System and method for zoning a distributed architecture heating, ventilation and air conditioning network

Information

  • Patent Grant
  • 9632490
  • Patent Number
    9,632,490
  • Date Filed
    Wednesday, October 21, 2009
    15 years ago
  • Date Issued
    Tuesday, April 25, 2017
    7 years ago
Abstract
The disclosure provides an HVAC data processing and communication network. In an embodiment, the network includes a user interface, a first subnet controller and a second subnet controller. The first subnet controller is configured to operate with a first zone of the network with a first program schedule. The second subnet controller is configured to operate with a second zone of the network with a second program schedule. The second subnet controller is further configured to override the first and second schedules to operate the first and the second zones according to hold settings received from the user interface.
Description
TECHNICAL FIELD

This application is directed, in general, to HVAC systems and, more specifically, to a system and method for logical manipulation of system features.


BACKGROUND

Climate control systems, also referred to as HVAC systems (the two terms will be used herein interchangeably), are employed to regulate the temperature of premises, such as a residence, office, store, warehouse, vehicle, trailer, or commercial or entertainment venue. The most basic climate control systems either move air (typically by means of an air handler having a fan or blower), heat air (typically by means of a furnace) or cool air (typically by means of a compressor-driven refrigerant loop). A thermostat is typically included in a conventional climate control system to provide some level of automatic temperature control. In its simplest form, a thermostat turns the climate control system on or off as a function of a detected temperature. In a more complex form, the thermostat may take other factors, such as humidity or time, into consideration. Still, however, the operation of a thermostat remains turning the climate control system on or off in an attempt to maintain the temperature of the premises as close as possible to a desired set point temperature.


Climate control systems as described above have been in wide use since the middle of the twentieth century and have, to date, generally provided adequate temperature management.


SUMMARY

One aspect provides an HVAC data processing and communication network that includes a user interface, a first subnet controller and a second subnet controller. The first subnet controller is configured to operate with a first zone of the network with a first program schedule. The second subnet controller is configured to operate with a second zone of the network with a second program schedule. The second subnet controller is further configured to override the first and second schedules to operate the first and the second zones according to hold settings received from the user interface.


Another aspect provides a method of manufacturing an HVAC data processing and communication network. The method includes configuring a first subnet controller and a second subnet controller. The first subnet controller is configured to operate with a first zone of the network with a first program schedule. The second subnet controller is configured to operate with a second zone of the network with a second program schedule. The second subnet controller is further configured to override the first and second schedules to operate the first and the second zones according to hold settings received from the user interface.





BRIEF DESCRIPTION

Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a high-level block diagram of an HVAC system according to various embodiments of the disclosure;



FIG. 2 is a high-level block diagram of one embodiment of an HVAC data processing and communication network;



FIG. 3 is a block diagram of a local controller of the disclosure;



FIG. 4 is a block diagram of a networked HVAC system device of the disclosure;



FIG. 5 illustrates an example grouping of devices in an HVAC system;



FIG. 6 illustrates two subnets in communication over a network connection;



FIGS. 7A and 7B illustrate a conditioned building with two HVAC zones;



FIG. 8 illustrates operating states of the active subnet controller;



FIG. 9 illustrates a user interface display with a user dashboard;



FIG. 10 is an embodiment of the disclosure illustrating navigation between screens of the user interface;



FIG. 11 is an embodiment of the disclosure illustrating a home screen of the user interface display;



FIG. 12 is an embodiment of the disclosure illustrating an indoor humidity screen of the user interface display;



FIG. 13 is an embodiment of the disclosure illustrating an alert screen of the user interface display;



FIG. 14A is an embodiment of the disclosure illustrating navigation of the alert screen and associated subscreens of the user interface display;



FIG. 14B is an embodiment of the disclosure illustrating navigation of a pop-up alert screen and associated subscreens of the user interface display;



FIG. 15 is an embodiment of the disclosure illustrating a help screen of the user interface display;



FIG. 16 is an embodiment of the disclosure illustrating navigation of the help screen and associated subscreens;



FIG. 17 is an embodiment of the disclosure illustrating an indoor settings screen of the user interface display;



FIG. 18 is an embodiment of the disclosure illustrating navigation of the indoor settings screen and associated subscreens of the user interface display;



FIG. 19 is an embodiment of the disclosure illustrating a program screen of the user interface display;



FIG. 20 is an embodiment of the disclosure illustrating navigation of the program screen and associated subscreens of the user interface display;



FIG. 21 is an embodiment of the disclosure illustrating a zones screen of the user interface display;



FIG. 22A is an embodiment of the disclosure illustrating navigation of the zones screen and associated subscreens of the user interface display;



FIG. 22B is an embodiment of the disclosure illustrating a zones detail screen;



FIG. 23 is an embodiment of a whole-house override screen;



FIG. 24 is an embodiment of a method of navigating the whole-house override screen and associated subscreens of the user interface display;



FIG. 25 is an embodiment of the disclosure illustrating navigation of whole-house program screen and associated subscreens of the user interface display;



FIG. 26 illustrates a method of the disclosure of configuring an HVAC system for zoned operation;



FIGS. 27-30 illustrates methods of the disclosure;



FIG. 31 illustrates an installer dashboard; and



FIG. 32 illustrates transitions between service screens.





DETAILED DESCRIPTION

As stated above, conventional climate control systems have been in wide use since the middle of the twentieth century and have, to date, generally provided adequate temperature management. However, it has been realized that more sophisticated control and data acquisition and processing techniques may be developed and employed to improve the installation, operation and maintenance of climate control systems.


Described herein are various embodiments of an improved climate control, or HVAC, system in which at least multiple components thereof communicate with one another via a data bus. The communication allows identity, capability, status and operational data to be shared among the components. In some embodiments, the communication also allows commands to be given. As a result, the climate control system may be more flexible in terms of the number of different premises in which it may be installed, may be easier for an installer to install and configure, may be easier for a user to operate, may provide superior temperature and/or relative humidity (RH) control, may be more energy efficient, may be easier to diagnose, may require fewer, simpler repairs and may have a longer service life.



FIG. 1 is a high-level block diagram of a networked HVAC system, generally designated 100. The HVAC system 100 may be referred to herein simply as “system 100” for brevity. In one embodiment, the system 100 is configured to provide ventilation and therefore includes one or more air handlers 110. In an alternative embodiment, the ventilation includes one or more dampers 115 to control air flow through air ducts (not shown.) Such control may be used in various embodiments in which the system 100 is a zoned system. In an alternative embodiment, the system 100 is configured to provide heating and therefore includes one or more furnaces 120, typically associated with the one or more air handlers 110. In an alternative embodiment, the system 100 is configured to provide cooling and therefore includes one or more refrigerant evaporator coils 130, typically associated with the one or more air handlers 110. Such embodiment of the system 100 also includes one or more compressors 140 and associated condenser coils 142, which are typically associated with one or more so-called “outdoor units” 144. The one or more compressors 140 and associated condenser coils 142 are typically connected to an associated evaporator coil 130 by a refrigerant line 146. In an alternative embodiment, the system 100 is configured to provide ventilation, heating and cooling, in which case the one or more air handlers 110, furnaces 120 and evaporator coils 130 are associated with one or more “indoor units” 148, e.g., basement or attic units that may also include an air handler.


For convenience in the following discussion, a demand unit 155 is representative of the various units exemplified by the air handler 110, furnace 120, and compressor 140, and more generally includes an HVAC component that provides a service in response to control by the control unit 150. The service may be, e.g., heating, cooling, humidification, dehumidification, or air circulation. A demand unit 155 may provide more than one service, and if so, one service may be a primary service, and another service may be an ancillary service. For example, for a heating unit that also circulates air, the primary service may be heating, and the ancillary service may be air circulation (e.g. by a blower).


The demand unit 155 may have a maximum service capacity associated therewith. For example, the furnace 120 may have a maximum heat output (often expressed in terms of British Thermal Units (BTU) or Joules), or a blower may have a maximum airflow capacity (often expressed in terms of cubic feet per minute (CFM) or cubic meters per minute (CMM)). In some cases, the demand unit 155 may be configured to provide a primary or ancillary service in staged portions. For example, blower may have two or more motor speeds, with a CFM value associated with each motor speed.


One or more control units 150 control one or more of the one or more air handlers 110, the one or more furnaces 120 and/or the one or more compressors 140 to regulate the temperature of the premises, at least approximately. In various embodiments to be described, the one or more displays 170 provide additional functions such as operational, diagnostic and status message display and an attractive, visual interface that allows an installer, user or repairman to perform actions with respect to the system 100 more intuitively. Herein, the term “operator” will be used to refer collectively to any of the installer, the user and the repairman unless clarity is served by greater specificity.


One or more separate comfort sensors 160 may be associated with the one or more control units 150 and may also optionally be associated with one or more displays 170. The one or more comfort sensors 160 provide environmental data, e.g. temperature and/or humidity, to the one or more control units 150. An individual comfort sensor 160 may be physically located within a same enclosure or housing as the control unit 150, in a manner analogous with a conventional HVAC thermostat. In such cases, the commonly housed comfort sensor 160 may be addressed independently. However, the one or more comfort sensors 160 may be located separately and physically remote from the one or more control units 150. Also, an individual control unit 150 may be physically located within a same enclosure or housing as a display 170, again analogously with a conventional HVAC thermostat. In such embodiments, the commonly housed control unit 150 and display 170 may each be addressed independently. However, one or more of the displays 170 may be located within the system 100 separately from and/or physically remote to the control units 150. The one or more displays 170 may include a screen such as a liquid crystal or OLED display (not shown).


Although not shown in FIG. 1, the HVAC system 100 may include one or more heat pumps in lieu of or in addition to the one or more furnaces 120, and one or more compressors 140. One or more humidifiers or dehumidifiers may be employed to increase or decrease humidity. One or more dampers may be used to modulate air flow through ducts (not shown). Air cleaners and lights may be used to reduce air pollution. Air quality sensors may be used to determine overall air quality.


Finally, a data bus 180, which in the illustrated embodiment is a serial bus, couples the one or more air handlers 110, the one or more furnaces 120, the one or more evaporator condenser coils 142 and compressors 140, the one or more control units 150, the one or more remote comfort sensors 160 and the one or more displays 170 such that data may be communicated therebetween or thereamong. As will be understood, the data bus 180 may be advantageously employed to convey one or more alarm messages or one or more diagnostic messages. All or some parts of the data bus 180 may be implemented as a wired or wireless network.


The data bus 180 in some embodiments is implemented using the Bosch CAN (Controller Area Network) specification, revision 2, and may be synonymously referred to herein as a residential serial bus (RSBus) 180. The data bus 180 provides communication between or among the aforementioned elements of the network 200. It should be understood that the use of the term “residential” is nonlimiting; the network 200 may be employed in any premises whatsoever, fixed or mobile. Other embodiments of the data bus 180 are also contemplated, including e.g., a wireless bus, as mentioned previously, and 2-, 3- or 4-wire networks, including IEEE-1394 (Firewire™, i.LINK™, Lynx™), Ethernet, Universal Serial Bus (e.g., USB 1.x, 2.x, 3.x), or similar standards. In wireless embodiments, the data bus 180 may be implemented, e.g., using Bluetooth™, Zibgee or a similar wireless standard.



FIG. 2 is a high-level block diagram of one embodiment of an HVAC data processing and communication network 200 that may be employed in the HVAC system 100 of FIG. 1. One or more air handler controllers (AHCs) 210 may be associated with the one or more air handlers 110 of FIG. 1. One or more integrated furnace controllers (IFCs) 220 may be associated with the one or more furnaces 120. One or more damper controller modules 215, also referred to herein as a zone controller module 215, may be associated with the one or more dampers 115. One or more unitary controllers 225 may be associated with one or more evaporator coils 130 and one or more condenser coils 142 and compressors 140 of FIG. 1. The network 200 includes an active subnet controller (aSC) 230a and an inactive subnet controller (iSC) 230i. The aSC 230a may act as a network controller of the system 100. The aSC 230a is responsible for configuring and monitoring the system 100 and for implementation of heating, cooling, humidification, dehumidification, air quality, ventilation or any other functional algorithms therein. Two or more aSCs 230a may also be employed to divide the network 200 into subnetworks, or subnets, simplifying network configuration, communication and control. Each subnet typically contains one indoor unit, one outdoor unit, a number of different accessories including humidifier, dehumidifier, electronic air cleaner, filter, etc., and a number of comfort sensors, subnet controllers and user interfaces. The iSC 230i is a subnet controller that does not actively control the network 200. In some embodiments, the iSC 230i listens to all messages broadcast over the data bus 180, and updates its internal memory to match that of the aSC 230a. In this manner, the iSC 230i may backup parameters stored by the aSC 230a, and may be used as an active subnet controller if the aSC 230a malfunctions. Typically there is only one aSC 230a in a subnet, but there may be multiple iSCs therein, or no iSC at all. Herein, where the distinction between an active or a passive SC is not germane the subnet controller is referred to generally as an SC 230.


A user interface (UI) 240 provides a means by which an operator may communicate with the remainder of the network 200. In an alternative embodiment, a user interface/gateway (UI/G) 250 provides a means by which a remote operator or remote equipment may communicate with the remainder of the network 200. Such a remote operator or equipment is referred to generally as a remote entity. A comfort sensor interface 260, referred to herein interchangeably as a comfort sensor (CS) 260, may provide an interface between the data bus 180 and each of the one or more comfort sensors 160. The comfort sensor 260 may provide the aSC 230a with current information about environmental conditions inside of the conditioned space, such as temperature, humidity and air quality.


For ease of description, any of the networked components of the HVAC system 100, e.g., the air handler 110, the damper 115, the furnace 120, the outdoor unit 144, the control unit 150, the comfort sensor 160, the display 170, may be described in the following discussion as having a local controller 290. The local controller 290 may be configured to provide a physical interface to the data bus 180 and to provide various functionality related to network communication. The SC 230 may be regarded as a special case of the local controller 290, in which the SC 230 has additional functionality enabling it to control operation of the various networked components, to manage aspects of communication among the networked components, or to arbitrate conflicting requests for network services among these components. While the local controller 290 is illustrated as a stand-alone networked entity in FIG. 2, it is typically physically associated with one of the networked components illustrated in FIG. 1.



FIG. 3 illustrates a high-level block diagram of the local controller 290. The local controller 290 includes a physical layer interface (PLI) 310, a non-volatile memory (NVM) 320, a RAM 330, a communication module 340 and a functional block 350 that may be specific to the demand unit 155, e.g., with which the local controller 290 is associated. The PLI 310 provides an interface between a data network, e.g., the data bus 180, and the remaining components of the local controller 290. The communication module 340 is configured to broadcast and receive messages over the data network via the PLI 310. The functional block 350 may include one or more of various components, including without limitation a microprocessor, a state machine, volatile and nonvolatile memory, a power transistor, a monochrome or color display, a touch panel, a button, a keypad and a backup battery. The local controller 290 may be associated with a demand unit 155, and may provide control thereof via the functional block 350, e.g. The NVM 320 provides local persistent storage of certain data, such as various configuration parameters, as described further below. The RAM 330 may provide local storage of values that do not need to be retained when the local controller 290 is disconnected from power, such as results from calculations performed by control algorithms. Use of the RAM 330 advantageously reduces use of the NVM cells that may degrade with write cycles.


In some embodiments, the data bus 180 is implemented over a 4-wire cable, in which the individual conductors are assigned as follows:


R—the “hot”—a voltage source, 24 VAC, e.g.


C—the “common”—a return to the voltage source.


i+—RSBus High connection.


i−—RSBus Low connection.


The disclosure recognizes that various innovative system management solutions are needed to implement a flexible, distributed-architecture HVAC system, such as the system 100. More specifically, cooperative operation of devices in the system 100, such as the air handler 110, outdoor unit 144, or UI 240 is improved by various embodiments presented herein. More specifically still, embodiments are presented of zoning of a distributed architecture or networked HVAC system than provide simplified installation and operation relative to a conventional HVAC system.



FIG. 4 illustrates a device 410 according to the disclosure. The following description pertains to the HVAC data processing and communication network 200 that is made up of a number of system devices 410 operating cooperatively to provide HVAC functions. Herein after the system device 410 is referred to more briefly as the device 410 without any loss of generality. The term “device” applies to any component of the system 100 that is configured to communicate with other components of the system 100 over a wired or wireless network. Thus, the device 410 may be, e.g., the air handler 110 in combination with its AHC 210, or the furnace 120 in combination with its IFC 220. This discussion may refer to a generic device 410 or to a device 410 with a specific recited function as appropriate. An appropriate signaling protocol may be used to govern communication of one device with another device. While the function of various devices 410 in the network 200 may differ, each device 410 shares a common architecture for interfacing with other devices, e.g. the local controller 290 appropriately configured for the HVAC component 420 with which the local controller 290 is associated. The microprocessor or state machine in the functional block 350 may operate to perform any task for which the device 410 is responsible, including, without limitation, sending and responding to messages via the data bus 180, controlling a motor or actuator, or performing calculations.


In various embodiments, signaling between devices 410 relies on messages. Messages are data strings that convey information from one device 410 to another device 410. The purpose of various substrings or bits in the messages may vary depending on the context of the message. Generally, specifics regarding message protocols are beyond the scope of the present description. However, aspects of messages and messaging are described when needed to provide context for the various embodiments described herein.



FIG. 5 illustrates an embodiment of the disclosure of a network of the disclosure generally designated 500. The network 500 includes an aSC 510, a user interface 520, a comfort sensor 530 and a furnace 540 configured to communicate over a data bus 550. In some embodiments these devices form a minimum HVAC network. In addition, the network 500 is illustrated as including an outdoor unit 560, an outdoor sensor 570, and a gateway 580. The furnace 540 and outdoor unit 560 are provided by way of example only and not limited to any particular demand units. The aSC 510 is configured to control the furnace 540 and the outdoor unit 560 using, e.g., command messages sent via the data bus 550. The aSC 510 receives environmental data, e.g. temperature and/or humidity, from the comfort sensor 530, the furnace 540 via a local temperature sensor, the outdoor sensor 570 and the outdoor unit 560. The data may be transmitted over the data bus 550 by way of messages formatted for this purpose. The user interface 520 may include a display and input means to communicate information to, and accept input from, an operator of the network 500. The display and input means may be, e.g., a touch-sensitive display screen, though embodiments of the disclosure are not limited to any particular method of display and input.


The aSC 510, comfort sensor 530 and user interface 520 may optionally be physically located within a control unit 590. The control unit 590 provides a convenient terminal to the operator to effect operator control of the system 100. In this sense, the control unit is similar to the thermostat used in conventional HVAC systems. However, the control unit 590 may only include the user interface 520, with the aSC 510 and comfort sensor 530 remotely located from the control unit 590.


As described previously, the aSC 510 may control HVAC functionality, store configurations, and assign addresses during system auto configuration. The user interface 520 provides a communication interface to provide information to and receive commands from a user. The comfort sensor 530 may measure one or more environmental attributes that affect user comfort, e.g., ambient temperature, RH and pressure. The three logical devices 510, 520, 530 each send and receive messages over the data bus 550 to other devices attached thereto, and have their own addresses on the network 500. In many cases, this design feature facilitates future system expansion and allows for seamless addition of multiple sensors or user interfaces on the same subnet. The aSC 510 may be upgraded, e.g., via a firmware revision. The aSC 510 may also be configured to release control of the network 500 and effectively switch off should another SC present on the data bus 550 request it.


Configuring the control unit 590 as logical blocks advantageously provides flexibility in the configuration of the network 500. System control functions provided by a subnet controller may be placed in any desired device, in this example the control unit 590. The location of these functions therein need not affect other aspects of the network 500. This abstraction provides for seamless upgrades to the network 500 and ensures a high degree of backward compatibility of the local controllers 290 present in the network. The approach provides for centralized control of the system, without sacrificing flexibility or incurring large system upgrade costs.


