The present disclosure generally relates to variable valve actuation assemblies for piston engines, and more particularly relates to making adjustments to the actuation timing of valves in piston engines.
Variable valve actuation (VVA) assemblies are commonly equipped in piston engines such as automotive internal combustion engines, and are used for controlling actuation timing of valves in the engines. The actuation timing involves opening and closing intake and exhaust valves. Intake valves admit air or air-fuel mixture into engine cylinders, and exhaust valves let exhaust gasses out of the cylinders. In general, the VVA assemblies can help improve fuel economy, reduce exhaust emissions, and enhance engine performance in the associated automobiles. An engine typically includes more than one VVA assembly—for instance, a single VVA assembly at each cylinder of the engine. And each VVA assembly typically includes any number of mechanical components, electrical components, hydraulic components, and pneumatic components.
Differences among components in separate VVA assemblies sometimes results in appreciable performance variations between the VVA assemblies. A slower response rate for an electrical component in one VVA assembly, for instance, can make that assembly slower than another VVA assembly in the same engine. Or the slower response rate can make that VVA assembly slower than expected. Other differences include manufacturing and installation imprecisions, fluid leakage in hydraulic and pneumatic components, and wear on components over the lifetime of their use. These differences, and the accompanying performance variations, mean that the VVA assemblies may not always be functioning as precisely as desired.
In one embodiment, a system that provides adjustable actuation timing of one or more valve(s) in a piston engine includes a position sensor and a variable valve actuation assembly. The position sensor takes position readings of the valve as the valve actuates in the piston engine. The variable valve actuation assembly is equipped to the valve and controls actuation timing of the valve. Actuation timing of the valve can be adjusted based, in part or more, upon one or more position reading(s) of the valve taken by the position sensor.
In another embodiment, a method of adjusting actuation timing of one or more valve(s) in a piston engine by way of one or more variable valve actuation assembly(ies) includes several steps. One step involves taking a first position reading of the valve in the piston engine when the valve is at a closed position. Another step involves taking a second position reading of the valve when the valve is at a fully open position. Another step involves using the first and second position readings to calibrate subsequent position readings of the valve. Yet another step involves taking a third position reading of the valve before slowdown occurs adjacent the closed position. Yet another step involves referencing the third position reading to a predefined position of the valve. And yet another step involves making adjustments to the actuation timing of the valve, if called for, based in part or more upon the third position reading being referenced to the predefined position.
In yet another embodiment, a system that provides adjustable actuation timing of valves in a piston engine includes a first position sensor, a first lost motion assembly, a second position sensor, a second lost motion assembly, and an electronic control unit. The first position sensor is located near a first valve of a first cylinder of the piston engine. The first lost motion assembly actuates the first valve, and includes a first master piston, a first slave piston, and a first solenoid valve. The second position sensor is located near a second valve of a second cylinder of the piston engine. The second lost motion assembly actuates the second valve, and includes a second master piston, a second slave piston, and a second solenoid valve. The electronic control unit receives a first position reading from the first position sensor of the first valve before slowdown occurs adjacent a closed position. The first position reading is referenced to a first predefined position. Actuation timing of the first valve via activation and deactivation of the first solenoid valve can be adjusted based, in part or more, upon the first position reading being referenced to the first predefined position. The electronic control unit receives a second position reading from the second position sensor of the second valve before slowdown occurs adjacent a closed position. The second position reading is referenced to a second predefined position. Actuation timing of the second valve via activation and deactivation of the second solenoid valve can be adjusted based, in part or more, upon the second position reading being referenced to the second predefined position.
The figures illustrate an embodiment of a system and method that provide adjustable actuation timing of valves in a piston engine. The actuation timing can involve opening and closing intake and exhaust valves in an internal combustion engine of an automobile. While described in greater detail below, in general, the system and method make needed adjustments to actuation timing in order to account for performance variations among variable valve actuation assemblies in the piston engine, and to account for performance variations among variable valve actuation assemblies between piston engines of the same kind. A position sensor is employed, and its position readings are used as a basis for any adjustments. The system and method bring greater precision and better reliability and consistency to valve actuation timing in piston engines and help ensure improved fuel economy, reduced exhaust emissions, and overall enhanced engine performance in the associated automobiles. Further, the system and method can be used for monitoring the functionality of variable valve actuation assemblies and observe any malfunctions.
