400 may contain a fishing head 412, which allows the tool 400 to be recovered from the drill collar 404 without removing any drill pipe from the well. Notably, the fishing head 412 may also be used to lower a new MWD tool into the drill string. For example, if the MWD tool 400 fails during a drilling job, a wireline cable with an overshot may be run into the well and used to retrieve the failed MWD tool 400, as is understood by one with ordinary skill in the art. A replacement MWD tool may then be lowered on a wireline cable to seat in the same drill collar 404. Because the sensors in a retrievable MWD tool 400 reside in the pressure housing, it may not be possible to mount sensors in the drill collar 404 with wires simply connecting the sensors in the drill collar 404 to the electronics in the pressure housing 402.
Notably, referring to
In general, power may be efficiently transferred from an inner coil 418 to an outer coil 420, which allows for sensors 416 in the drill collar 404 to be powered by a turbine or batteries mounted in the bore of the drill collar. Likewise, power can be transferred from the drill collar 404 to electronics mounted inside the drill collar bore. Data may also be transferred by modulating the frequency, phase, or amplitude of the power carrying signal. A low value for the coupling coefficient may be offset by resonating the two coils at the same frequency, by designing coils with high quality factors, and/or by matching impedances between of the source and of the load to the system.
As noted previously, the system described above mentions how power may flow from the rotary steerable system (“RSS”) 150 to the drill collar. One of ordinary skill in the art recognizes that power may easily flow in the other direction—from the drill collar to the RSS. The system may transmit power in either directions and/or in both directions as understood by one of ordinary skill in the art.
The method and system described herein may provide for efficient power transfer. According to one aspect, power may be transmitted between two coils where the two coils do not have to be in close proximity (see equation 1 discussed above) in which k may be less than (<1) or equal to one. Another potential distinguishing aspect of the described method and system includes resonating the power transmitting coil with a high quality factor (see equation 3 discussed above) in which Q may be greater than (>) or equal to 10. Another distinguishing aspect of the system and method may include resonating the power transmitting coil with series capacitance (see equation 2 listed above).
Other unique aspects of the described method and system may include resonating the power transmitting coil with parallel capacitance and resonating the power receiving coil with a high quality factor Q (see equation 3) in which Q is greater than (>) or equal to 10. Other unique features of the described method and system may include resonating the power receiving coil with series capacitance (see equation 2 discussed above) as well as resonating the power receiving coil with parallel capacitance.
Another unique feature of the method and system described herein may include resonating the transmitting coil and the receiving coil at similar frequencies (see equation 2 described above) as well as matching the impedance of the power supply to the impedance looking toward the transmitting coil (see equation 10 described above). Another distinguishing feature of the described method and system may include matching the impedance of the load to the impedance looking back toward the receiving coil (see equation 12 described above). An additional distinguishing aspect of the described method and system may include using magnetic material to increase the coupling efficiency between the transmitting and the receiving coils.
Although a few embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the embodiments without materially departing from this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the following claims.
In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, sixth paragraph for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/704,910, entitled “System And Method For Wireless Power And Data Transmission In A Bottom Hole Assembly,” and filed on Sep. 24, 2012, U.S. Provisional Patent Application Ser. No. 61/704,805, entitled “System And Method for Wireless Power And Data Transmission In A Mud Motor,” and filed on Sep. 24, 2012, and U.S. Provisional Patent Application Ser. No. 61/704,758, entitled “Positive Displacement Motor Rotary Steerable System And Apparatus,” and filed on Sep. 24, 2012, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61704910 | Sep 2012 | US | |
61704805 | Sep 2012 | US | |
61704758 | Sep 2012 | US |