For example, the use of the logical aSC 510 provides a flexible means of including control units on a same network in a same conditioned space. The system, e.g., the system 100, may be easily expanded. The system retains backward compatibility, meaning the network 500 may be updated with a completely new type of equipment without the need to reconfigure the system, other than substituting a new control unit 590, e.g. Moreover, the functions provided by the subnet controller may be logically placed in any physical device, not just the control unit 590. Thus, the manufacturer has greater flexibility in selecting devices, e.g., control units or UIs, from various suppliers.


In various embodiments, each individual subnet, e.g., the network 500, is configured to be wired as a star network, with all connections to the local controller 290 tied at the furnace 120 or the air handler 110. Thus, each indoor unit, e.g., the furnace 120, may include three separate connectors configured to accept a connection to the data bus 180. Two connectors may be 4-pin connectors: one 4-pin connector may be dedicated for connecting to an outdoor unit, and one may be used to connect to equipment other than the outdoor unit. The third connector may be a 2-pin connector configured to connect the subnet of which the indoor unit is a member to other subnets via the i+/i− signals. As described previously, a 24 VAC transformer associated with the furnace 120 or air handler 110 may provide power to the local controllers 290 within the local subnet via, e.g., the R and C lines. The C line may be locally grounded.



FIG. 6 illustrates a detailed connection diagram of components of a network 600 according to one embodiment of the disclosure. The network 600 includes a zone 605 and a zone 610. The zones 605, 610 are illustrated without limitation as being configured as subnets 615, 620, respectively. The subnet 615 includes an air conditioning (AC) unit 630, a UI/G 640, an outside sensor (OS) 650, a control unit 660, and a furnace 670. The control unit 660 includes an SC 662, a UI 664 and a comfort sensor 666, each of which is independently addressable via a data bus 180a. The subnet 620 includes a control unit 680, a heat pump 690 and a furnace 695. The control unit 680 houses an SC 682, a UI 684 and a comfort sensor 686, each of which is independently addressable via a data bus 180b. In various embodiments and in the illustrated embodiment each individual subnet, e.g., the subnets 615, 620 are each configured to be wired as a star network, with connections to all devices therein made at a furnace an air handler associated with that subnet. Thus, e.g., each of the devices 630, 640, 650, 660 is connected to the data bus 180a at the furnace 670. Similarly, each device 680, 690 is connected to the subnet 620 at the furnace 695. Each furnace 670, 695, generally representative of the indoor unit 148, may include a connection block configured to accept a connection to the RSBus 180. For example, two terminals of the connection block may be 4-pin connectors. In one embodiment, one 4-pin connector is dedicated to connecting to an outdoor unit, for example the connection from the furnace 670 to the AC unit 630. Another 4-pin connector is used to connect to equipment other than the outdoor unit, e.g., from the furnace 670 to the UI/G 640, the OS 650, and the control unit 660. A third connector may be a 2-pin connector configured to connect one subnet to another subnet. In the network 600, e.g., the subnet 615 is connected to the subnet 620 via a wire pair 698 that carries the i+/i− signals of the serial bus. As described previously with respect to the furnace 120, a transformer located at the furnace 670 may provide power to the various components of the subnet 615, and a transformer located at the furnace 695 may provide power to the various components of the subnet 620 via R and C lines. As illustrated, the C line may be locally grounded.


This approach differs from conventional practice, in which sometimes a master controller has the ability to see or send commands to multiple controllers in a single location, e.g., a house. Instead, in embodiments of which FIG. 6 is representative there is no master controller. Any controller (e.g. UI, or SC) may communicate with any device, including other controllers, to make changes, read data, etc. Thus, e.g., user located on a first floor of a residence zoned by floor may monitor and control the state of a zone conditioning a second floor of the residence without having to travel to the control unit located on the second floor. This provides a significant convenience to the operator.



FIG. 7A illustrates an example embodiment of a zoned HVAC system, generally denoted 700A. A residence 705 has an HVAC data processing and communication network that includes two zones 710, 715. The zone 710 includes a bathroom 720 and a bedroom 725. A demand unit 730, e.g., a gas or electric furnace, located in a basement 735 provides heated or cooled air to the zone 710 via source vents 737 and return vents 739. The zone 715 includes a laundry room 740, a bathroom 745 and a living room 750. A demand unit 755, which again may be a gas or electric furnace, provides heated or cooled air to the zone 715 via source vents 757 and return vents 759.


The zone 710 also includes comfort sensors 760, 765, 770, user interfaces 775, 780 and a subnet controller 784. The zone 715 includes a comfort sensor 785, a user interface 790, and a subnet controller 792. The subnet controller 792 may be optionally omitted with the subnet controller 784 is configured to control both of the zones 710, 715. The comfort sensors 760, 765, 770, user interfaces 775, 780 and the demand unit 730 are networked to form a first subnet. The comfort sensor 785, user interface 790 and demand unit 755 are networked to form a second subnet. The two subnets are in turn connected to form the network as described with respect to FIG. 6.


In the illustrated embodiment, the user interfaces 775, 780 are physically associated with the first zone 710, and the user interface 790 is physically associated with the second zone 715. Furthermore, the subnet controller 784 is physically associated with the first zone 710, and the subnet controller 792 is physically associated with the second zone 715. Herein, a user interface or subnet controller is physically associated with a zone when the subject user interface or subnet controller is located in a space that is conditioned by that zone. Thus, e.g., the subnet controller 784 is not physically associated with the second zone 715. A subnet controller or user interface may be logically associated with a particular zone, even if the subnet controller or user interface is not physically associated with that zone. By logically associated, it is meant that the subnet controller or user interface may operate in some configurations to control the ambient conditions of the zone with which the subnet controller or user interface is logically associated.


Herein and in the claims, a zone is a portion of a networked HVAC system that includes at least one demand unit, at least one user interface and at least one comfort sensor. In some cases, as described below, a single demand unit may serve more than one zone. A room of a conditioned structure typically is only conditioned by a single zone. Thus, e.g., the rooms 720, 725 receive air from one of the vents 737, and the rooms 740, 745, 750 receive air from one of the vents 757. A zone may be physically configured to condition one level of a multi-level structure such as the residence 705, but this need not be the case. For example, a networked HVAC system may be zoned to provide independent conditioning of southern and northern facing portions of a structure to account for differing heating and cooling loads.


The comfort sensors 760, 765, 770 may be positioned in any location at which a user wishes to locally sense a temperature or RH. In some cases a particular comfort sensor is collocated with a user interface, such as, e.g. the comfort sensor 770 and user interface 780. A collocated comfort sensor and user interface may be logical devices of a single physical unit, or may be discrete physical units. For example, it may be convenient for the comfort sensor 770 and the user interface 780 to be located in an enclosure 782 to present to the operator a familiar look and feel associated with conventional thermostats. Optionally, the subnet controller 784 is also located within the enclosure 782. As described previously, the comfort sensor 770 and the user interface 780 remain independently addressable in the subnet and the network even with housed in a same enclosure. In other cases a comfort sensor is located without being collocated with a user interface. One example is the comfort sensor 765. As described further below, any of the user interfaces 775, 780, 790 may be collocated with an active subnet controller, which may control any demand unit in the HVAC network to maintain a temperature or RH measured by any of the comfort sensors 760, 765, 770, 785.



FIG. 7B illustrates an example embodiment of a zoned HVAC system, generally denoted 700B. In the system 700B, the demand unit 730 provides heating and/or cooling to both zones 710, 715. The system 700B is illustrative of embodiments in which one or more dampers 115, acting as zone controllers, open or close air paths to various portions of the system 700B to provide zoned operation. In the illustrated embodiment, a zone controller 794 (e.g. a damper) controls air flow to the zone 710, while a zone controller 796 (e.g. another damper) controls air flow to the zone 715. Each zone controller 794, 796 is controlled by a corresponding zone controller module 215 (not shown). The zone controllers 794, 796 are controlled by an active subnet controller, e.g., the subnet controller 784, that is configured to use one or more of the comfort sensors 760, 765, 770 to control the temperature of the zone 710, and to use the comfort sensor 785 to control the temperature of the zone 715. In various embodiments, the temperatures of the zones 710, 715 are independently controlled by controlling air flow to the zones via the zone controllers 794, 796. In some embodiments, the demand unit 730 is configured to provide greater air flow to one of the zones 710, 715 than the other to compensate for greater heating or cooling load or air flow requirements.


The subnet controller 784 may be configured to automatically detect the presence or register the absence of the demand units 730, 755 and the zone controllers 794, 796. In some embodiments, the subnet controller 784 automatically self-configures for zoned operation, e.g. independently controlling the temperature of the zones 710, 715, in the event that both of the demand units 730, 755 are detected. In another embodiment, the subnet controller 784 automatically self-configures for zoned operation in the event that only one of the demand units 730, 755 is detected, but both of the zone controllers 794, 796 are detected. In another embodiment, the subnet controller 784 automatically self-configures for unzoned operation in the event that only one of the demand units 730, 755 is detected, and neither of the zone controllers 794, 796 is detected. In other embodiments, the subnet controller 784 is configured for zoned or unzoned operation manually by an installer via the user interface 780.


In an embodiment, the zones 710, 715 are configured as separate active subnets. In such embodiments, the subnet controller 784 and the subnet controller 792 (FIG. 7A) are both active subnet controllers. Each of the subnet controllers 784, 792 may discover the presence of the other of the subnet controllers 784, 792, and thereby detect the presence of the associated active subnet, during a system initialization state. Discovery may be made, e.g., via a message sent by one of the subnet controllers 784, 792 to the demand units 730, 755 prompting the demand units 730755 to respond. The subnet controllers 784, 792 may be configured to recognize that each zone 710, 715 meets or exceeds a minimum configuration necessary to support zoned operation and self-configure such that each subnet controller 784, 792 acts as an active subnet controller within its respective zone 710, 715. In some cases, one or both of the subnet controllers 784, 792 is configured such that discovery of both demand units 730, 755 is sufficient to trigger self-configuration for zoned operation.



FIG. 8 illustrates an embodiment of a state sequence generally designated 800 that describes a set of states in which the aSC 230a may operate. In a state 810, the aSC 230a is reset. The state 810 may be reached by a power-up reset or a maintenance command, e.g. The aSC 230a advances to an initialization state 820, designated “subnet startup”. Optionally, each local controller 290 may perform a memory functional test, e.g., a CRC check, between the reset state 810 and the subnet startup state 820.


In the subnet startup state 820, the one or more subnet controllers 230 may discover which devices are present in the network 200. Discovery may take the form, e.g., of a series of discovery messages over the data bus 180 from the one or more subnet controllers 230, and associated reply messages from the devices present.


Recalling that in various embodiments there may only be a single active subnet controller in a subnet, the one or more subnet controllers 230 arbitrate to determine which assumes the role of the aSC 230a. This arbitration may take place during the subnet startup state 820. If there is only one subnet controller 230, then the arbitration process is trivial. If there is a plurality of subnet controllers 230, the subnet controllers 230 of the plurality may exchange messages over the data bus 180 that are configured to allow the subnet controllers 230 to determine the most suitable subnet controller 230 to act as the aSC 230a. This arbitration may be based on a set of features and parameters of each subnet controller and may further be designed to ensure that the “best” subnet controller 230 available controls the subnet. For example, one subnet controller 230 may be a more recent manufacturing revision than another subnet controller 230, or may be configured to control a new component of the system 100 that other subnet controllers 230 are not configured to control. Is these examples, the subnet controller 230 with the more recent revision, or that is configured to control the new component would be regarded as the “best” subnet controller 230.


After this arbitration, one subnet controller 230 may become the aSC 230a, and from this point on may perform all control functions related to operation of the subnet of which it is a part. The aSC 230a may determine that the subnet is in a configuration state or a verification state, and may further assign or reassign all operating parameters such as equipment types and subnet IDs to all members of network 200. Generally, in a configuration state the aSC 230a may assign all system parameters to all the members of the network 200. In the verification state, the aSC 230a may verify that the parameters stored by each local controller 290 are correct, and restore any values that are determined to be incorrect.


In the discovery process, the aSC 230a may determine that a plurality of demand units 155 is present in the network 200. For example, the aSC 230a may send a message addressed to a demand unit 155, in response to which the demand unit 155 sends a reply message. In some cases, the aSC 230a may detect the presence of one or more damper controller modules 215 and comfort sensors 260. In this event, the aSC 230a may automatically self-configure for zoned operation. Self-configuration may include, e.g., associating a first comfort sensor 260 and a first UI 240 with a first zone, and associating a second comfort sensor 260 and a second UI 240 with a second zone. The zones may, but need not, correspond to different subnets of the network 200. In the event that no damper controller module 215 is discovered, e.g. a single furnace 120, the aSC 230a may self-configure for unzoned operation.


After the subnet startup state 820, the network 200 may enter a commissioning state 830. Generally, during the commissioning state 830 functional parameters of each local controller 290 may be set to properly operate within the context of each other local controller 290. For example, a blower unit may be configured during the commissioning state 830 to provide an air flow rate that is consistent with a heat output rate of a heat pump. The network 200 may remain in the commissioning state 830 until each local controller 290 therein is configured.


After the commissioning state 830, the network 200 enters an installer test state 840. In some cases, the network 200 remains in the installer test state 840 only as long as is necessary to determine if installer test functions are requested. If none are requested, the sequence 800 may advance immediately to a link state 850. If installer test functions are requested, e.g. via the UI 240, then the network 200 remains in the installer test state 840 until all requested functions are complete and then advances to the link state 850.


The sequence 800 may enter the link mode, e.g., upon request by an installer via the UI 240. For example, during installation, an installation routine may provide an option to enter the link state 850 to link subnets, e.g., the subnets 615, 620 (FIG. 6). In the link state 850, any subnets of the network 200 are configured to operate together. For example, a first subnet ID may be assigned to each local controller 290 in the subnet 615, and a different second subnet ID may be assigned to each local controller 290 in the subnet 620.


After the operations necessary to link the subnets, the sequence 800 may advance to the normal operating state 860. It is expected that the system 100 will be in the normal operating state 860 for the vast majority of its operation.



FIGS. 9-30 and associated discussion describe various aspects of the operation of a user interface. In various embodiments, the user interface includes a display to present information to a user. In various embodiments the display is touch-sensitive to allow the user to select display modes and operational attributes by touching an appropriately configured portion of the display.


Turning first to FIG. 9, illustrated is a user dashboard 900. The user dashboard 900 may be considered a general “palette” upon which information is presented to a user of the user interface. In some embodiments an installer dashboard is used to present information to an installer or service provider, the installer dashboard being presented in an installer mode that is not accessible to the operator in routine operation. The user dashboard 900 may be implemented using a touch-screen device, e.g. In the illustrated embodiment, eight tabs 910, 920, 930, 940, 950, 960, 970, 980 are shown without limitation. The various tabs may be associated with functions or routines associated with different operational aspects of the system 100. Each tab may further have a unique screen associated therewith appropriate to the functions or routines provided under that tab. A service soft switch 990 may provide a means for a service technician to access one or more service screens as discussed with respect to FIG. 31 below. Selection of soft switches on the service screens may invoke various setup and/or calibration routines, e.g. Optionally, the switch 990 may also double as a manufacturer logo.


In the illustrated embodiment, selection of the tab 910 accesses weather-related functions. The tab 920 is associated with indoor humidity display and control. When the tab 930 is selected the user dashboard 900 presents alert data to the user. The tab 940 provides help information.


Along the bottom of the user dashboard 900, the tab 950 is associated with indoor settings, e.g., operational attributes of the HVAC system that result in a particular temperature and/or RH of the conditioned space of a residence. For example, pressing the tab 950 may cause the display 905 to present an indoor temperature settings screen as described further below. The tab 960 allows the user to view and modify operating programs. The tab 970 allows the user to view and modify operating attributes of one or more zones of the HVAC system. The tab 980 selects a home screen that may provide a summary of operational attributes and environmental data.


The user dashboard 900 may be regarded as tailored for used when the system 100 is not zoned. For instance, when an HVAC system is zoned, typically a temperature set point is set for each zone. Thus, the tab 950, which in the illustrated embodiment is configured to provide access to “indoor settings”, may be undesirable in a zoned system 100, since each zone may have a temperature setting specific to that zone. Thus, in some cases, discussed below with respect to FIG. 22B, the tabs 950, 960 may be replaced with tabs appropriate to zoned applications.


The screens associated with each tab 910, 920, 930, 940, 950, 960, 970, 980 may be accessed by touching the desired tab. Thus, in one embodiment, touching the tab 910 presents a screen associated with weather-related functions. Each screen associated with a particular tab may be accessed by touching that tab. In addition, in some cases a screen associated with one tab may be accessed directly from a screen associated with a different tab. Thus, for example, a screen associated with the indoor settings tab 950 may include a link, in the form of a soft switch, to a screen associated with the “indoor humidity” tab 920. This aspect is expanded upon below.



FIG. 10 illustrates an example embodiment of access transitions between the various screens associated with each tab 910, 920, 930, 940, 950, 960, 970, 980. A weather screen 1010 is associated with the weather tab 910. An indoor humidity screen 1020 is associated with the indoor humidity tab 920. An alert screen 1030 is associated with the alerts tab 930. A help screen 1040 is associated with the help tab 940. An indoor settings screen 1050 is associated with the indoor settings tab 950. A programs screen 1060 is associated with the programs tab 960. A zones summary screen 1070 is associated with the zones tab 970. A home screen 1080 is associated with the home tab 980.


A path 1082 connecting each of the screens 1010, 1020, 1030, 1040, 1050, 1060, 1070, 1080 reflects the ability of the used to access each screen by touching the tab associated with that screen, regardless of the present state of the display 905. In some embodiments, each of the screens 1010, 1020, 1030, 1040, 1050, 1060, 1070, 1080 times out after a period of inactivity, e.g. about 5 seconds. Paths 1084, 1086 may represent the screen transition that results upon timeout. In some embodiments the home screen 1080 includes a soft switch that activates the indoor settings screen 1050 to allow the user to easily navigate to functionality thereof via a path 1088. In some embodiments the home screen 1080 also includes an active alert annunciator that when selected causes the alert screen 1030 to be displayed via a path 1089. Finally, in some embodiments an alert may be displayed via a pop-up alert window 1090. The pop-up alert window 1090 may be displayed from any other screen, and so is illustrated as being independent of the paths 1082, 1084, 1086, 1088 and 1089.


Turning to FIG. 11, an embodiment, generally designated 1100, of the home screen 1080 is illustrated without limitation. The features of the home screen 1080, described following, are examples of features that some residential users of the system 100 may find useful. Those of ordinary skill in the pertinent arts will appreciate that other features, and graphical layout of features, are within the scope of the disclosure.


The home screen 1080 includes two panels 1105, 1110. The panel 1105 presents a current status of indoor conditions, while the panel 1110 presents weather information. The panel 1105 includes a display of current temperature, as determined by a comfort sensor 160 e.g., and a temperature set point. The temperature set point may be selected by soft switches 1115, 1120. A humidity status message 1125 indicates whether indoor humidity, which again may be determined by a comfort sensor 160, is within selected limit. A program status message 1130 indicates whether the UI 240 is running a heating/cooling program, as described further below. Finally, a “press for more” soft switch 1135 provides a means to enter a display mode that provides additional information and configuration choices to the user.


The panel 1110 includes an indication of outside air temperature, as determined, e.g., by an optional outdoor sensor. Outside humidity may be displayed, also as determined by an outdoor sensor. A condensed weather forecast may also be provided, including, e.g., anticipated high and low temperature and a sky condition graphic 1140. A “press for more” soft switch 1145 provides a means to enter a display mode to obtain additional weather-related information. The weather information may be received by the aSC 230a via the UI/G 250, e.g., or may be inferred from barometric pressure trends.