The system can have different designs, constructions, and components depending on—among other potential determinants—the architecture of the associated piston engine and the architecture of the associated valvetrain. In the embodiment presented by
The lost motion assembly 10 actuates the openings and closing movements of valves 16 in a cylinder of the associated piston engine. The valves 16 can be intake or exhaust valves. In the example of
The position sensor 12 senses the position and movement of the valves 16 as the valves 16 open and close, and sends the corresponding position readings as input to the ECU 14. In the associated piston engine there can be multiple position sensors, the exact number of which may depend on the number of valves and on the number of cylinders in the engine. However many there are, an individual position sensor 12 can be located at the valves 16, at the slave piston 26, at the bridge 46, or at another location where the position sensor 12 can properly sense the position and movement of the valves 16. Its exact location may be dictated by the type of position sensor and the valvetrain architecture. Referring again to the example of
The ECU 14 electrically communicates with the position sensor 12 and receives input from the position sensor 12 in the form of position readings. The ECU 14 may manage the functionality of the lost motion assembly 10, and hence may command the activation and deactivation of the solenoid valve 20. There could be a single ECU 14 that electrically communicates with all of the VVA assemblies 10 in the associated piston engine, or there may be multiple ECUs 14 electrically communicating with individual VVA assemblies 10. Further, the ECU 14 could be part of another ECU in the associated automobile or could itself constitute another automobile ECU. Or the ECU 14 could electrically communicate with another automobile ECU such as an engine ECU. Whatever the arrangement, the ECU 14 can perform one or more of the method steps described below with reference to
The system and method detailed in this description make needed adjustments to the actuation timing of the valves 16 in order to reconcile performance variations of individual VVA assemblies 10 in the associated piston engine, and to reconcile performance variations among multiple VVA assemblies 10 in multiple piston engines. It has been observed that differences among components in the VVA assemblies 10 can result in appreciable performance variations—for instance, actuation timing in an individual VVA assembly 10 can be off by as much eight crank angle degrees (8°) from its expected and predefined timing, and can be off by as much as sixteen crank angle degrees (16°) between a pair of VVA assemblies 10 in a piston engine. Other variation magnitudes are of course possible. The differences are found in components of the VVA assemblies 10, such as mechanical, electrical, hydraulic, and pneumatic components, depending on the particular type of VVA assembly. The differences can involve imprecisely manufactured and imprecisely installed components, manufacturing tolerances, wear on components over the lifetime of their use, slower response rates for electrical components, and fluid leakages in hydraulic and pneumatic components. In the example of the lost motion assembly 10 of the figures, these differences can present themselves via slower activation and deactivation response rates of the solenoid valve 20, leakage somewhere in the fluid-flow circuit 28, and even viscosity fluctuations of the hydraulic fluid in the fluid-flow circuit 28 as temperatures increase and decrease. Still, differences can arise in other ways.
Once the performance variations are reconciled, the system and method bring greater precision and better consistency to the actuation timing of the valves 16, and hence improve fuel economy, reduce exhaust emissions, and enhance overall engine performance in the associated automobiles. And because greater precision is effectuated with the system and method, other components of the VVA assemblies 10 may themselves have less precision and may therefore be less costly to produce. For instance, in the example of the lost motion assembly 10, the solenoid valve 20 may not necessarily activate and deactivate with higher levels of exactitude.
An embodiment of the method is presented in the flow chart of
Referring back to
The method further includes a step 130 that involves using the first and second position readings of steps 110, 120 to calibrate subsequent position readings taken by the position sensor 12. In this sense, the first and second position readings could be considered calibration position readings. The calibration relates and references position sensor readings to physical positions of the valves 16. In the example of the variable inductance position sensor 12, a given hertz value of the sensor 12 is corresponded to a given displacement value of the valves 16 measured relative to the fully closed position of the valves 16. The calibration can occur at any time and any number of times amid the operation of the associated piston engine, and the occurrence may be dictated by the engine performance strategy set by the automobile manufacturer. For instance, initial calibration can be executed at engine start-up, and ensuing re-calibrations can be executed when the engine is warmer and at a pre-established temperature, or when the engine is at a wide-open throttle operating condition. Still, the calibration could involve other and different steps, and whether the steps 110, 120, 130 are performed at all may depend on the type of position sensor 12 put to use in the system. Since the calibration takes place after the VVA assembly 10 is installed in the associated piston engine, imprecisely manufactured and imprecisely installed components and other differences set out above are accounted for.
After calibration, if indeed executed, a step 140 involves taking a third position reading of the valves 16 via the position sensor 12. Like other position readings, the third position reading is sent to the ECU 14. The third position reading can be taken with each opening and closing phase of the valves 16 as the valves 16 continuously actuate during engine operation, or can be taken at more infrequent intervals. Further, the position sensor 12 can take the third position reading at varied points throughout a single actuation of the valves 16. The third position reading in
Referring again to
Furthermore, the system and method detailed in this description could be used as part of an engine diagnostic procedure in which the functionality of the VVA assemblies 10 is monitored. The system and method may detect malfunctions that occur. In the example of the lost motion assembly 10, for instance, a jammed solenoid valve 20 or a loss of pressure in the fluid-flow circuit 28 might be evidenced by an unusually large discrepancy.
The foregoing description is considered illustrative only. The terminology that is used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations will readily occur to those skilled in the art in view of the description. Thus, the foregoing description is not intended to limit the invention to the embodiments described above. Accordingly the scope of the invention as defined by the appended claims.
This application claims the benefit of U.S. Provisional Ser. No. 62/077,686 filed on Nov. 10, 2014, the entire contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/057038 | 10/23/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62077686 | Nov 2014 | US |