FIG. 12 illustrates an example embodiment, generally designated 1200, of the indoor humidity screen 1020 that may be displayed in response to selecting the humidity status message 1025, or selecting the humidity tab 920. In the illustrated embodiment, the indoor humidity screen 1020 includes subpanels 1205, 1210, 1215. The subpanel 1205 displays current indoor humidity 1220, humidity set point 1225, and a graphic 1230 representing a range of humidity values. Advantageously, in some embodiments, the graphic 1230 is predetermined, e.g., via firmware, to span a range of humidity that is expected to be comfortable to occupants of the structure conditioned by the system 100. Soft switches 1235, 1240 provide a means to respectively increase or increase the humidity set point.


The subpanel 1210 presents a summary view of settings of the system 100 relevant to humidity control. In various embodiments the system 100 may be configured to provide humidification, dehumidification or both. In the example embodiment of the subpanel 1210, humidify/dehumidify is checked, indicating to the user that the system 100 is enabled to increase or decrease moisture in the air to control for the humidity set point. In other embodiments, only dehumidification or only humidification is enabled, such as to reduce energy consumption, or because needed equipment is not installed to provide the unselected function, e.g. In some embodiments, “off” is checked, such as when no humidification/dehumidification capability is present in the system 100. A soft switch 1245 provides a means to switch between the various configuration options shown in the subpanel 1210.


The subpanel 1215 provides a status message indicating whether the indoor humidity screen 1020 is configured to display humidification settings or dehumidification settings. A soft switch 1250 provides a means to switch between humidification status and dehumidification status.



FIG. 13 illustrates an example embodiment, generally designated 1300, of the alert screen 1030 of the disclosure. In the illustrated embodiment, the alert screen 1030 includes an alert field 1310 and soft switches 1320, 1330, 1340, 1350, 1360. The alert field 1310 may be used to display information relevant to a system status of condition, such as a maintenance item, component failure, etc. A maintenance item may be replacement of a consumable part, such as a filter, humidifier pad, or UV lamp. The set of functions provided by the soft switches 1320, 1330, 1340, 1350, 1360 may be tailored to provide the operator with convenient access to various alert-related utilities.


An embodiment is presented without limitation to the types of utilities provided thereby. More specifically, the soft switch 1320 provides service information. The soft switch 1330 provides a reminder function. The soft switch 1340 provides a means to edit alert reminders. The soft switch 1350 clears an alert or alarm, and the soft switch 1360 selects the next alert/alarm when multiple alerts or alarms are active simultaneously.



FIG. 14A illustrates one embodiment generally designated 1400A of managing alerts/alarms in the system 100. Those skilled in the pertinent art will appreciate that the UI 240 may be configured to provide other functionality that that illustrated by FIG. 14A within the scope of the disclosure. Referring first to the service soft switch 1320, selection thereof may cause a service screen 1410 to be displayed. The service screen 1410 may present service-related information to the user, such as, e.g., local service provider contact information, a manufacturer or dealer help line, etc. Pressing a “back” switch returns the display to the alert screen 1030.


In some embodiments the reminder soft switch 1330 is inactive (e.g., “grayed out”) for high-priority alarms or alerts, such as for a failed fan motor. For those cases in which the switch 1330 is active, the display 905 transitions to a screen 1420 when the user selects the switch 1330. The screen 1420 may present more detailed information about the alert. For example, a description of a replacement consumable may be presented, or information on the advisability of delaying action. The user may press a “cancel” switch to return the display 905 to the alert screen 1030.


Alternatively, the user may press a “set” switch, which cases a screen 1430 to be displayed. The screen 1430 may display the same or different information regarding the alert, and may present an adjustable time field and soft switches to allow the user to select a future time or a delay time before being reminded again of the alert/alarm. In an embodiment, the reminder delay time may be set to one of 1 day, 1 week, 1 month and three months. In another embodiment, the reminder delay time may be set to a custom time delay of any duration. The alert will then be generated again after the expiration of the time delay. The user may select a “cancel” switch to return to the alert screen 1030 without saving changes, or a “set” switch to advance to a screen 1440. The screen 1440 may present to the user a summary of the requested delay time for confirmation. The user may press a “done” switch to return the display 905 to the alert screen 1030.


In some cases, the alert/alarm is cleared, e.g., after replacing a consumable. The user may select the clear soft switch 1350 to reset the alert/alarm. The alert/alarm may be generated again at a future date after the expiration of a time period associated with that alert/alarm. For example, a filter may be routinely replaced every three months. The UI 240, the SC 230 or a demand unit using the filter may be configured to generate the alert/alarm after the expiration of three months.


Thus, when the user selects the clear soft switch 1350, the display 905 advances to a screen 1450. The screen 1450 presents a confirmation message to confirm that a service activity related to the alert/alarm has been performed. If the user selects a “no” switch, the display 905 returns to the alert screen 1030. If the user selects a “yes” switch, the display advances to a screen 1460. The screen 1460 may present information associated with the alert/alarm, and a “set” switch and “cancel” switch. If the user selects the cancel switch, the display 905 returns to the alert screen 1030. If the user selects the set switch, then, the display 905 may advance to one of two screens in the illustrated embodiment.


The display 905 advances to a screen 1470 in the case that the alert/alarm has a custom service period associated therewith. In this case, the screen 1470 may again present service information, and also presents a time field and selection switches. The user may select the desired service time, and select a “set” switch. Alternatively, the user may select a “cancel” switch, which returns the display 905 to the alert screen 1030. For the case that the user selects the “set” switch, the display 905 advances to a confirmation screen 1480. The screen 1480 presents a confirmation message and a “done” switch. The display 905 returns to the alert screen 1030 when the user selects the “done” switch.


For the case that an alert/alarm does not have a custom time associate therewith, the alert/alarm may have a default time associated therewith. In this case, when the user selects the “set” switch on the screen 1460, the display 905 advances directly to the screen 1480 for confirmation.


Referring again to the alert screen 1030, the edit soft switch 1340 provides a means for the operator to edit a reminder already stored in aSC 230a memory. Selecting the switch 1340 may display a screen listing active reminders available for editing. Selection of a reminder from the list may then cause the display 905 to advance to the screen 1430, wherein the operator may enter desired delay time.



FIG. 14B illustrates another embodiment of a method generally designated 1400B of managing alerts/alarms in the system 100. The method 1400B generally pertains to alerts/alarms that are displayed on the display 905 by a pop-up window. Thus, the method 1400B begins with a state 1485 that may be entered from any active screen of the display 905. From the state 1485, the method 1400B displays a screen 1490 that presents information regarding the alert/alarm to the operator. The screen 1490, an alternate embodiment of the alert screen 1030, includes a “remind later” switch, a “clear” switch and a “done” switch. When the operator selects the “remind later” switch, the method advances to the screen 1420, and continues as described previously. When the operator selects the “clear” switch, the method advances to the screen 1450, and continues as described previously. When the user selects the “done” switch, the method 1400B returns to the state 1485, e.g., the screen that was active before the screen 1490 was displayed.


Turning now to FIG. 15, a help screen generally designated 1500 is illustrated. The help screen 1500 may be displayed by the display 905 when the operator selects the help tab 940. In the illustrated embodiment, the help screen 1500 displays a help field 1510, a clean display field 1520, a user settings field 1530, and a dealer information field 1540. The behavior of the fields 1510, 1520, 1530 are described in the context of FIG. 16, below. The field 1540, when selected, may present to the operator information regarding the dealer, manufacturer or installer, such as contact information, address, etc.



FIG. 16 illustrates an embodiment of a method generally designated 1600 of providing help to the operator via the display 905. Addressing first the help field 1510, selection thereof causes the display 905 to advance to a screen 1610. The screen 1610 displays textual information to the operator in a text field 1615. In some embodiments, the text field 1615 is also configured to be touch-sensitive, so that the display text may be advanced to a previous or a prior page, e.g., or so the display 905 reverts to a screen that was displayed prior to selection of the help field 1510.


Selection of the clean display field 1520 causes the display 905 to advance to a screen 1620. The screen 1620 is configured to allow the display 905 to be cleaned. Thus, e.g., a suitable message may be displayed, and all touch-sensitive regions of the display 905 may be disabled so that no inadvertent action is selected by contact during cleaning. The display 905 may be further configured to automatically return to the screen 1040 after a limited period, e.g., about 30 seconds, thus terminating the cleaning period.


When the user settings field 1530 is selected, the display 905 advances to a screen 1630. The screen 1630 provides an initial screen for selection of a family of parameters to modify. In one embodiment, the screen 1630 presents a field 1635 that displays a list of subnet controller variables, a list of local UI settings, and a list of reminders. In some embodiments, each list is sequentially presented to the user by a brief touch or tap of the field 1635. In another embodiment, the various list items are accessed by scrolling through a list of items. The user may select a list item by tapping thereon and selecting a “modify” switch. The action taken by the display 905 may be context sensitive, e.g., may depend on the type of parameter selected. For example, in the illustrated embodiment, selecting a subnet controller or a UI parameter causes the display 905 to advance to a screen 1640 when the modify switch is selected. Alternatively, selecting a reminder item causes the display 905 to advance to a screen 1650 when the modify switch is selected.


When the screen 1640 is active, the display 905 may present a modification field 1645. The field 1645 may be configured to provide, e.g., up/down arrows or alpha-numeric keypad to allow the operator to modify the selected parameter. After modifying the parameter value, the user may select a “save” switch to store the modified parameter value and return to the screen 1630. Alternatively, the user may select a “cancel” switch that causes the display 905 to return to the screen 1630 without modifying the selected parameter.


As described, in the event that the user selects a reminder for modification, the screen 1630 may advance to the screen 1650. The screen 1650 is illustrated having a “reminder current setting” field 1653 and a “reminder options” field 1656. The field 1653 may present the current settings associated with the selected reminder. The field 1656 may include up/down switches or a keypad to allow the operator to modify the reminder settings or options. The operator may select a “set” switch to save the modifications, or a “back” switch to return to the screen 1630 without saving changes. The action resulting from selecting the “set” switch may depend on the type of reminder, e.g., a reminder that allows a custom reminder time or a reminder that does not. If the reminder allows a custom reminder time to be associated therewith, selecting the “set” switch causes the display 905 to advance to a screen 1660. If the reminder has a fixed reminder time associated therewith, the display 905 advances to a screen 1670.


Within the screen 1660, a “reminder current setting” field 1663 and a “custom date & time” field 1666 are presented. The field 1663 may present the current value of the reminder time. The field 1666 may include up/down switches or a keypad to make changes. The operator may select a “cancel” switch to exit the screen 1660 without saving changes to the selected reminder, or may select a “set” switch to advance to the screen 1670. Within the screen 1670, the display 905 may present a confirmation of the selected reminder and reminder time. The operator may then select a “done” switch, thereby causing the display 905 to return to the screen 1630.


Turning now to FIG. 17, illustrated is an embodiment of the indoor settings screen 1050. The indoor settings screen 1050 includes a temperature conditions and settings field 1710. The field 1710 may include, e.g., current indoor temperature and temperature set points. In some embodiments the temperature set points may be selected by up/down switches 1715, 1720. A system settings field 1730 indicates whether the system 100 is configured to heat, cool or heat and cool, or is off. A select switch 1731 may be used to change the system setting. A fan settings field 1740 indicates whether the fan associated with an air handler 110, e.g. is configured to operate automatically, is constantly on, or is set to circulate air. In this context, the system 100 circulates air by ensuring the fan operates with a minimum duty cycle, independent of heating and cooling requirements, so ensure a desired turnover rate of the air in the zone. Such operation may be advantageous, e.g., for air filtering. A select switch 1741 may be used to change the fan setting. In some cases, the indoor settings screen 1050 pertains to a selected zone.



FIG. 18 illustrates an embodiment in which the UI 240 is running a program schedule. In some embodiments, selecting either of the switches 1715, 1720 causes the indoor settings screen 1050 to advance to a screen 1810. The screen 1810 provides a “hold options” field 1812. Selection of a “cancel” switch therein returns the display 905 to the indoor settings screen 1050. On the other hand, selection of a “standard” switch advances to a screen 1820. Within the screen 1820, the user may select a pre-programmed hold period from one or more options.


Without limitation, preprogrammed hold periods may be 1 hour, 2 hours, 8 hours, or 24 hours. In some embodiments, the screen 1820 may provide the operator the option of holding the temperature and/or system and/or fan set points until a next scheduled period of the running program schedule. If the operator selects a “set” switch the UI 240 saves the hold options and returns to the indoor settings screen 1050. Alternatively, the operator may select a “cancel” switch to return to the indoor settings screen 1050 without saving any hold options.


Returning to the screen 1810, if the operator selects a “custom” switch in the field 1812, the display 905 advances to a screen 1830. Within the screen 1830, the user may select a “cancel” switch to return to the screen 1810. If the user selects a “set” switch, the display 905 advances to a screen 1840 on the first invocation of the set switch. Within the screen 1840, the operator may select a custom hold time. In one example, the hold time limited to a time at least 15 minutes in the future. The operator may then select a “back” switch to return to the screen 1830. Upon selecting the “set” switch on the screen 1830 for a second time, the display 905 advances to the screen 1820, which operates as previously described.



FIG. 19 illustrates an example embodiment of a program screen 1910 configured to program a temperature schedule. The programs screen 1910 may be displayed, e.g., by selecting the programs tab 960 (FIG. 9). The programs screen 1910 includes four program columns. Each column has an associated time at which a program period begins. Each column allows the operator to select a heat temperature, a cool temperature, and a fan mode. Note that in the fourth column, with a corresponding time of 10:30 PM, the heat temperature, cool temperature, and fan mode are missing, indicating that this program period is not being used in the current program. Note also that in the illustrated embodiment the tabs 910, 920, 930, 950, 960, 970 are absent. The operator is thus restricted to selecting the help tab 940 or the home tab 980. Those skilled in the pertinent art will appreciate that other choices of screen configuration are within the scope of the disclosure. Of course, selecting other switches, e.g. a “save”, “cancel” or “back” switch may cause another screen to be displayed. Those skilled in the pertinent art will appreciate that other choices of screen configuration are within the scope of the disclosure.


The UI 240 may be preprogrammed by the manufacturer with a temperature program. In one illustrative embodiment, the UI 240 is preprogrammed with an Energy Star compliant schedule. The following table illustrates one such schedule:



















PERIOD

TIME
HEAT
COOL
FAN






















1
6
AM
70
78
Auto



2
8
AM
62
85
Auto



3
5
PM
70
78
Auto



4
10
PM
62
82
Auto










The Energy Star schedule may be a “default” schedule that the operator may modify or restore in various circumstances as described further below.



FIG. 20 illustrates an embodiment of a method 2000 of operating the UI 240 to program an operating schedule. The method 2000 begins with an event 2010 corresponding to selection of the programs tab 960 by the operator. The display 905 then presents a screen 2020 that prompts the operator to select whether to enable operation of a stored program. If the operator chooses to disable program operation or to maintain disabled program operation if program operation was already disabled, the operator may end the dialog by selecting the home tab 980. Alternatively, if the operator wishes to operate the system 100 using a program schedule, the operator may select a “view/edit” switch or a “restore” switch.


As the UI 240 is configured in the method 2000, selection of the “restore” switch of the screen 2020 restores the operating program to a preprogrammed operating program, e.g., the Energy Star default program exemplified by the table above. If the operator elects to restore the program by selecting the “restore” switch of the screen 2020, then the display advances to a confirmation screen 2030. Selection of a cancel switch therein causes the display 905 to return to the screen 2020 without saving changes. Alternatively, selection of a “confirm” switch causes the display 905 to advance to a summary screen 2040.


The screen 2040 presents a program schedule group that includes a day summary field and a schedule summary field. These fields are configured in the illustrated embodiment to cause the display 905 to advance to another screen when selected. These fields may also include a summary of the associated program entity. Thus, e.g., the day summary field may present a summary of the day or days associated with a program group, and the schedule summary field may present a summary of the time and set points associated with the program group.


When the operator selects the day summary field, the display 905 advances to a screen 2050. Alternatively the screen 2050 may be displayed if the operator selects a “new” switch in the screen 2040. In the illustrated embodiment the screen 2050 includes a “7 day” field, a “mon-fri” field and a “sat-sun” field. Selection of one of these fields selects the days of the week associated with that switch. Alternatively, the operator may select a “day selection” field that allows the operator to select any combination of days that are not otherwise scheduled. The operator may select a “cancel” switch to discard changes and return to the screen 2040, or may select a “next” field to advance to a screen 2060.


The screen 2060 includes a “schedule settings” field and up/down arrows. The user may select a value within the schedule settings field, e.g., time or set points, and change the selected parameter to a desired value using the up/down arrows. The user may select a “cancel” switch to discard changes and return to the screen 2040, or may select a “back” switch to return to the screen 2050. From this screen, the operator may select another unscheduled day or days and select parameters associated with these days via the screen 2060. The operator may select a “save” switch in the screen 2060 to save all changes to the schedule and return to the screen 2040.


Turning now to FIG. 21, illustrated is an embodiment of the zones summary screen 1070. The zones summary screen 1070 displays one or more zone summary fields, e.g. fields 2110a-f, one summary field 2110a-f being associated with each zone of the system 100. Each summary field 2110a-f includes the zone name and the current temperature of that zone. The zone name may be named more specifically, e.g., kitchen, upstairs, etc. While six zones are shown in the illustrated embodiment, in some cases the system 100 includes more that six zones, or includes more zones than will fit on a single screen of the display 905. In such a case, the zones summary screen 1070 may include a “next” switch and a “previous” switch to navigate among as many screens as are necessary to present all the zones.



FIG. 22A illustrates an embodiment generally designated 2200 of operation of the display 905 when the zones tab 970 is selected. From the zones summary screen 1070, the display 905 may advance to a zone setting screen 2210 when, e.g., one of the zone summary fields 2110a-f is selected.


Turning momentarily to FIG. 22B, illustrated is one embodiment of the zone setting screen 2210 for a particular zone, e.g. a “kitchen zone”. The screen 2210 includes a setpoint field 2212, a system settings field 2214 and a fan settings field 2216. The fields 2212, 2214, 2216 display information about and allow changes to only parameters associated with an indicated zone, e.g. “kitchen”. The setpoint field 2212 may be functionally similar to the indoor settings screen 1050 (see, e.g., FIGS. 17 and 18), and may include, e.g., a temperature/set point display 2218, and up/down switches 2220 to adjust the temperature set point. The screen 2210 also includes a back switch 2222 that when selected may return the display 905 to the zones summary screen 1070. A program switch 2224 may be used to activate a program screen, e.g. similar to the programs screen 1910, associated with the indicated zone. In the illustrated embodiment, the screen 2210 includes a whole-house override tab 2227 and a whole house program tab 2229 the operation of which is discussed below.


The operation of the screen 2210 may be similar to that of the indoor settings screen 1050, but may be configured to control only aspects of the selected zone. The operator may make any desired changes and then select the zones tab 970 to return to the zones summary screen 1070 if desired to make changes to other zones. Alternatively, the operator may select any of the other tabs 910, 920, 930, 940, 950, 960, 980 to exit the screen 2210.


Returning to FIG. 22A, when the operator selects the program switch 2224, the display 905 may advance to a program summary screen 2226. The summary screen 2226 may include a schedule summary field 2228 that may present to the operator a summary of a step programmed for the zone selected via one of the zone summary fields 2110a-f. A program switch 2230 may be configured to select a program operation mode for the selected zone. For example, successive selection of the switch 2230 may cycle the program operation for the selected zone between off, independent program operation, and operation in which the selected zone follows a house-level program. When independent program operation is selected, a “new” switch 2232 may become active, allowing the operator to add a step to the program for the selected zone. If there are multiple program events for the selected zone, a “next” switch 2234 may also be active, allowing the operator to cycle through the existing program events.


Returning to the screen 2210, if the operator selects any of the setpoint field 2212, the system settings field 2214 or the fan settings field 2216, the display 905 may advance to a hold options screen 2236. The screen 2236 may again present the user the setpoint field 2212, and further provide a set switch 2238 and a clear switch 2240. Selection of the clear switch 2240 may return the display 905 to the screen 2210.


Selection of the set switch 2238 may cause the display 905 to advance to a hold settings screen 2242. The screen 2242 may again present the user with the setpoint field 2212, and further provide a set switch 2244 and a clear switch 2246. Selection of the clear switch 2246 may return the display 905 to the screen 2236. Selection of the set switch 2244 may save a temperature set point selected via the up/down switches 2220 and return the display 905 to the screen 2210.


As noted above, the screen 2210 includes a “whole house override” tab 2227 and a “whole house program” tab 2229. These tabs may be used as an alternative to the tabs 950, 960, or may temporarily replace the tabs 950, 960 only after the user selects the zones tab 970. In this sense, the screen 2210 is tailored for use when the system 100 is zoned. In some cases, the tabs 2227, 2229 may revert to the tabs 950, 960 after the operator exits a screen sequence associated with the zones tab 970.


The whole house override tab 2227 may allow the operator to view, edit, or enable an override function for all zones in the house. In some embodiments the override is effective regardless of the program schedule a particular the zone is running. The whole house override tab 2227 may also provide a means for the operator to override a current program schedule in each zone.


The whole house program tab 2229 may allow the operator to view, edit, or enable current program schedule events, and to create additional program schedule events associated with the whole house program schedule. The house program tab 2229 also may be configured to provide a means to program event times, temperature set points, and the fan mode for each period of the day.


Turning to FIG. 23, illustrated is an embodiment of a whole house override screen 2300 that may be displayed when the whole house override tab 2227 is selected. The override screen embodiment 2300 includes a whole house temperature field 2310 with which the operator may view a temperature setting and make adjustments to the temperature via up/down switches 2312. A system settings field 2320 may be used to view and select a system operation mode, e.g., heat & cool, heat only, cool only and off. A fan settings field 2330 may be used to view and select a fan operating mode, e.g., auto, fan and circulate. A hold options field 2340 may be used to view and select a hold time. The hold options field 2340 includes, e.g., an adjustable hold time and date, a set switch and a clear switch. Time and date values may be adjusted by adjustment switches 2342.


Advantageously, the override screen 2300 provides a means to override program schedules until the hold time and date for all zones in the system 100 from a single display screen, e.g., a single UI 240. The UI 240 may communicate the requested hold settings to each subnet controller corresponding to each zone in the network 200. Each subnet controller may then control the operation of its corresponding zones to, e.g., hold a temperature until the specified end time.



FIG. 24 illustrates operation of the override screen 2300 for overriding zone settings in the system 100. The override screen 2300 may be accessed by selecting the whole house override tab 2227. If the operator selects a clear (“C”) switch, the display 905 may return to the home screen 1080 and discard any changes the operator may have made. If the operator selects a set (“S”) switch of the screen 2300, the display 905 may advance to a screen 2410 in which adjustment arrows may become active to select a custom time & date hold time. Selecting a clear switch of the screen 2410 may discard any changes and return the display 905 to the screen 2300. Alternatively, selecting a set switch of the screen 2410 may return the display 905 to the home screen 1080. In the case that the operator does not select the custom hold time option in the screen 2300, selecting the set switch thereof also may return the display 905 to the home screen 1080.



FIG. 25 illustrates a method generally designated 2500 of setting parameters of a whole house program for the system 100. A whole house program screen 2510 may be displayed when the whole house program tab 2229 (FIG. 22B) is selected. The whole house program may override any zone settings previously set. The screen 2510 may present a schedule summary field, and “new”, “back” and “next” switches. Selecting the schedule summary field or the “new” switch may cause the display 905 to advance to a day selection screen 2520. The screen 2520 may include a “day selection” field and a “schedule summary” field, e.g. If a whole house program entry already exists, the day selection field may display the day of that entry. The schedule summary field may display the times and set points associated with the displayed day. If a whole house program does not already exist, or in the event the operator selected the “new” switch of the screen 2510, the “day selection” field may be selected to choose a day for a schedule entry. The operator may then select the “schedule summary” field to advance to a program setting screen 2530.


The screen 2530 may include a “schedule settings” field. The schedule settings field may include time and temperature set point subfields. The operator may select a desired subfield and use up/down switches to select a desired value of the selected parameter. Selecting a “cancel” switch in the screen 2520 or the screen 2530 may discard any entries and return the display 905 to the screen 2510. Selecting a “save” switch in the screens 2520, 2530 may return the display 905 to the screen 2510 while saving the entries. A “back” switch on the screen 2530 may cause the display 905 to return to the screen 2520, e.g. to select a different day before saving. In cases in which there are multiple entries in the whole house program, the “back” and “next” switches of the screen 2510 may be active, allowing the operator to select an existing schedule entry in the whole house program for modification.



FIG. 26 illustrates a method generally designated 2600 of configuring the system 100. The method 2600 may be advantageously implemented with a microcontroller or finite state machine, e.g. A method of manufacturing the UI 240 may include configuring the UI 240 to implement the method 2600. In some embodiments, as exemplified by the method 2600, the UI 240 is configured to automatically configure the operation of the system 100 for zoned operation. The method 2600 begins with an entry state 2610, which may be entered from any appropriate operating state of the system 100. In one embodiment, the entry state 2610 is entered during an initialization phase of the system 100, e.g. the link state 850.


In a state 2620 the UI 240 may discover the presence of a number of instances of the comfort sensor 260 in the network 200. Discovery may be made, e.g., by exchange of messages between the UI 240 and a number of comfort sensors 260 over the data bus 180. In a decisional state 2630, the method 2600 advances to a state 2640 in the event that the UI 240 discovers only a single comfort sensor 260. In the state 2640 the UI 240 self-configures for unzoned operation. Self-configuration may include, e.g., setting various operating parameters associated with zoned operation to values consistent with operating a single zone, including various display options for the display 905. The method 2600 ends with a state 2695 from which the UI 240 may return to a calling routine.


If more than one comfort sensor is discovered in the state 2620, the method 2600 branches from the state 2630 to a state 2650 in which the UI 240 discovers a number of subnets in the network 200. As described with respect to FIG. 5, a minimum subnet may include one instance of each of the UI 240 and the comfort sensor 160, and a demand unit 155, each networked via a four-wire RSBus. The method 2600 advances to a state 2660 in which the aSC 230a may discover a number of damper controller modules 215 in the network 200. In a decisional state 2670, the method 2600 advances to a decisional state 2680 in the event that the UI 240 does not discover additional subnets. In the state 2680, in the event that no instances of the damper controller module 215 are discovered the method 2600 advances to the state 2640 to self-configure for unzoned operation as previously described.


In the event more than one subnet is discovered in the state 2650, or more than one damper controller is discovered in the state 2660, the method 2600 branches from the state 2670 or the state 2680, respectively, to a state 2690. In the state 2690 the UI 240 self-configures for zoned operation. Self-configuration may include, e.g., configuring the UI 240 to display a screen tailored for use with an unzoned system in the event that the subnet controller discovers only comfort sensor. Self configuration may also include configuring the UI 240 to display a screen tailored for use in a zoned system in the event that the subnet controller discovers more than one comfort sensor 260 and either of more than one subnet or a damper controller module 215. Any additional discovery needed to configure the system 100 may also be performed in the state 2690.


Configuration for zoned or unzoned operation may include, e.g., opening or closing dampers, communicating with other user interfaces to assign active and inactive subnet controllers, and setting fan operating parameters to account for air circulation requirements. When configuring for zoned operation, the UI 240 may also set various internal parameters to enable presentation of zone configuration screens via the display 905. Alternatively, when configuring for unzoned operation, the UI 240 may set internal parameters to disable various screens associated with zoned operation so these screens are not presented to an operator.



FIG. 27 illustrates a method generally designated 2700 of operating a user interface. The method is described in a nonlimiting example with reference to FIG. 7A. A method of manufacturing a user interface may include configuring a user interface to implement the method 2700. The method 2700 begins with a step 2710 that may be entered from any appropriate operational state of the system 100.


In a step 2720, the subnet controller 784 operates the zone 710 of the system 700A. The subnet controller 784 operates the zone 710 with a first program schedule. In a step 2730, the subnet controller 792 operates the zone 715 with a second program schedule. In a step 2740, one of the user interfaces 775, 780, 790 communicates a hold setting message to the subnet controller 784. The subnet controller 792 overrides the first and second schedules to operate the zone 710 and the zone 715 according to the hold settings communicated by the hold settings message. The method 2700 ends with a terminating step 2750.


In general the hold setting message may include, e.g., a temperature and/or a humidity, a hold start time, a hold stop time, or a hold duration. In a relatively simple embodiment, the message instructs the subnet controller 784 to maintain a temperature the subnet controller 792 is currently configured to maintain until the hold is released by a later message. In a more complex embodiment, the message includes start time, an end time and a temperature that may be different form the current temperature. In some embodiments, the hold settings are whole-house settings.


Conventional HVAC zoning uses a single thermostat in each zone, and the thermostats are typically located apart from each other so each thermostat can monitor the temperature in the zone it controls. Thus, when an operator wishes to set a hold temperature for multiple zones, the operator typically has to set the hold at each thermostat of the system for a whole house override.


In contrast, embodiments herein provide the ability for the operator to override the program schedules of all zones from a single location, e.g., the user interface 775. The particular user interface 775, 780, 790 need not be collocated with any comfort sensor. Thus, hold conditions may advantageously be set form any location in the HVAC network at which a user interface is located. The overriding may be done via the override screen 2300, e.g. In some embodiments, the subnet controller 784 communicates hold settings to each user interface 775, 780, 790 for display.



FIG. 28 illustrates a method generally designated 2800 of manufacturing an HVAC data processing and communication network. The method is described in a nonlimiting example with reference to FIG. 6, and more specifically to the UIs 664, 684. The method 2800 begins with an entry state 2810, which may be entered from any appropriate operating state of the system 100.


In a step 2820, the UI 664 is configured to control the operation of the demand furnace 670. The furnace 670 is associated with the zone 605 by virtue of being configured to operate in the subnet 615. In a step 2830, the UI 684 is configured to control the operation of the furnace 695. The furnace 695 is associated with the zone 610 by virtue of being configured to operate in the subnet 620. In a step 2840 the UI 664 is further configured to override the operation of the UI 684, which are associated with a different zone, to control the operation of the furnace 695. The method 2800 ends with a step 2850, from which the operation of the system 100 may continue in any desired manner.


In some embodiments of the system 100, more than one UI 240 may be present on a single system 100, or on a single zone of the system 100. In some embodiments, the operator may thus place multiple UIs 240 on a single system or zone so the operator can make changes to system operating parameters from any of the locations at which the UIs 240 are placed. In some embodiments, a first UI 240 on a subnet or zone, associated with an active subnet controller, directly controls the operation of the system or zone. A second UI 240 associated with an inactive subnet controller, on the same subnet or zone may communicate with the first UI 240, or directly with the aSC 230a to change system operating parameters.


In some embodiments, the first UI 240 is configured to allow an operator to switch which comfort sensor 160 is given priority by the aSC 230a. Thus, for example, an aSC 230a may be associated with any comfort sensor 160 in the subnet, or even in a different subnet. The comfort sensor 160 associated with the aSC 230a may be collocated in a same enclosure, such as for the control unit 590, or may be located remotely from the aSC 230a, e.g., in another room. This capability provides a simple means for the operator to select a particular comfort sensor 260 that is in a room occupied by the operator to control the system 100 to maintain the temperature of the occupied room. In some embodiments, no zoning of the system 100 is needed to provide localized control of temperature in one or more locations each monitored by a comfort sensor 260. In another embodiment, the operator may select an operating mode in which the aSC 230a reads a local temperature of several comfort sensors 260 in different locations to determine an average temperature, and then control the system 100 to maintain the desired temperature within a selected range. The several comfort sensors may optionally be collocated with user interfaces, and may optionally be collocated with UIs 240.


Accordingly, FIG. 29 illustrates a method generally designated 2900 of operating a subnet controller. A method of manufacturing an HVAC data processing and communication network may include configuring various components of the system 100 to implement the method 2900. The method 2900 begins with a step 2910 that may be entered from any appropriate operational state of the system 100.


In a step 2920, an aSC 230a controls the demand unit 155 to maintain a temperature at a first location served by a first comfort sensor 160 in response to a temperature reported by the first comfort sensor 160. By way of example, the demand unit may be the furnace 120. The aSC 230a at this point does not consider the temperature reported by a second comfort sensor 160. The first comfort sensor 160 may be collocated with the aSC 230a or located remotely therefrom. In some cases, the first comfort sensor 160 is located in a same enclosure with the aSC 230a, but need not be. In a step 2930, the aSC 230a controls the demand unit 155 to maintain a temperature at a second location served by the second comfort sensor 160 in response to the temperature reported by the second comfort sensor 160. The aSC 230a may be configured to control for the second aSC 230a by an appropriately configured message generated by the second UI 240 in response to user input. For example, in response to the message, the aSC 230a may ignore messages sent by the first comfort sensor 160, at least for the purposes of controlling the demand unit 155. In an optional step 2940, the aSC 230a controls the demand unit 155 in response to the temperature reported by both the first and the second comfort sensor 160. In some cases, the aSC 230a averages both reported temperatures and controls the demand unit 155 in response to the computed average. Those skilled in the pertinent art will appreciate that the method 2900 may be extended in principle to an arbitrarily large number of comfort sensors 160 within the limits of the number of devices supportable by the system 100. The method ends with a step 2950, from which the operation of the system 100 may continue in any desired manner.


In some embodiments, the first comfort sensor 160 is located in an enclosure with a first UI 240, and the second comfort sensor 160 is located in an enclosure with a second UI 240. The aSC 230a may be configured to control the demand unit 155 in response to the first comfort sensor 160 in response to contact by the operator with a touch screen of the first UI 240. In this case, the UI 240 may be programmed to send an appropriately configured control message to the aSC 230a in response to a single tap of the touch screen, a predetermined number of taps within a predetermined time interval, or a number of fingers simultaneously tapped on the touch screen. These examples are presented without limitation and are not exclusive of other combinations of touches that the UI 240 may be configured to recognize as a command to give priority to the associated comfort sensor 160. In some embodiments, the first UI 240 and/or the second UI 240 are configured to send the control message is response to a command entered via a control menu of the UI 240. In some embodiments the UI/G 250 is configured to provide the control message to the aSC 230a in response to a signal from a remote entity. One aspect of using one of the aforementioned embodiments or other embodiments within the scope of the disclosure is that a most recent UI 240 to be touched by the operator is the UI 240 that effectively controls the system 100 from the operator's perspective. In some cases, another UI 240 will provide actual control as a “master” UI 240, while the most recently touched UI 240 provides “virtual” control by sending messages instructing the master UI 240 to control the system 100 in a desired manner.


In some embodiments a first UI 240 or a second UI 240 send a message to the aSC 230a on the subnet indicating that the first or second UI 240 is the last UI 240 to be touched. In this embodiment, the aSC 230a determines which is the last UI 240 to be touched and disregards control messages from the UI 240 that is not the last to be touched. Those skilled in the pertinent art will appreciate that other control schemes are possible to accomplish the desired result of control from the most recently touched UI 240.


Accordingly, FIG. 30 presents a method generally designated 3000 of manufacturing an HVAC data processing and communication network. The method 3000 is described without limitation by referring to the UI 240 and the system 100. By way of example without limitation the discussion of the method 3000 includes an aSC 230a, a first UI 240 and a second UI 240 and the demand unit 155, e.g., the furnace 120. The method 3000 begins with a step 3010 that may be entered from any appropriate operational state of the system 100.


In a step 3020, the first UI 240 is configured to broadcast a message on the data bus 180 indicating that the first UI 240 has been touched. The first UI 240 may detect a touch, e.g., via a touch-sensitive screen. In a step 3030, the second UI 240 is configured to broadcast a message on the data bus 180 indicating that the second UI 240 has been touched. In a step 3040, the aSC 230a controls the operation of the demand unit consistent with the control message send by the most recently touched of the first UI 240 and the second UI 240.


In one embodiment, the aSC 230a receives control messages directly from both the first and the second UI 240. Each of the first and the second UI 240 send a message to the aSC 230a when that UI 240 is touched. The aSC 230a is configured to then respond to the UI 240 that last sent the message indicating it has been touched. In another embodiment, the aSC 230a only responds directly to control messages sent by the first UI 240, and the first UI 240 acts a proxy for the second UI 240 when the second UI 240 is touched more recently. In this case the second UI 240 may send a message to the first UI 240 when the second UI 240 is touched. The first UI 240 then sends control messages to the aSC 230a consistent with the control messages received from the second UI 240. The method 3000 ends with a step 3040 from which operation of the system may continue in any desired manner.


Without limitation to various methods of operating the system 100, an illustrative example is provided of using the method 3000. An operator or occupant may enter a first room in which the first UI 240 is located. The operator may touch the touch-sensitive display of the first UI 240. In response, the first UI may send a message to the aSC 230a indicating that the display has been touched. The aSC 230a determines that the first room is occupied, and configures itself to accept messages from the first UI 240 related to control the operation of the demand unit 155 associated with the aSC 230a. The aSC 230a may also configure itself to disregard messages related to controlling the operation of the demand unit 155 that originate from the second UI 240, which may be located in a second room. Thus, the aSC 230a controls the operation of the demand unit 155 consistent with a control message sent by the most recently touched UI 240. In some cases the first and the second UI 240 may have a different control temperature stored therein to which the aSC 230a controls to. In other cases, the first and the second UI 240 may be associated with a different comfort sensor 160. In such cases, the aSC 230a may control the demand unit 155 to maintain the programmed temperature as measured by the comfort sensor 160 associated with the last-touched UI 240.


Turning now to FIG. 31, illustrated is an embodiment of an installer dashboard, generally denoted 3100, that is associated with operation of the UI 240. The dashboard 3100 may be invoked, e.g., by selecting the service soft switch 990. The dashboard 3100 may include a number of tabs configured to access functionality of particular utility to an installer or otherwise sophisticated operator. In the illustrated embodiment, without limitation, the dashboard 3100 includes an installer test tab 3110, an installer/setup tab 3120, an equipment tab 3130, and diagnostic tab 3140, and an alert tab 3150. The dashboard 3100 also includes the help tab 940 and the home tab 980 as previously described (FIG. 9). Selection of each of the tabs 3110, 3120, 3130, 3140, 3150 may invokes a particular installer screen. Installer screens may provide functionality of the UI 240 that is specific to installation or service functions of the system 100. Selection of soft switches on the service screens may invoke various setup and/or calibration routines, e.g.



FIG. 32 illustrates a screen transition map generally designated 3100 that is associated with the tabs 3110, 3120, 3130, 3140, 3150, 940. Installer screens may be configured in any manner that results in, e.g., convenient or intuitive presentation of installer functions to the operator. Upon selection of the service soft switch 990, the display 905 may present a warning screen 3210. The warning screen 3210 may, for example, inform the operator that proceeding may provide access to functions that may disable the system 100 if performed by unqualified operators. Optionally, access to configuration functions may be restricted by a passcode. Optionally, the warning screen 3210 provides a soft switch, the activation of which returns the display 905 to the home screen 1080.


In the illustrated embodiment, an installer test screen 3220 may provide an option to reset the system 100 into a soft resent or initial power-up state. Various system-level or device-level tests may be made available to the operator. An installation and setup screen 3230 may provide functions useful to configuring the system 100, such as parameter entry and replacement part check. An equipment screen 3240 may provide to the operator a list of devices available on the data bus 180 and access to functions such as independent and dependent parameter display and update. A diagnostic screen 3250 may present to the operator a list of devices on the data bus 180 and an option to run a diagnostic routine on a selected device. A diagnostic routine may place the selected device in a self-test mode, e.g., and return parameter values reflecting the outcome of the self-test. An alert screen 3260 may present to the operator a list of devices on the data bus 180 and a menu of functions related to those devices, such as viewing device-level alerts. A help screen 3270 may provide access to information helpful to the operator regarding installation-related functions, or manufacturer contact information, e.g. In some embodiments, the help information is context-sensitive. For example, selecting the help tab 940 while using functions of one of the installer test screens may provide help to the operator related to the installer test functions present on that installer screen. Of course, other screen configurations may be used while remaining within the scope of the disclosure.


Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.

Claims
  • 1. An HVAC data processing and communication network, comprising: a user interface;a first subnet controller configured to operate with a first zone of said network with a first program schedule, said first zone including said user interface, said first subnet controller, and a plurality of comfort sensors, wherein said first subnet controller is configured to control an operation of a demand unit associated with said first zone based on input received from two or more of said plurality of comfort sensors;a second subnet controller configured to operate with a second zone of said network with a second program schedule;wherein the first and second subnet controllers are configured to operate both the first and second zones upon detecting a failure of the other one of the first or second subnet controllers, and to override said first and second schedules to operate said first and said second zones according to settings received from said user interface.
  • 2. The network as recited in claim 1, wherein said first and second subnet controllers are a same subnet controller.
  • 3. The network as recited in claim 1, wherein said first zone is configured as a first subnet, and said second zone is configured as a different second subnet.
  • 4. The network as recited in claim 1, wherein said user interface is a first user interface, said first zone comprises said first user interface and said second zone comprises a second user interface, and both said first and second user interfaces are configured to impose hold settings on said first and second zones.
  • 5. The network as recited in claim 1, wherein said first subnet controller is located in a same enclosure as said user interface.
  • 6. The network as recited in claim 1, wherein said subnet controller is further configured to control an operation of said demand unit based on an average of temperatures reported by at least two of said plurality of comfort sensors.
  • 7. The network as recited in claim 1, wherein said user interface is a first user interface physically associated with said first zone, and a second user interface is physically associated with said second zone.
  • 8. The network as recited in claim 1, wherein said user interface is a first user interface, and said first zone includes said first user interface, a second user interface, said first subnet controller and a demand unit.
  • 9. The network as recited in claim 1, wherein said first zone includes said demand unit.
  • 10. A method of manufacturing an HVAC data processing and communication network, comprising: configuring a first subnet controller to operate a first zone of said network with a first program schedule, said first zone including said user interface, said first subnet controller, and a plurality of comfort sensors, wherein said first subnet controller is configured to control an operation of a demand unit associated with said first zone based on input received from two or more of said plurality of comfort sensors;configuring a second subnet controller to operate a second zone of said network with a second program schedule; andconfiguring both said first and second subnet controller to operate both the first and second zones upon detecting a failure of the other one of the first or second subnet controllers, and to override said first and second schedules to operate said first and said second zones according to hold settings received from a user interface.
  • 11. The method as recited in claim 10, further comprising configuring said subnet controller to control an operation of said demand unit based on an average of temperatures reported by at least two of said plurality of comfort sensors.
  • 12. The method as recited in claim 10, wherein said first and second subnet controllers are a same subnet controller.
  • 13. The method as recited in claim 10, further comprising configuring said first zone as a first subnet, and said second zone as a different second subnet.
  • 14. The method as recited in claim 10, wherein said user interface is a first user interface, said first zone comprises said first user interface and said second zone comprises a different second user interface, further comprising configuring both said first and second user interfaces to impose hold settings on said first and second zones.
  • 15. The method as recited in claim 10, wherein said first zone includes said demand unit.
  • 16. The method as recited in claim 10, wherein said hold settings are imposed on all zones of said network.
  • 17. The method as recited in claim 10, wherein said user interface is a first user interface physically associated with said first zone, and a second user interface is physically associated with said second zone.
  • 18. An HVAC data processing and communication network subnet controller, comprising: a physical layer interface configured to couple to a data bus of an HVAC data processing and communications network; anda local controller configured to cooperate with said physical layer interface to operate a first zone of said network, and upon detecting a failure of another controller configured to operate a second zone of said network, operating said second zone of said network, and to override a first program schedule associated with said first zone and a second program schedule associate with said second zone according to hold settings received via said physical layer interface from a user interface, wherein said first zone includes a plurality of comfort sensors, wherein said subnet controller is configured to control an operation of a demand unit associated with said first zone based on input received from two or more of said plurality of comfort sensors.
  • 19. The subnet controller as recited in claim 18, wherein said local controller is located in a same enclosure as said user interface.
  • 20. The subnet controller as recited in claim 18, wherein said first zone includes said demand unit and said local controller is further configured to control an operation of said demand unit via said physical layer interface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/167,135, filed by Grohman, et al., on Apr. 6, 2009, entitled “Comprehensive HVAC Control System”, U.S. Provisional Application Ser. No. 61/852,676, filed by Grohman, et al., on Apr. 7, 2009, and is also a continuation-in-part application of application Ser. No. 12/258,659, filed by Grohman on Oct. 27, 2008 now abandoned, entitled “Apparatus and Method for Controlling an Environmental Conditioning Unit,” all of which are commonly assigned with this application and incorporated herein by reference. This application is also related to the following U.S. patent applications, which are filed on even date herewith, commonly assigned with this application and incorporated herein by reference: Serial No.InventorsTitle12/603,464Grohman,“Alarm and Diagnostics System and Methodet al.for a Distributed-Architecture Heating,Ventilation and Air ConditioningNetwork”12/603,534Wallaert,“Flush Wall Mount Control Unit and In-et al.Set Mounting Plate for a Heating,Ventilation and Air Conditioning System”12/603,449Thorson,“System and Method of Use for a Useret al.Interface Dashboard of a Heating,Ventilation and Air ConditioningNetwork”12/603,382Grohman“Device Abstraction System and Methodfor a Distributed-Architecture Heating,Ventilation and Air ConditioningNetwork”12/603,526Grohman,“Communication Protocol System andet al.Method for a Distributed-ArchitectureHeating, Ventilation and AirConditioning Network”12/603,527Hadzidedic“Memory Recovery Scheme and DataStructure in a Heating, Ventilation andAir Conditioning Network”12/603,490Grohman“System Recovery in a Heating,Ventilation and Air ConditioningNetwork”12/603,473Grohman,“System and Method for Zoning aet al.Distributed-Architecture Heating,Ventilation and Air ConditioningNetwork”12/603,525Grohman,“Method of Controlling Equipment in aet al.Heating, Ventilation and AirConditioning Network”12/603,512Grohman,“Programming and Configuration in aet al.Heating, Ventilation and AirConditioning Network”12/603,431Mirza,“General Control Techniques in aet al.Heating, Ventilation and AirConditioning Network”

US Referenced Citations (1329)
Number Name Date Kind
4048491 Wessman Sep 1977 A
4187543 Healey et al. Feb 1980 A
4231352 Bowden et al. Nov 1980 A
4262736 Gilkeson et al. Apr 1981 A
4296464 Woods et al. Oct 1981 A
4381549 Stamp et al. Apr 1983 A
4464543 Kline et al. Aug 1984 A
4482785 Finnegan et al. Nov 1984 A
4497031 Froehling et al. Jan 1985 A
4501125 Han Feb 1985 A
4606042 Kahn et al. Aug 1986 A
4616325 Heckenbach et al. Oct 1986 A
4694394 Costantini Sep 1987 A
4698628 Herkert et al. Oct 1987 A
4703325 Chamberlin et al. Oct 1987 A
4706247 Yoshioka Nov 1987 A
4723239 Schwartz Feb 1988 A
4829447 Parker et al. May 1989 A
4841450 Fredriksson Jun 1989 A
4843084 Parker et al. Jun 1989 A
4873649 Grald et al. Oct 1989 A
4884214 Parker et al. Nov 1989 A
4887262 van Veldhuizen Dec 1989 A
4888728 Shirakawa et al. Dec 1989 A
4889280 Grald et al. Dec 1989 A
4931948 Parker et al. Jun 1990 A
4941143 Twitty et al. Jul 1990 A
4942613 Lynch Jul 1990 A
4947484 Twitty et al. Aug 1990 A
4947928 Parker et al. Aug 1990 A
4953083 Takata et al. Aug 1990 A
4955018 Twitty et al. Sep 1990 A
4967567 Proctor et al. Nov 1990 A
4978896 Shah Dec 1990 A
4991770 Bird et al. Feb 1991 A
4996513 Mak et al. Feb 1991 A
5006827 Brueton et al. Apr 1991 A
5018138 Twitty et al. May 1991 A
5039980 Aggers et al. Aug 1991 A
5042997 Rhodes Aug 1991 A
5058388 Shaw et al. Oct 1991 A
5061916 French et al. Oct 1991 A
5065813 Berkeley et al. Nov 1991 A
5086385 Launey et al. Feb 1992 A
5103896 Saga Apr 1992 A
5105366 Beckey Apr 1992 A
5115967 Wedekind May 1992 A
5128855 Hilber et al. Jul 1992 A
5165465 Kenet Nov 1992 A
5170935 Federspiel et al. Dec 1992 A
5180102 Gilbert et al. Jan 1993 A
5181653 Foster et al. Jan 1993 A
5184122 Decious et al. Feb 1993 A
5191643 Alsenz Mar 1993 A
5195327 Kim Mar 1993 A
5197666 Wedekind Mar 1993 A
5197668 Ratz et al. Mar 1993 A
5203497 Ratz et al. Apr 1993 A
5220260 Schuler Jun 1993 A
5230482 Ratz et al. Jul 1993 A
5259553 Shyu Nov 1993 A
5274571 Hesse et al. Dec 1993 A
5276630 Baldwin et al. Jan 1994 A
5277036 Dieckmann et al. Jan 1994 A
5278957 Chan Jan 1994 A
5279458 DeWolf et al. Jan 1994 A
5297143 Fridrich et al. Mar 1994 A
5314004 Strand et al. May 1994 A
5323385 Jurewicz et al. Jun 1994 A
5323619 Kim Jun 1994 A
5327426 Dolin, Jr. et al. Jul 1994 A
5329991 Mehta et al. Jul 1994 A
5337952 Thompson Aug 1994 A
5341988 Rein et al. Aug 1994 A
5355323 Bae Oct 1994 A
5361982 Liebl et al. Nov 1994 A
5374200 Giroux Dec 1994 A
5383116 Lennartsson Jan 1995 A
5384697 Pascucci Jan 1995 A
5414337 Schuler May 1995 A
5417368 Jeffery et al. May 1995 A
5420572 Dolin, Jr. et al. May 1995 A
5434965 Matheny et al. Jul 1995 A
5440895 Bahel et al. Aug 1995 A
5444626 Schenk Aug 1995 A
5444851 Woest Aug 1995 A
5448180 Kienzler et al. Sep 1995 A
5448561 Kaiser et al. Sep 1995 A
5449047 Schivley, Jr. Sep 1995 A
5449112 Heitman et al. Sep 1995 A
5450570 Richek et al. Sep 1995 A
5452201 Pieronek et al. Sep 1995 A
5460327 Hill et al. Oct 1995 A
5463735 Pascucci et al. Oct 1995 A
5469150 Sitte Nov 1995 A
5475364 Kenet Dec 1995 A
5481481 Frey et al. Jan 1996 A
5481661 Kobayashi Jan 1996 A
5488834 Schwarz Feb 1996 A
5491649 Friday, Jr. et al. Feb 1996 A
5502818 Lamberg Mar 1996 A
5511188 Pascucci et al. Apr 1996 A
5513324 Dolin, Jr. et al. Apr 1996 A
5515267 Alsenz May 1996 A
5520328 Bujak, Jr. May 1996 A
5522044 Pascucci et al. May 1996 A
5530643 Hodorowski Jun 1996 A
5537339 Naganuma et al. Jul 1996 A
5539778 Kienzler et al. Jul 1996 A
5544036 Brown et al. Aug 1996 A
5544809 Keating et al. Aug 1996 A
5550980 Pascucci et al. Aug 1996 A
5551053 Nadolski et al. Aug 1996 A
5555269 Friday, Jr. et al. Sep 1996 A
5555509 Dolan et al. Sep 1996 A
5559407 Dudley et al. Sep 1996 A
5559412 Schuler Sep 1996 A
5566879 Longtin Oct 1996 A
5572658 Mohr et al. Nov 1996 A
5574848 Thomson Nov 1996 A
5579221 Mun Nov 1996 A
5581478 Cruse et al. Dec 1996 A
5592058 Archer et al. Jan 1997 A
5592059 Archer Jan 1997 A
5592628 Ueno et al. Jan 1997 A
5596437 Heins Jan 1997 A
5598566 Pascucci et al. Jan 1997 A
5600782 Thomson Feb 1997 A
5613157 Davidson et al. Mar 1997 A
5613369 Sato et al. Mar 1997 A
5617282 Rall et al. Apr 1997 A
5621662 Humphries et al. Apr 1997 A
5628201 Bahel et al. May 1997 A
5630325 Bahel et al. May 1997 A
5631825 van Weele et al. May 1997 A
5634590 Gorski et al. Jun 1997 A
5675756 Benton et al. Oct 1997 A
5675830 Satula Oct 1997 A
5684463 Diercks et al. Nov 1997 A
5684717 Beilfuss et al. Nov 1997 A
5699243 Eckel et al. Dec 1997 A
5706190 Russ et al. Jan 1998 A
5711480 Zepke et al. Jan 1998 A
5720604 Kelly et al. Feb 1998 A
5722822 Wilson et al. Mar 1998 A
5726900 Walter et al. Mar 1998 A
5729442 Frantz Mar 1998 A
5737529 Dolin, Jr. et al. Apr 1998 A
5748923 Eitrich May 1998 A
5751572 Maciulewicz May 1998 A
5751948 Dolan et al. May 1998 A
5754779 Dolin, Jr. et al. May 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5764146 Baldwin et al. Jun 1998 A
5772326 Batko et al. Jun 1998 A
5772732 James et al. Jun 1998 A
5774322 Walter et al. Jun 1998 A
5774492 Orlowsik, Jr. et al. Jun 1998 A
5774493 Ross Jun 1998 A
5777837 Eckel et al. Jul 1998 A
5782296 Mehta Jul 1998 A
5784647 Sugimoto Jul 1998 A
5786993 Frutiger et al. Jul 1998 A
5787027 Dolan et al. Jul 1998 A
5791332 Thompson et al. Aug 1998 A
5793646 Hibberd et al. Aug 1998 A
5801942 Nixon et al. Sep 1998 A
5802485 Koelle et al. Sep 1998 A
5803357 Lakin Sep 1998 A
5809063 Ashe et al. Sep 1998 A
5809556 Fujisawa et al. Sep 1998 A
5810245 Heitman et al. Sep 1998 A
5816492 Charles et al. Oct 1998 A
5818347 Dolan et al. Oct 1998 A
5819845 Ryu et al. Oct 1998 A
5822512 Goodrum et al. Oct 1998 A
5826038 Nakazumi Oct 1998 A
5829674 Vanostrand et al. Nov 1998 A
5841654 Verissimo et al. Nov 1998 A
5848887 Zabielski et al. Dec 1998 A
5854744 Zeng et al. Dec 1998 A
5856972 Riley et al. Jan 1999 A
5860411 Thompson et al. Jan 1999 A
5860473 Seiden Jan 1999 A
5862052 Nixon et al. Jan 1999 A
5862411 Kay et al. Jan 1999 A
5864581 Alger-Meunier et al. Jan 1999 A
5873519 Beilfuss Feb 1999 A
5878236 Kleineberg et al. Mar 1999 A
5883627 Pleyer Mar 1999 A
5884072 Rasmussen Mar 1999 A
5887651 Meyer Mar 1999 A
5892690 Boatman et al. Apr 1999 A
5896304 Tiemann et al. Apr 1999 A
5900674 Wojnarowski et al. May 1999 A
5903454 Hoffberg et al. May 1999 A
5912877 Shirai et al. Jun 1999 A
5914453 James et al. Jun 1999 A
5915101 Kleineberg et al. Jun 1999 A
5924486 Ehlers et al. Jul 1999 A
5927398 Maciulewicz Jul 1999 A
5930249 Stademann et al. Jul 1999 A
5933655 Vrabec et al. Aug 1999 A
5934554 Charles et al. Aug 1999 A
5937942 Bias et al. Aug 1999 A
5946209 Eckel et al. Aug 1999 A
5962989 Baker Oct 1999 A
5971597 Baldwin et al. Oct 1999 A
5973594 Baldwin et al. Oct 1999 A
5974554 Oh Oct 1999 A
5976010 Reese et al. Nov 1999 A
5983353 McHann, Jr. Nov 1999 A
5983646 Grothe et al. Nov 1999 A
5993195 Thompson Nov 1999 A
6006142 Seem et al. Dec 1999 A
6011821 Sauer et al. Jan 2000 A
6021252 Faris et al. Feb 2000 A
6028864 Marttinen et al. Feb 2000 A
6032178 Bacigalupo et al. Feb 2000 A
6035024 Stumer Mar 2000 A
6046410 Wojnarowski et al. Apr 2000 A
6049817 Schoen et al. Apr 2000 A
6052525 Carlson et al. Apr 2000 A
6053416 Specht et al. Apr 2000 A
6061600 Ying May 2000 A
6061603 Papadopoulos et al. May 2000 A
6078660 Burgess Jun 2000 A
6082894 Batko et al. Jul 2000 A
6092280 Wojnarowski Jul 2000 A
6095674 Verissimo et al. Aug 2000 A
6098116 Nixon et al. Aug 2000 A
6101824 Meyer et al. Aug 2000 A
6110260 Kubokawa Aug 2000 A
6115713 Pascucci et al. Sep 2000 A
6138227 Thewes et al. Oct 2000 A
6141595 Gloudeman et al. Oct 2000 A
6145501 Manohar et al. Nov 2000 A
6145751 Ahmed Nov 2000 A
6147601 Sandelman et al. Nov 2000 A
6151298 Bernhardsson et al. Nov 2000 A
6151529 Batko Nov 2000 A
6151625 Swales et al. Nov 2000 A
6151650 Birzer Nov 2000 A
6155341 Thompson et al. Dec 2000 A
6160477 Sandelman et al. Dec 2000 A
6160484 Spahl et al. Dec 2000 A
6160795 Hosemann Dec 2000 A
6167338 De Wille et al. Dec 2000 A
6169937 Peterson Jan 2001 B1
6169964 Aisa et al. Jan 2001 B1
6170044 McLaughlin et al. Jan 2001 B1
6177945 Pleyer Jan 2001 B1
6179213 Gibino et al. Jan 2001 B1
6182130 Dolin, Jr. et al. Jan 2001 B1
6188642 Schoniger et al. Feb 2001 B1
6190442 Redner Feb 2001 B1
6208905 Giddings et al. Mar 2001 B1
6208924 Bauer Mar 2001 B1
6211782 Sandelman et al. Apr 2001 B1
6216066 Goebel et al. Apr 2001 B1
6227191 Garloch May 2001 B1
6232604 McDaniel et al. May 2001 B1
6237113 Daiber May 2001 B1
6240326 Gloudeman et al. May 2001 B1
6241156 Kline et al. Jun 2001 B1
6252890 Alger-Meunier et al. Jun 2001 B1
6254009 Proffitt et al. Jul 2001 B1
6266205 Schreck et al. Jul 2001 B1
6269127 Richards Jul 2001 B1
6271845 Richardson Aug 2001 B1
6282454 Papadopoulos et al. Aug 2001 B1
6285912 Ellison et al. Sep 2001 B1
6292518 Grabb et al. Sep 2001 B1
6298376 Rosner et al. Oct 2001 B1
6298454 Schleiss et al. Oct 2001 B1
6298551 Wojnarowski et al. Oct 2001 B1
6304557 Nakazumi Oct 2001 B1
6307331 Bonasia et al. Oct 2001 B1
6324008 Baldwin et al. Nov 2001 B1
6324854 Jayanth Dec 2001 B1
6336065 Gibson et al. Jan 2002 B1
6343236 Gibson et al. Jan 2002 B1
6349306 Malik et al. Feb 2002 B1
6349883 Simmons et al. Feb 2002 B1
6353775 Nichols Mar 2002 B1
6359220 Schiedegger et al. Mar 2002 B2
6363422 Hunter et al. Mar 2002 B1
6370037 Schoenfish Apr 2002 B1
6374373 Heim et al. Apr 2002 B1
6377283 Thomas Apr 2002 B1
6385510 Hoog et al. May 2002 B1
6390806 Dempsey et al. May 2002 B1
6393023 Shimizu et al. May 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6405104 Dougherty Jun 2002 B1
6408228 Seem et al. Jun 2002 B1
6411701 Stademann Jun 2002 B1
6411857 Flood Jun 2002 B1
6412435 Timmons, Jr. Jul 2002 B1
6415395 Varma et al. Jul 2002 B1
6418507 Fackler Jul 2002 B1
6423118 Becerra et al. Jul 2002 B1
6424872 Glanzer et al. Jul 2002 B1
6424874 Cofer Jul 2002 B1
6427454 West Aug 2002 B1
6429845 Unseld et al. Aug 2002 B1
6430953 Roh Aug 2002 B2
6434715 Andersen Aug 2002 B1
6435418 Toth et al. Aug 2002 B1
6437691 Sandelman et al. Aug 2002 B1
6437805 Sojoodi et al. Aug 2002 B1
6441723 Mansfield et al. Aug 2002 B1
6442952 Roh et al. Sep 2002 B2
6448896 Bankus et al. Sep 2002 B1
6449315 Richards Sep 2002 B2
6450409 Rowlette et al. Sep 2002 B1
6453374 Kovalan et al. Sep 2002 B1
6454177 Sasao et al. Sep 2002 B1
6462654 Sandelman et al. Oct 2002 B1
6478084 Kumar et al. Nov 2002 B1
6493661 White et al. Dec 2002 B1
6497570 Sears et al. Dec 2002 B1
6498844 Stademann Dec 2002 B1
6501995 Kinney et al. Dec 2002 B1
6504338 Eichorn Jan 2003 B1
6505087 Lucas et al. Jan 2003 B1
6508407 Lefkowitz et al. Jan 2003 B1
6526122 Matsushita et al. Feb 2003 B2
6535123 Sandelman et al. Mar 2003 B2
6535138 Dolan et al. Mar 2003 B1
6539489 Reinert Mar 2003 B1
6540148 Salsbury et al. Apr 2003 B1
6542462 Sohraby et al. Apr 2003 B1
6543007 Bliley et al. Apr 2003 B1
6545660 Shen et al. Apr 2003 B1
6546008 Wehrend Apr 2003 B1
6552647 Thiessen et al. Apr 2003 B1
6554198 Hull et al. Apr 2003 B1
6560976 Jayanth May 2003 B2
6564348 Barenys et al. May 2003 B1
6567476 Kohl et al. May 2003 B2
6572363 Virgil, Jr. et al. Jun 2003 B1
6574215 Hummel Jun 2003 B2
6574234 Myer et al. Jun 2003 B1
6574581 Bohrer et al. Jun 2003 B1
6575233 Krumnow Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6587039 Woestemeyer et al. Jul 2003 B1
6587739 Abrams et al. Jul 2003 B1
6587884 Papadopoulos et al. Jul 2003 B1
6594272 Ketcham et al. Jul 2003 B1
6595430 Shah Jul 2003 B1
6600923 Dzuban Jul 2003 B1
6608560 Abrams Aug 2003 B2
6609127 Lee et al. Aug 2003 B1
6615088 Myer et al. Sep 2003 B1
6615594 Jayanth et al. Sep 2003 B2
6618394 Hilleary Sep 2003 B1
6619555 Rosen Sep 2003 B2
6621507 Shah Sep 2003 B1
6622926 Sartain et al. Sep 2003 B1
6628993 Bauer Sep 2003 B1
6633781 Lee et al. Oct 2003 B1
6636771 Varma et al. Oct 2003 B1
6639939 Naden et al. Oct 2003 B1
6640145 Hoffberg et al. Oct 2003 B2
6640890 Dage et al. Nov 2003 B1
6643689 Rode et al. Nov 2003 B2
6644557 Jacobs Nov 2003 B1
6647317 Takai et al. Nov 2003 B2
6650949 Fera et al. Nov 2003 B1
6651034 Hedlund et al. Nov 2003 B1
6658373 Rossi et al. Dec 2003 B2
RE38406 Faris et al. Jan 2004 E
6681215 Jammu Jan 2004 B2
6688387 Wellington et al. Feb 2004 B1
6704688 Aslam et al. Mar 2004 B2
6708239 Ellerbrock et al. Mar 2004 B1
6715120 Hladik et al. Mar 2004 B1
6715302 Ferragut, II Apr 2004 B2
6715690 Hull et al. Apr 2004 B2
6717513 Shprecher et al. Apr 2004 B1
6717919 Ketcham et al. Apr 2004 B1
6718384 Linzy Apr 2004 B2
6722143 Moon et al. Apr 2004 B2
6725180 Mayer et al. Apr 2004 B2
6725398 Varma et al. Apr 2004 B1
6728369 Burgess Apr 2004 B2
6732191 Baker et al. May 2004 B1
6735196 Manzardo May 2004 B1
6735282 Matsushita et al. May 2004 B2
6735965 Moon et al. May 2004 B2
6738676 Hirayama May 2004 B2
6741915 Poth May 2004 B2
6744771 Barber et al. Jun 2004 B1
6745106 Howard et al. Jun 2004 B2
6747888 Klein Jun 2004 B2
6758050 Jayanth et al. Jul 2004 B2
6758051 Jayanth et al. Jul 2004 B2
6763040 Hite et al. Jul 2004 B1
6763272 Knepper Jul 2004 B2
6765993 Cueman Jul 2004 B2
6768732 Neuhaus Jul 2004 B1
6774786 Havekost et al. Aug 2004 B1
6779176 Chambers, II et al. Aug 2004 B1
6783079 Carey et al. Aug 2004 B2
6789739 Rosen Sep 2004 B2
6791530 Vernier et al. Sep 2004 B2
6795935 Unkle et al. Sep 2004 B1
6798341 Eckel et al. Sep 2004 B1
6801524 Eteminan Oct 2004 B2
6804564 Crispin et al. Oct 2004 B2
6810333 Adedeji et al. Oct 2004 B2
6814299 Carey Nov 2004 B1
6814660 Cavett Nov 2004 B1
6816071 Conti Nov 2004 B2
6817757 Wallace Nov 2004 B1
6819802 Higgs et al. Nov 2004 B2
6822202 Atlas Nov 2004 B2
6823680 Jayanth Nov 2004 B2
6824069 Rosen Nov 2004 B2
6826454 Sulfstede Nov 2004 B2
6826590 Glanzer et al. Nov 2004 B1
6832118 Heberlein et al. Dec 2004 B1
6833787 Levi Dec 2004 B1
6833844 Shiota et al. Dec 2004 B1
6840052 Smith et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6842808 Weigl et al. Jan 2005 B2
6845918 Rotondo Jan 2005 B2
6850992 Heinrich et al. Feb 2005 B2
6851948 Dempsey et al. Feb 2005 B2
6853291 Aisa Feb 2005 B1
6854444 Plagge et al. Feb 2005 B2
6865449 Dudley Mar 2005 B2
6865596 Barber et al. Mar 2005 B1
6865898 Yamanashi et al. Mar 2005 B2
6866375 Leighton et al. Mar 2005 B2
6868292 Ficco et al. Mar 2005 B2
6868900 Dage et al. Mar 2005 B2
6874691 Hildebrand et al. Apr 2005 B1
6874693 Readio et al. Apr 2005 B2
6876891 Schuler et al. Apr 2005 B1
6879881 Attridge, Jr. Apr 2005 B1
6888441 Carey May 2005 B2
6892121 Schmidt May 2005 B2
6894703 Vernier et al. May 2005 B2
6900808 Lassiter et al. May 2005 B2
6901316 Jensen et al. May 2005 B1
6901439 Bonasia et al. May 2005 B1
6907329 Junger et al. Jun 2005 B2
6909948 Mollmann et al. Jun 2005 B2
6914893 Petite Jul 2005 B2
6918064 Mueller et al. Jul 2005 B2
6920318 Brooking et al. Jul 2005 B2
6925360 Yoon et al. Aug 2005 B2
6931645 Murching et al. Aug 2005 B2
6938106 Ellerbrock et al. Aug 2005 B2
6941193 Frecska et al. Sep 2005 B2
6944785 Gadir et al. Sep 2005 B2
6954680 Kreidler et al. Oct 2005 B2
6955060 Homan et al. Oct 2005 B2
6955302 Erdman, Jr. Oct 2005 B2
6956424 Hohnel Oct 2005 B2
6957696 Krumnow Oct 2005 B1
6963288 Sokol et al. Nov 2005 B1
6963922 Papadopoulos et al. Nov 2005 B2
6965802 Sexton Nov 2005 B2
6967565 Lingemann Nov 2005 B2
6968295 Carr Nov 2005 B1
6973366 Komai Dec 2005 B2
6975219 Eryurek et al. Dec 2005 B2
6975913 Kreidler et al. Dec 2005 B2
6975958 Bohrer et al. Dec 2005 B2
6980796 Cuellar et al. Dec 2005 B1
6981266 An et al. Dec 2005 B1
6983271 Morrow et al. Jan 2006 B2
6983889 Alles Jan 2006 B2
6988011 Varma et al. Jan 2006 B2
6988671 DeLuca Jan 2006 B2
6990381 Nomura et al. Jan 2006 B2
6990540 Dalakuras et al. Jan 2006 B2
6993414 Shah Jan 2006 B2
RE38985 Boatman et al. Feb 2006 E
6994620 Mills Feb 2006 B2
6999473 Windecker Feb 2006 B2
6999824 Glanzer et al. Feb 2006 B2
7000849 Ashworth et al. Feb 2006 B2
7002462 Welch Feb 2006 B2
7003378 Poth Feb 2006 B2
7006460 Vollmer et al. Feb 2006 B1
7006881 Hoffberg et al. Feb 2006 B1
7013239 Hedlund et al. Mar 2006 B2
7017827 Shah et al. Mar 2006 B2
7020798 Meng et al. Mar 2006 B2
7022008 Crocker Apr 2006 B1
7024282 Coogan et al. Apr 2006 B2
7024283 Bicknell Apr 2006 B2
7025281 DeLuca Apr 2006 B2
7027808 Wesby Apr 2006 B2
7029391 Nagaya et al. Apr 2006 B2
7031880 Seem et al. Apr 2006 B1
7032018 Lee et al. Apr 2006 B2
7035719 Howard et al. Apr 2006 B2
7035898 Baker Apr 2006 B1
7036743 Shah May 2006 B2
7043339 Maeda et al. May 2006 B2
7044397 Bartlett et al. May 2006 B2
7047092 Wimsatt May 2006 B2
7051282 Marcjan May 2006 B2
7055759 Wacker et al. Jun 2006 B2
7058459 Weiberle et al. Jun 2006 B2
7058477 Rosen Jun 2006 B1
7058693 Baker, Jr. Jun 2006 B1
7058737 Ellerbrock et al. Jun 2006 B2
7062927 Kwon et al. Jun 2006 B2
7068612 Berkcan et al. Jun 2006 B2
7076962 He et al. Jul 2006 B2
7082339 Murray et al. Jul 2006 B2
7082352 Lim Jul 2006 B2
7083109 Pouchak Aug 2006 B2
7085626 Harrod et al. Aug 2006 B2
7085814 Gandhi et al. Aug 2006 B1
7089087 Dudley Aug 2006 B2
7089088 Terry et al. Aug 2006 B2
7089530 Dardinski et al. Aug 2006 B1
7092768 Labuda Aug 2006 B1
7092772 Murray et al. Aug 2006 B2
7092794 Hill et al. Aug 2006 B1
7096078 Burr et al. Aug 2006 B2
7096285 Ellerbrock et al. Aug 2006 B2
7096465 Dardinski et al. Aug 2006 B1
7099965 Ellerbrock et al. Aug 2006 B2
7100382 Butler et al. Sep 2006 B2
7103000 Rode et al. Sep 2006 B1
7103016 Duffy et al. Sep 2006 B1
7103420 Brown et al. Sep 2006 B2
7110835 Blevins et al. Sep 2006 B2
7114088 Horbelt Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7117050 Sasaki et al. Oct 2006 B2
7117051 Landry et al. Oct 2006 B2
7117395 Opaterny Oct 2006 B2
7120036 Kyono Oct 2006 B2
7123428 Yeo et al. Oct 2006 B2
7123774 Dhavala et al. Oct 2006 B2
7127305 Palmon Oct 2006 B1
7127327 O'Donnell et al. Oct 2006 B1
7130409 Beyda Oct 2006 B2
7130719 Ehlers et al. Oct 2006 B2
7133407 Jinzaki et al. Nov 2006 B2
7133748 Robinson Nov 2006 B2
7133749 Goldberg et al. Nov 2006 B2
7135982 Lee Nov 2006 B2
7139550 Cuellar et al. Nov 2006 B2
7142948 Metz Nov 2006 B2
7146230 Glanzer et al. Dec 2006 B2
7146231 Schleiss et al. Dec 2006 B2
7146253 Hoog et al. Dec 2006 B2
7150408 DeLuca Dec 2006 B2
7154866 Shurmantine et al. Dec 2006 B2
7155318 Sharma et al. Dec 2006 B2
7155499 Soemo et al. Dec 2006 B2
7156316 Kates Jan 2007 B2
7162512 Amit et al. Jan 2007 B1
7162883 Jayanth et al. Jan 2007 B2
7163156 Kates Jan 2007 B2
7163158 Rossi et al. Jan 2007 B2
7167762 Glanzer et al. Jan 2007 B2
7168627 Kates Jan 2007 B2
7171579 Weigl et al. Jan 2007 B2
7172132 Proffitt et al. Feb 2007 B2
7172160 Piel et al. Feb 2007 B2
7174239 Butler et al. Feb 2007 B2
7174728 Jayanth Feb 2007 B2
7175086 Gascoyne et al. Feb 2007 B2
7175098 DeLuca Feb 2007 B2
7177926 Kramer Feb 2007 B2
7181317 Amundson et al. Feb 2007 B2
7185262 Barthel et al. Feb 2007 B2
7186290 Sheehan et al. Mar 2007 B2
7187354 Min et al. Mar 2007 B2
7187986 Johnson et al. Mar 2007 B2
7188002 Chapman, Jr. et al. Mar 2007 B2
7188207 Mitter Mar 2007 B2
7188482 Sadegh et al. Mar 2007 B2
7188779 Alles Mar 2007 B2
7191028 Nomura et al. Mar 2007 B2
7194663 Fletcher et al. Mar 2007 B2
7195211 Kande et al. Mar 2007 B2
7197717 Anderson et al. Mar 2007 B2
7200450 Boyer et al. Apr 2007 B2
7203165 Kowalewski Apr 2007 B1
7203575 Maturana et al. Apr 2007 B2
7203776 Junger et al. Apr 2007 B2
7206646 Nixon et al. Apr 2007 B2
7206647 Kumar Apr 2007 B2
7209485 Guse Apr 2007 B2
7209748 Wong et al. Apr 2007 B2
7212825 Wong et al May 2007 B2
7213044 Tjong et a May 2007 B2
7216016 Van Ostrand et al. May 2007 B2
7216017 Kwon et al. May 2007 B2
7216497 Hull et al. May 2007 B2
7218589 Wisnudel et al. May 2007 B2
7218996 Beitelmal et al. May 2007 B1
7219141 Bonasia et al. May 2007 B2
7222111 Budike, Jr. May 2007 B1
7222152 Thompson et al. May 2007 B1
7222493 Jayanth et al. May 2007 B2
7222494 Peterson et al. May 2007 B2
7224366 Kessler et al. May 2007 B2
7225054 Amundson et al. May 2007 B2
7225356 Monitzer May 2007 B2
7228187 Ticky et al. Jun 2007 B2
7232058 Lee Jun 2007 B2
7233229 Stroupe et al. Jun 2007 B2
7239623 Burghardt et al. Jul 2007 B2
7242988 Hoffberg et al. Jul 2007 B1
7243004 Shah et al. Jul 2007 B2
7244294 Kates Jul 2007 B2
7246753 Hull et al. Jul 2007 B2
7248576 Hoffmann Jul 2007 B2
7251534 Walls et al. Jul 2007 B2
7257813 Mayer et al. Aug 2007 B1
7259666 Hermsmeyer et al. Aug 2007 B1
7260084 Saller Aug 2007 B2
7260451 Takai et al. Aug 2007 B2
7260609 Fuehrer et al. Aug 2007 B2
7260948 Jayanth et al. Aug 2007 B2
7261241 Eoga Aug 2007 B2
7261243 Butler et al. Aug 2007 B2
7261762 Kang et al. Aug 2007 B2
7266775 Patitucci Sep 2007 B2
7266960 Shah Sep 2007 B2
7269962 Bachmann Sep 2007 B2
7272154 Loebig Sep 2007 B2
7272452 Coogan et al. Sep 2007 B2
7272457 Glanzer et al. Sep 2007 B2
7274972 Amundson et al. Sep 2007 B2
7274973 Nichols et al. Sep 2007 B2
7277280 Peng Oct 2007 B2
7277970 Ellerbrock et al. Oct 2007 B2
7278103 Clark et al. Oct 2007 B1
7281697 Reggiani Oct 2007 B2
7287062 Im et al. Oct 2007 B2
7287708 Lucas et al. Oct 2007 B2
7287709 Proffitt et al. Oct 2007 B2
7289458 Gila et al. Oct 2007 B2
7292900 Kreidler et al. Nov 2007 B2
7293422 Parachini et al. Nov 2007 B2
7295099 Lee et al. Nov 2007 B2
7296426 Butler et al. Nov 2007 B2
7299279 Sadaghiany Nov 2007 B2
7299996 Garrett et al. Nov 2007 B2
7301699 Kanamori et al. Nov 2007 B2
7302642 Smith et al. Nov 2007 B2
7305495 Carter Dec 2007 B2
7306165 Shah Dec 2007 B2
7310559 Walko, Jr. Dec 2007 B2
7313465 O'Donnell Dec 2007 B1
7313716 Weigl et al. Dec 2007 B2
7313923 Jayanth et al. Jan 2008 B2
7315768 Dang et al. Jan 2008 B2
7317970 Pienta et al. Jan 2008 B2
7318089 Stachura et al. Jan 2008 B1
7320110 Shah Jan 2008 B2
7324874 Jung Jan 2008 B2
7327376 Shen et al. Feb 2008 B2
7327815 Jurisch Feb 2008 B1
7330512 Frank et al. Feb 2008 B2
7331191 He et al. Feb 2008 B2
7334161 Williams et al. Feb 2008 B2
7336650 Franz et al. Feb 2008 B2
7337191 Haeberle et al. Feb 2008 B2
7337369 Barthel et al. Feb 2008 B2
7337619 Hsieh et al. Mar 2008 B2
7343226 Ehlers et al. Mar 2008 B2
7346404 Eryurek et al. Mar 2008 B2
7346433 Budike, Jr. Mar 2008 B2
7346835 Lobinger et al. Mar 2008 B1
7349761 Cruse Mar 2008 B1
7354005 Carey et al. Apr 2008 B2
7356050 Reindl et al. Apr 2008 B2
7359335 Knop et al. Apr 2008 B2
7359345 Chang et al. Apr 2008 B2
7360002 Brueckner et al. Apr 2008 B2
7360370 Shah et al. Apr 2008 B2
7360717 Shah Apr 2008 B2
7364093 Garozzo Apr 2008 B2
7365812 Lee Apr 2008 B2
7366498 Ko et al. Apr 2008 B2
7366944 Oshins et al. Apr 2008 B2
7370074 Alexander et al. May 2008 B2
7377450 Van Ostrand et al. May 2008 B2
7379791 Tamarkin et al. May 2008 B2
7379997 Ehlers et al. May 2008 B2
7383158 Krocker et al. Jun 2008 B2
7389150 Inoue et al. Jun 2008 B2
7389204 Eryurek et al. Jun 2008 B2
RE40437 Rosen et al. Jul 2008 E
7392661 Alles Jul 2008 B2
7395122 Kreidler et al. Jul 2008 B2
7395137 Robinson Jul 2008 B2
7403128 Scuka et al. Jul 2008 B2
7412839 Jayanth Aug 2008 B2
7412842 Pham Aug 2008 B2
7418428 Ehlers et al. Aug 2008 B2
7424345 Norbeck Sep 2008 B2
D578026 Roher et al. Oct 2008 S
7433740 Hesse et al. Oct 2008 B2
7434744 Garozzo et al. Oct 2008 B2
7436292 Rourke et al. Oct 2008 B2
7436293 Rourke et al. Oct 2008 B2
7436296 Rourke et al. Oct 2008 B2
7436400 Cheng Oct 2008 B2
7437198 Iwaki Oct 2008 B2
7439862 Quan Oct 2008 B2
7441094 Stephens Oct 2008 B2
7446660 Posamentier Nov 2008 B2
7448435 Garozzo Nov 2008 B2
7451937 Flood et al. Nov 2008 B2
7454269 Dushane et al. Nov 2008 B1
7455240 Chapman, Jr. et al. Nov 2008 B2
7457853 Chari et al. Nov 2008 B1
7460933 Chapman, Jr. et al. Dec 2008 B2
7476988 Mulhouse et al. Jan 2009 B2
7516106 Ehlers et al. Apr 2009 B2
7526364 Rule et al. Apr 2009 B2
7567523 Black et al. Jul 2009 B2
7567844 Thomas et al. Jul 2009 B2
7571195 Billingsley et al. Aug 2009 B2
7571355 Shabalin Aug 2009 B2
7574871 Bloemer et al. Aug 2009 B2
7584897 Schultz et al. Sep 2009 B2
7587459 Wewalaarachchi Sep 2009 B2
7593124 Sheng et al. Sep 2009 B1
7593787 Feingold et al. Sep 2009 B2
7604046 Bergman et al. Oct 2009 B2
7624931 Chapman et al. Dec 2009 B2
7641126 Schultz et al. Jan 2010 B2
7650323 Hesse et al. Jan 2010 B2
D610475 Beers et al. Feb 2010 S
7693583 Wolff et al. Apr 2010 B2
7693591 Hoglund et al. Apr 2010 B2
7706923 Amundson et al. Apr 2010 B2
7730223 Bavor et al. Jun 2010 B1
7734572 Wiemeyer et al. Jun 2010 B2
7743124 Holdaway et al. Jun 2010 B2
7747757 Gargiulo et al. Jun 2010 B2
7752289 Kikkawa et al. Jul 2010 B2
7761563 Shike et al. Jul 2010 B2
7774102 Butler et al. Aug 2010 B2
7797349 Kosaka Sep 2010 B2
7809472 Silva et al. Oct 2010 B1
7827963 Li et al. Nov 2010 B2
7847790 Bewley et al. Dec 2010 B2
7861941 Schultz et al. Jan 2011 B2
7870080 Budike, Jr. Jan 2011 B2
7886166 Shnekendorf et al. Feb 2011 B2
7898147 Grabinger et al. Mar 2011 B2
7904209 Podgorny et al. Mar 2011 B2
7934504 Lowe et al. May 2011 B2
7949615 Ehlers et al. May 2011 B2
7963454 Sullivan et al. Jun 2011 B2
D642081 Kashimoto Jul 2011 S
7979164 Garozzo et al. Jul 2011 B2
8005576 Rodgers Aug 2011 B2
8024054 Mairs et al. Sep 2011 B2
8032254 Amundson et al. Oct 2011 B2
8042049 Killian et al. Oct 2011 B2
D648641 Wallaert Nov 2011 S
D648642 Wallaert Nov 2011 S
8050801 Richards et al. Nov 2011 B2
8082068 Rodgers Dec 2011 B2
8083154 Schultz et al. Dec 2011 B2
8087593 Leen Jan 2012 B2
8091796 Amundson et al. Jan 2012 B2
8099178 Mairs et al. Jan 2012 B2
8103390 Rodgers Jan 2012 B2
8112181 Remsburg Feb 2012 B2
8116917 Rodgers Feb 2012 B2
8122110 Wilbur et al. Feb 2012 B1
8127060 Doll et al. Feb 2012 B2
8167216 Schultz et al. May 2012 B2
8183995 Wang et al. May 2012 B2
8219249 Harrod et al. Jul 2012 B2
8224491 Koster et al. Jul 2012 B2
8239066 Jennings et al. Aug 2012 B2
8239073 Fausak et al. Aug 2012 B2
8244383 Bergman et al. Aug 2012 B2
8255086 Grohman Aug 2012 B2
8255090 Frader-Thompson et al. Aug 2012 B2
8352081 Grohman Jan 2013 B2
8437877 Grohman May 2013 B2
8452906 Grohman May 2013 B2
8463442 Curry et al. Jun 2013 B2
8463443 Grohman et al. Jun 2013 B2
8548630 Grohman Oct 2013 B2
8564400 Grohman Oct 2013 B2
20010025349 Sharood et al. Sep 2001 A1
20010034586 Ewert et al. Oct 2001 A1
20010048376 Maeda et al. Dec 2001 A1
20010055311 Trachewsky et al. Dec 2001 A1
20020002425 Dossey et al. Jan 2002 A1
20020013897 McTernan et al. Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020022894 Eryurek et al. Feb 2002 A1
20020026476 Miyazaki et al. Feb 2002 A1
20020033252 Sasao et al. Mar 2002 A1
20020048194 Klein Apr 2002 A1
20020053047 Gold May 2002 A1
20020072814 Schuler et al. Jun 2002 A1
20020091784 Baker et al. Jul 2002 A1
20020104323 Rash et al. Aug 2002 A1
20020116550 Hansen Aug 2002 A1
20020123896 Diez et al. Sep 2002 A1
20020124211 Gray et al. Sep 2002 A1
20020143523 Balaji et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020157054 Shin et al. Oct 2002 A1
20020163427 Eryurek et al. Nov 2002 A1
20020178288 McLeod Nov 2002 A1
20020190242 Iillie et al. Dec 2002 A1
20020191026 Rodden et al. Dec 2002 A1
20020191603 Shin et al. Dec 2002 A1
20020198990 Bradfield et al. Dec 2002 A1
20030058863 Oost Mar 2003 A1
20030061340 Sun et al. Mar 2003 A1
20030078677 Hull et al. Apr 2003 A1
20030088338 Phillips et al. May 2003 A1
20030097482 DeHart et al. May 2003 A1
20030108064 Bilke et al. Jun 2003 A1
20030109963 Oppedisano et al. Jun 2003 A1
20030115177 Takanabe et al. Jun 2003 A1
20030116637 Ellingham Jun 2003 A1
20030154355 Fernandez Aug 2003 A1
20030179721 Shurmantine et al. Sep 2003 A1
20030191857 Terrell et al. Oct 2003 A1
20030206100 Richman et al. Nov 2003 A1
20030229784 Cuellar et al. Dec 2003 A1
20040001478 Wong Jan 2004 A1
20040003051 Krzyzanowski et al. Jan 2004 A1
20040003415 Ng Jan 2004 A1
20040024483 Holcombe Feb 2004 A1
20040025089 Haswarey et al. Feb 2004 A1
20040039478 Kiesel et al. Feb 2004 A1
20040059815 Buckingham et al. Mar 2004 A1
20040066788 Lin et al. Apr 2004 A1
20040088069 Singh May 2004 A1
20040095237 Chen et al. May 2004 A1
20040104942 Weigel Jun 2004 A1
20040107717 Yoon et al. Jun 2004 A1
20040111186 Rossi et al. Jun 2004 A1
20040111254 Gogel et al. Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040133314 Ehlers et al. Jul 2004 A1
20040133704 Krzyzanowski et al. Jul 2004 A1
20040138981 Ehlers et al. Jul 2004 A1
20040139038 Ehlers et al. Jul 2004 A1
20040143360 Kiesel et al. Jul 2004 A1
20040146008 Conradt et al. Jul 2004 A1
20040148482 Grundy et al. Jul 2004 A1
20040156360 Sexton et al. Aug 2004 A1
20040159112 Jayanth et al. Aug 2004 A1
20040189590 Mehaffey et al. Sep 2004 A1
20040204775 Keyes et al. Oct 2004 A1
20040205781 Hill et al. Oct 2004 A1
20040206096 Jayanth Oct 2004 A1
20040210348 Imhof et al. Oct 2004 A1
20040218591 Ogawa et al. Nov 2004 A1
20040222307 DeLuca Nov 2004 A1
20040236471 Poth Nov 2004 A1
20040245352 Smith Dec 2004 A1
20040260427 Wimsatt Dec 2004 A1
20040260812 Rhodes et al. Dec 2004 A1
20040260927 Grobman Dec 2004 A1
20040266491 Howard et al. Dec 2004 A1
20040267385 Lingemann Dec 2004 A1
20040267395 Discenzo et al. Dec 2004 A1
20040267790 Pak et al. Dec 2004 A1
20050005249 Hill et al. Jan 2005 A1
20050007249 Eryurek et al. Jan 2005 A1
20050010759 Wakiyama Jan 2005 A1
20050033707 Ehlers et al. Feb 2005 A1
20050034023 Maturana et al. Feb 2005 A1
20050040247 Pouchak Feb 2005 A1
20050040250 Wruck Feb 2005 A1
20050041033 Hilts et al. Feb 2005 A1
20050041633 Roeser et al. Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050051168 DeVries et al. Mar 2005 A1
20050054381 Lee et al. Mar 2005 A1
20050055427 Frutiger et al. Mar 2005 A1
20050068978 Sexton et al. Mar 2005 A1
20050073789 Tanis Apr 2005 A1
20050076150 Lee et al. Apr 2005 A1
20050080879 Kim et al. Apr 2005 A1
20050081156 Clark et al. Apr 2005 A1
20050081157 Clark et al. Apr 2005 A1
20050090915 Geiwitz Apr 2005 A1
20050096872 Blevins et al. May 2005 A1
20050097478 Killian et al. May 2005 A1
20050103874 Erdman May 2005 A1
20050109048 Lee May 2005 A1
20050115254 Knight et al. Jun 2005 A1
20050116023 Amundson et al. Jun 2005 A1
20050118996 Lee et al. Jun 2005 A1
20050119765 Bergman Jun 2005 A1
20050119766 Amundson et al. Jun 2005 A1
20050119771 Amundson et al. Jun 2005 A1
20050119793 Amundson et al. Jun 2005 A1
20050119794 Amundson et al. Jun 2005 A1
20050120012 Poth et al. Jun 2005 A1
20050125495 Tjong et al. Jun 2005 A1
20050143138 Lee et al. Jun 2005 A1
20050145705 Shah et al. Jul 2005 A1
20050150967 Chapman, Jr. et al. Jul 2005 A1
20050154494 Ahmed Jul 2005 A1
20050159848 Shah et al. Jul 2005 A1
20050159924 Shah et al. Jul 2005 A1
20050161517 Helt et al. Jul 2005 A1
20050166610 Jayanth Aug 2005 A1
20050176410 Brooking et al. Aug 2005 A1
20050182498 Landou et al. Aug 2005 A1
20050192727 Shostak et al. Sep 2005 A1
20050193155 Fujita Sep 2005 A1
20050198040 Cohen et al. Sep 2005 A1
20050223339 Lee Oct 2005 A1
20050229610 Park et al. Oct 2005 A1
20050235661 Pham Oct 2005 A1
20050235662 Pham Oct 2005 A1
20050235663 Pham Oct 2005 A1
20050235666 Springer et al. Oct 2005 A1
20050240312 Terry et al. Oct 2005 A1
20050252673 Kregle et al. Nov 2005 A1
20050256591 Rule et al. Nov 2005 A1
20050256935 Overstreet et al. Nov 2005 A1
20050258257 Thurman, Jr. et al. Nov 2005 A1
20050258259 Stanimirovic Nov 2005 A1
20050270151 Winick Dec 2005 A1
20050278071 Durham, III Dec 2005 A1
20050280364 Omura et al. Dec 2005 A1
20050281368 Droba et al. Dec 2005 A1
20050288823 Hesse et al. Dec 2005 A1
20060006244 Morrow et al. Jan 2006 A1
20060009861 Bonasia Jan 2006 A1
20060009863 Lingemann Jan 2006 A1
20060021358 Nallapa Feb 2006 A1
20060021359 Hur et al. Feb 2006 A1
20060027671 Shah Feb 2006 A1
20060030954 Bergman et al. Feb 2006 A1
20060036350 Bohrer et al. Feb 2006 A1
20060036952 Yang Feb 2006 A1
20060041898 Potyrailo et al. Feb 2006 A1
20060045107 Kucenas et al. Mar 2006 A1
20060048064 Vronay Mar 2006 A1
20060058924 Shah Mar 2006 A1
20060063523 McFarland et al. Mar 2006 A1
20060090142 Glasgow et al. Apr 2006 A1
20060090483 Kim et al. May 2006 A1
20060091227 Attridge, Jr. May 2006 A1
20060092977 Bai et al. May 2006 A1
20060105697 Aronstam et al. May 2006 A1
20060106791 Morrow et al. May 2006 A1
20060108432 Mattheis May 2006 A1
20060111816 Spalink et al. May 2006 A1
20060130497 Kang et al. Jun 2006 A1
20060144055 Ahn Jul 2006 A1
20060144232 Kang et al. Jul 2006 A1
20060149414 Archacki, Jr. et al. Jul 2006 A1
20060150027 Paden Jul 2006 A1
20060153247 Stumer Jul 2006 A1
20060155398 Hoffberg et al. Jul 2006 A1
20060158051 Bartlett et al. Jul 2006 A1
20060159007 Frutiger et al. Jul 2006 A1
20060168522 Bala Jul 2006 A1
20060185818 Garozzo Aug 2006 A1
20060186214 Simon et al. Aug 2006 A1
20060190138 Stone et al. Aug 2006 A1
20060192021 Schultz et al. Aug 2006 A1
20060192022 Barton et al. Aug 2006 A1
20060196953 Simon et al. Sep 2006 A1
20060200253 Hoffberg et al. Sep 2006 A1
20060200258 Hoffberg et al. Sep 2006 A1
20060200259 Hoffberg et al. Sep 2006 A1
20060200260 Hoffberg et al. Sep 2006 A1
20060202978 Lee et al. Sep 2006 A1
20060206220 Amundson Sep 2006 A1
20060208099 Chapman et al. Sep 2006 A1
20060209208 Kim et al. Sep 2006 A1
20060212194 Breed Sep 2006 A1
20060219799 Schultz et al. Oct 2006 A1
20060229090 LaDue Oct 2006 A1
20060235548 Gaudette Oct 2006 A1
20060236351 Ellerbrock et al. Oct 2006 A1
20060239296 Jinzaki et al. Oct 2006 A1
20060248233 Park et al. Nov 2006 A1
20060250578 Pohl et al. Nov 2006 A1
20060250979 Gauweiler et al. Nov 2006 A1
20060267756 Kates Nov 2006 A1
20060276917 Li et al. Dec 2006 A1
20070005191 Sloup et al. Jan 2007 A1
20070008116 Bergman et al. Jan 2007 A1
20070012052 Butler et al. Jan 2007 A1
20070013534 DiMaggio Jan 2007 A1
20070014233 Oguro et al. Jan 2007 A1
20070016311 Bergman et al. Jan 2007 A1
20070016476 Hoffberg et al. Jan 2007 A1
20070019683 Kryzyanowski Jan 2007 A1
20070025368 Ha et al. Feb 2007 A1
20070032909 Tolbert, Jr. et al. Feb 2007 A1
20070033310 Kweon Feb 2007 A1
20070035255 Shuster et al. Feb 2007 A1
20070040040 Mueller Feb 2007 A1
20070043477 Ehlers et al. Feb 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070045429 Chapman, Jr. et al. Mar 2007 A1
20070045431 Chapman, Jr. et al. Mar 2007 A1
20070045442 Chapman, Jr. et al. Mar 2007 A1
20070051818 Atlas Mar 2007 A1
20070053513 Hoffberg Mar 2007 A1
20070055407 Goldberg et al. Mar 2007 A1
20070055757 Mairs et al. Mar 2007 A1
20070067062 Mairs et al. Mar 2007 A1
20070067496 Deiretsbacher et al. Mar 2007 A1
20070073973 Hazay Mar 2007 A1
20070080235 Fulton, Jr. Apr 2007 A1
20070083721 Grinspan Apr 2007 A1
20070084937 Ahmed Apr 2007 A1
20070088883 Wakabayashi Apr 2007 A1
20070089090 Riedl et al. Apr 2007 A1
20070090199 Hull et al. Apr 2007 A1
20070093226 Foltyn et al. Apr 2007 A1
20070097993 Bojahra et al. May 2007 A1
20070102149 Kates May 2007 A1
20070109114 Farley et al. May 2007 A1
20070109975 Reckamp et al. May 2007 A1
20070113247 Kwak May 2007 A1
20070114291 Pouchak May 2007 A1
20070119957 Kates May 2007 A1
20070119958 Kates May 2007 A1
20070129820 Glanzer et al. Jun 2007 A1
20070129825 Kargenian Jun 2007 A1
20070129826 Kreidler et al. Jun 2007 A1
20070129917 Blevins et al. Jun 2007 A1
20070130834 Kande et al. Jun 2007 A1
20070130969 Peterson et al. Jun 2007 A1
20070131784 Garozzo et al. Jun 2007 A1
20070135692 Hwang et al. Jun 2007 A1
20070135946 Sugiyama et al. Jun 2007 A1
20070136669 Kwon et al. Jun 2007 A1
20070136687 Pak Jun 2007 A1
20070138307 Khoo Jun 2007 A1
20070138308 Schultz et al. Jun 2007 A1
20070143704 Laird-McConnell Jun 2007 A1
20070143707 Yun et al. Jun 2007 A1
20070157016 Dayan et al. Jul 2007 A1
20070158442 Chapman, Jr. et al. Jul 2007 A1
20070168887 Lee Jul 2007 A1
20070177505 Charrua et al. Aug 2007 A1
20070191024 Kim et al. Aug 2007 A1
20070192731 Townsend et al. Aug 2007 A1
20070194138 Shah Aug 2007 A9
20070204637 Fujii et al. Sep 2007 A1
20070205297 Finkam et al. Sep 2007 A1
20070205916 Blom et al. Sep 2007 A1
20070208461 Chase Sep 2007 A1
20070208549 Blevins et al. Sep 2007 A1
20070211691 Barber Sep 2007 A1
20070213853 Glanzer et al. Sep 2007 A1
20070219645 Thomas et al. Sep 2007 A1
20070220301 Brundridge et al. Sep 2007 A1
20070220907 Ehlers Sep 2007 A1
20070221741 Wagner et al. Sep 2007 A1
20070223500 Lee et al. Sep 2007 A1
20070225868 Terlson et al. Sep 2007 A1
20070225869 Amundson et al. Sep 2007 A1
20070233323 Wiemeyer et al. Oct 2007 A1
20070236156 Lys et al. Oct 2007 A1
20070237032 Rhee et al. Oct 2007 A1
20070238413 Coutts Oct 2007 A1
20070239658 Cunningham et al. Oct 2007 A1
20070240226 Song et al. Oct 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070242058 Yamada Oct 2007 A1
20070245306 Dameshek et al. Oct 2007 A1
20070257120 Chapman, Jr. et al. Nov 2007 A1
20070257121 Chapman et al. Nov 2007 A1
20070260782 Shaikli Nov 2007 A1
20070260978 Oh et al. Nov 2007 A1
20070266329 Gaudette Nov 2007 A1
20070268667 Moorer et al. Nov 2007 A1
20070271521 Harriger et al. Nov 2007 A1
20070274093 Haim et al. Nov 2007 A1
20070277013 Rexha et al. Nov 2007 A1
20070278320 Lunacek et al. Dec 2007 A1
20070284452 Butler et al. Dec 2007 A1
20070288208 Grigsby et al. Dec 2007 A1
20070299857 Gwozdz et al. Dec 2007 A1
20070300064 Isaacs et al. Dec 2007 A1
20080003845 Hong et al. Jan 2008 A1
20080004727 Glanzer et al. Jan 2008 A1
20080005428 Maul et al. Jan 2008 A1
20080006709 Ashworth et al. Jan 2008 A1
20080012437 Kabata et al. Jan 2008 A1
20080013259 Barton et al. Jan 2008 A1
20080029610 Nichols Feb 2008 A1
20080031147 Fieremans et al. Feb 2008 A1
20080040351 Jin et al. Feb 2008 A1
20080048045 Butler et al. Feb 2008 A1
20080048046 Wagner et al. Feb 2008 A1
20080054082 Evans et al. Mar 2008 A1
20080055190 Lee Mar 2008 A1
20080056722 Hendrix et al. Mar 2008 A1
20080057872 McFarland et al. Mar 2008 A1
20080057931 Nass et al. Mar 2008 A1
20080058996 Sachdev et al. Mar 2008 A1
20080059682 Cooley et al. Mar 2008 A1
20080062892 Dodgen et al. Mar 2008 A1
20080063006 Nichols Mar 2008 A1
20080065926 Poth et al. Mar 2008 A1
20080072704 Clark et al. Mar 2008 A1
20080073440 Butler et al. Mar 2008 A1
20080077884 Patitucci Mar 2008 A1
20080077886 Eichner Mar 2008 A1
20080082767 Nulkar et al. Apr 2008 A1
20080083009 Kaler et al. Apr 2008 A1
20080083834 Krebs et al. Apr 2008 A1
20080097651 Shah et al. Apr 2008 A1
20080104189 Baker et al. May 2008 A1
20080114500 Hull et al. May 2008 A1
20080120335 Dolgoff May 2008 A1
20080121729 Gray May 2008 A1
20080128523 Hoglund et al. Jun 2008 A1
20080129475 Breed et al. Jun 2008 A1
20080133033 Wolff et al. Jun 2008 A1
20080133060 Hoglund et al. Jun 2008 A1
20080133061 Hoglund et al. Jun 2008 A1
20080134087 Hoglund et al. Jun 2008 A1
20080134098 Hoglund et al. Jun 2008 A1
20080144302 Rosenblatt Jun 2008 A1
20080148098 Chen Jun 2008 A1
20080157936 Ebrom Jul 2008 A1
20080161976 Stanimirovic Jul 2008 A1
20080161977 Takach et al. Jul 2008 A1
20080161978 Shah Jul 2008 A1
20080167931 Gerstemeier et al. Jul 2008 A1
20080168255 Abou-Emara et al. Jul 2008 A1
20080168356 Eryurek et al. Jul 2008 A1
20080173035 Thayer et al. Jul 2008 A1
20080183335 Poth et al. Jul 2008 A1
20080184059 Chen Jul 2008 A1
20080185976 Dickey et al. Aug 2008 A1
20080186160 Kim et al. Aug 2008 A1
20080192649 Pyeon et al. Aug 2008 A1
20080192745 Spears Aug 2008 A1
20080195254 Jung et al. Aug 2008 A1
20080195581 Ashmore et al. Aug 2008 A1
20080195687 Jung et al. Aug 2008 A1
20080198036 Songkakul et al. Aug 2008 A1
20080215987 Alexander et al. Sep 2008 A1
20080216461 Nakano et al. Sep 2008 A1
20080217418 Helt et al. Sep 2008 A1
20080217419 Ehlers et al. Sep 2008 A1
20080223944 Helt et al. Sep 2008 A1
20080235611 Fraley et al. Sep 2008 A1
20080256475 Amundson et al. Oct 2008 A1
20080264085 Perry et al. Oct 2008 A1
20080272934 Wang et al. Nov 2008 A1
20080281472 Podgorny et al. Nov 2008 A1
20080294274 Laberge et al. Nov 2008 A1
20080294932 Oshins et al. Nov 2008 A1
20090001180 Siddaramanna et al. Jan 2009 A1
20090001182 Siddaramanna et al. Jan 2009 A1
20090024686 Nass Jan 2009 A1
20090049847 Butler et al. Feb 2009 A1
20090052105 Soleimani et al. Feb 2009 A1
20090055002 Anderson et al. Feb 2009 A1
20090057424 Sullivan et al. Mar 2009 A1
20090057425 Sullivan et al. Mar 2009 A1
20090062964 Sullivan et al. Mar 2009 A1
20090065597 Garozzo et al. Mar 2009 A1
20090077423 Kim et al. Mar 2009 A1
20090094506 Lakkis Apr 2009 A1
20090105846 Hesse et al. Apr 2009 A1
20090113037 Pouchak Apr 2009 A1
20090119092 Balasubramanyan May 2009 A1
20090132091 Chambers et al. May 2009 A1
20090140056 Leen Jun 2009 A1
20090140057 Leen Jun 2009 A1
20090140058 Koster et al. Jun 2009 A1
20090140061 Schultz et al. Jun 2009 A1
20090140062 Amundson et al. Jun 2009 A1
20090140063 Koster et al. Jun 2009 A1
20090140064 Schultz et al. Jun 2009 A1
20090143879 Amundson et al. Jun 2009 A1
20090143880 Amundson et al. Jun 2009 A1
20090143916 Boll et al. Jun 2009 A1
20090143918 Amundson et al. Jun 2009 A1
20090157529 Ehlers et al. Jun 2009 A1
20090177298 McFarland Jul 2009 A1
20090195349 Frader-Thompson Aug 2009 A1
20090198810 Bayer et al. Aug 2009 A1
20090240353 Songkakul Sep 2009 A1
20090245278 Kee Oct 2009 A1
20090257431 Ramanathan et al. Oct 2009 A1
20090259785 Perry et al. Oct 2009 A1
20090261174 Butler et al. Oct 2009 A1
20090261767 Butler et al. Oct 2009 A1
20090266904 Cohen Oct 2009 A1
20090267540 Chemel et al. Oct 2009 A1
20090271336 Franks Oct 2009 A1
20090287736 Shike et al. Nov 2009 A1
20100011437 Courtney Jan 2010 A1
20100023865 Fulker et al. Jan 2010 A1
20100050075 Thorson et al. Feb 2010 A1
20100050108 Mirza Feb 2010 A1
20100063644 Kansal et al. Mar 2010 A1
20100070086 Harrod et al. Mar 2010 A1
20100070089 Harrod et al. Mar 2010 A1
20100070093 Harrod et al. Mar 2010 A1
20100070907 Harrod et al. Mar 2010 A1
20100073159 Schmickley et al. Mar 2010 A1
20100076605 Harrod et al. Mar 2010 A1
20100100253 Fausak et al. Apr 2010 A1
20100101854 Wallaert et al. Apr 2010 A1
20100102136 Hadzidedic et al. Apr 2010 A1
20100102948 Grohman et al. Apr 2010 A1
20100102973 Grohman et al. Apr 2010 A1
20100106305 Pavlak et al. Apr 2010 A1
20100106307 Grohman et al. Apr 2010 A1
20100106308 Filbeck et al. Apr 2010 A1
20100106309 Grohman et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100106311 Wallaert Apr 2010 A1
20100106312 Grohman et al. Apr 2010 A1
20100106313 Grohman et al. Apr 2010 A1
20100106314 Grohman Apr 2010 A1
20100106315 Grohman Apr 2010 A1
20100106316 Curry et al. Apr 2010 A1
20100106317 Grohman Apr 2010 A1
20100106318 Grohman et al. Apr 2010 A1
20100106319 Grohman et al. Apr 2010 A1
20100106320 Grohman et al. Apr 2010 A1
20100106321 Hadzidedic Apr 2010 A1
20100106322 Grohman Apr 2010 A1
20100106323 Wallaert et al. Apr 2010 A1
20100106324 Grohman Apr 2010 A1
20100106325 Grohman Apr 2010 A1
20100106326 Grohman Apr 2010 A1
20100106327 Grohman et al. Apr 2010 A1
20100106329 Grohman Apr 2010 A1
20100106330 Grohman Apr 2010 A1
20100106333 Grohman et al. Apr 2010 A1
20100106334 Grohman et al. Apr 2010 A1
20100106787 Grohman Apr 2010 A1
20100106809 Grohman Apr 2010 A1
20100106810 Grohman Apr 2010 A1
20100106814 Hadzidedic et al. Apr 2010 A1
20100106815 Grohman et al. Apr 2010 A1
20100106925 Grohman et al. Apr 2010 A1
20100106957 Grohman et al. Apr 2010 A1
20100107007 Grohman et al. Apr 2010 A1
20100107070 Devineni et al. Apr 2010 A1
20100107071 Pavlak et al. Apr 2010 A1
20100107072 Mirza et al. Apr 2010 A1
20100107073 Wallaert et al. Apr 2010 A1
20100107074 Pavlak et al. Apr 2010 A1
20100107076 Grohman et al. Apr 2010 A1
20100107083 Grohman Apr 2010 A1
20100107103 Wallaert et al. Apr 2010 A1
20100107109 Filbeck et al. Apr 2010 A1
20100107110 Mirza et al. Apr 2010 A1
20100107111 Mirza et al. Apr 2010 A1
20100107112 Jennings et al. Apr 2010 A1
20100107232 Grohman et al. Apr 2010 A1
20100115364 Grohman May 2010 A1
20100131884 Shah May 2010 A1
20100142526 Wong Jun 2010 A1
20100145528 Bergman et al. Jun 2010 A1
20100145629 Botich et al. Jun 2010 A1
20100168924 Tessier et al. Jul 2010 A1
20100169419 DeVilbiss et al. Jul 2010 A1
20100179696 Grohman et al. Jul 2010 A1
20100211546 Grohman et al. Aug 2010 A1
20100241245 Wiemeyer et al. Sep 2010 A1
20100259931 Chemel et al. Oct 2010 A1
20100264846 Chemel et al. Oct 2010 A1
20100270933 Chemel et al. Oct 2010 A1
20100272102 Kobayashi Oct 2010 A1
20100295474 Chemel et al. Nov 2010 A1
20100295475 Chemel et al. Nov 2010 A1
20100295482 Chemel et al. Nov 2010 A1
20100301768 Chemel et al. Dec 2010 A1
20100301769 Chemel et al. Dec 2010 A1
20100301770 Chemel et al. Dec 2010 A1
20100301771 Chemel et al. Dec 2010 A1
20100301772 Hahnlen et al. Dec 2010 A1
20100301773 Chemel et al. Dec 2010 A1
20100301774 Chemel et al. Dec 2010 A1
20100305761 Remsburg Dec 2010 A1
20100314458 Votaw et al. Dec 2010 A1
20100319362 Hisaoka Dec 2010 A1
20110001436 Chemel et al. Jan 2011 A1
20110001438 Chemel et al. Jan 2011 A1
20110004823 Wallaert Jan 2011 A1
20110004824 Thorson et al. Jan 2011 A1
20110007016 Mirza et al. Jan 2011 A1
20110007017 Wallaert Jan 2011 A1
20110010620 Mirza et al. Jan 2011 A1
20110010621 Wallaert et al. Jan 2011 A1
20110010651 Mirza et al. Jan 2011 A1
20110010652 Wallaert Jan 2011 A1
20110010653 Wallaert et al. Jan 2011 A1
20110010660 Thorson et al. Jan 2011 A1
20110032932 Pyeon et al. Feb 2011 A2
20110040785 Steenberg et al. Feb 2011 A1
20110061014 Frader-Thompson et al. Mar 2011 A1
20110063126 Kennedy et al. Mar 2011 A1
20110066297 Saberi et al. Mar 2011 A1
20110137467 Leen et al. Jun 2011 A1
20110160915 Bergman et al. Jun 2011 A1
20110251726 McNulty et al. Oct 2011 A1
20120012662 Leen et al. Jan 2012 A1
20120046792 Secor Feb 2012 A1
20120065805 Montalvo Mar 2012 A1
20120116593 Amundson et al. May 2012 A1
20120181010 Schultz et al. Jul 2012 A1
Foreign Referenced Citations (7)
Number Date Country
0980165 Feb 2000 EP
1956311 Aug 2008 EP
2241836 Oct 2010 EP
2241837 Oct 2010 EP
2117573 Oct 1983 GB
02056540 Jul 2002 WO
2008100641 Aug 2008 WO
Non-Patent Literature Citations (72)
Entry
Glass, A.S.; Gruber, P.; Roos, M. and Todtli, J., “Qualitative Model-Based Fault Detection in Air-Handling Units”, Aug. 1995, IEEE Control Systems p. 15-22.
Glass, A.S.; Gruber, P.; Roos, M. and Todtli, J., “Preliminary Evaluation of a Qualitative Model-Based Fault Detector for a Central Air-Handling Unit”, 1994, IEEE,pp. 1873-1822.
Kastner, W.; Neugschwandtner, G.; Soucek, S. and Newman, H.M., “Communication Systems for Building Automation and Control”, Jun. 2005, Proceedings of the IEEE, vol. 93, No. 6, p. 1179-1203.
Related case U.S. Appl. No. 12/603,508, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,450, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network ”.
Related case U.S. Appl. No. 12/603,382, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,504, filed on Oct. 21, 2009 to Amanda Filbeck et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,449, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,460, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,526, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Communication Protocol System and Methof for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network K”.
Related case U.S. Appl. No. 12/603,532, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,475, filed on Oct. 21, 2009 to Suresh Kumar Devineni et al., entitled “System And Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,362, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,473, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method for Zoning a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,407, filed on Oct. 21, 2009 to Amanda Filbeck et al., entitled “System and Method for Zoning a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,496, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,482, filed on Oct. 21, 2009 to Muhammad Mirza et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,488, filed on Oct. 21, 2009 to Muhammad Mirza et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,495, filed on Oct. 21, 2009 to Thomas Pavlak et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,497, filed on Oct. 21, 2009 to Muhammad Mirza et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,431, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “General Control Technique in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,502, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,527, filed on Oct. 21, 2009 to Darko Hadzidedic, entitled “Memory Recovery Scheme and Data Structure in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,479 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,536, filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,509, filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,512, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Programming and Configuration in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,464, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,528, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Memory Recovery Scheme and Data Structure in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,525, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Method of Controlling Equipment in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,520, filed on Oct. 21, 2009 to Darko Hadzidedic et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,539, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,420, filed on Oct. 21, 2009 to Darko Hadzidedic et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,483, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,514, filed on Oct. 21, 2009 to Thomas Pavlak et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,515, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,490, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “System Recovery in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,523, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning”.
Related case U.S. Appl. No. 12/603,493, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System Recovery in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,547, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,531, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Memory Recovery Scheme and Data Structure in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,555, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,562, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,566, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,451, filed on Oct. 21, 2009 to Timothy Wallaert, entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,553, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,487, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “System Recovery in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,558, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,468, filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Programming and Configuration in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,560, filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,519, filed on Oct. 21, 2009 to Thomas Pavlak, entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,499, filed on Oct. 21, 2009 to Jimmy Curry et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architechture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,534, filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Flush Wall Mount Thermostat and In-Set Mounting Plate for a Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 29/345,748, filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Thin Cover Plate for an Electronic System Controller”.
Related case U.S. Appl. No. 29/345,747, filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Thin Cover Plate for an Electronic System Controller”.
“Define Track at Dictionary.com ,” http://dictionary.reference.com/browse/track, Mar. 12, 2013, 3 pages.
“Definition of Track by Macmillan Dictionary,” http://www.macmillandictionary.com/dictionary/british/track, Mar. 12, 2013, 4 pages.
“Definition of track by the Free Online Dictionary, Thesaurus, and Encyclopedia,” http://www.thefreedictionary.com/ track, Mar. 12, 2013, 6 pages.
Gallas, B., et al., “Embedded Pentium ®Processor System Design for Windows CE,” WESCON 1998, pp. 114-123.
“iView-100 Series (iView/iView-100-40) Handheld Controller User's Manual,” ICP DAS, Mar. 2006, Version 2.0.
“Spectre™ Commercial Zoning System, Engineering Data,” Lennox, Bulletin No. 210366E, Oct. 2002, 33 pages.
Sharma, A., “Design of Wireless Sensors Network for Building Management Systems,” University of California-Berkley, 57 pages. 2003.
“Linux Programmer's Manual,” UNIX Man Pages Login (1), http://unixhelp.ed.ac.uk/CGI/man-cgi?login, Util-linux 1.6, Nov. 4, 1996, 4 pages.
Checket-Hanks, B., “Zoning Controls for Convenience's Sakes, High-End Residential Controls Move Into New Areas,” Air Conditioning, Heating & Refrigeration News, ABI /INFORM Global, Jun. 28, 2004, 3 pages.
Leeb, G., “A User Interface for Home-Net,” IEEE Transactions on Consumer Electronics, vol. 40, Issue 4, Nov. 1994, pp. 897-902.
“IPMI—Intelligent Platform Management Interface Specification v1.5,” Document Revision 1.1, Intel Hewlett-Packard NEC Dell, Feb. 20, 2002, 460 pages.
Nash, H., “Fire Alarm Systems for Health Care Facilities,” IEEE Transactions on Industry Applications, vol. 1A-19, No. 5, Sep./ Oct. 1983, pp. 848-852.
Bruggeman, E., et al., “A Multifunction Home Control System,” IEEE Transactions on Consumer Electronics, CE-29, Issue 1, 10 pages. 1998.
Fischer, H., et al., “Remote Building Management and DDc-Technology to Operate Distributed HVAC-Installations,” The first International Telecommunications Energy Special Conference, Telescon '94, Apr. 11-15, 1994, pp. 127-132.
“Field Display for Tridium Jace Controllers Product Data,” HVAC Concepts, Inc. 2005, 22 pages.
“HVAC Concepts,” Jace Network-Installation, 2004, 2 pages.
“Definition of encase,” The Free Dictionary, http://www.thefreedictionary.com/encase, 2013, 2 pages.
Related Publications (1)
Number Date Country
20100106334 A1 Apr 2010 US
Provisional Applications (2)
Number Date Country
61167135 Apr 2009 US
61852676 Apr 2009 US
Continuation in Parts (1)
Number Date Country
Parent 12258659 Oct 2008 US
Child 12603489 US