The present disclosure relates to a system and method of automatic hose bay jam prevention generally for firefighting applications.
Firefighting is a highly dangerous occupation that subjects firefighters to many hazards. An important asset to the firefighters is maintaining a steady and abundant water supply to suppress fire and/or filling a truck-mounted water tank. Both of these tasks are typically accomplished by using a pump on-board the fire truck that is driven by the truck engine. The water from the pump is typically conducted to the site of the fire using a lengthy fire hose. The fire hoses are typically laid flat many layers deep in a hose bay on a fire truck. A dangerous situation may occur when delay is introduced in getting the hoses organized and laid out for firefighting. Problem occurs when the hose is prematurely charged before the hose is completely removed from the hose bay. The hose becomes filled with water and jammed in the hose bay. This mistake introduces much unexpected delay and poses additional unnecessary risk to the firefighters at the scene.
A system and method of automatic hose bay jam prevention generally for firefighting applications is envisioned and described herein.
A system resides on a fire truck carrying at least one fire hose in a hose bay, a hose coupling connecting the at least one fire hose to an outlet of a pump, and a control valve operable to open or shut water flow from the outlet of the pump to the at least one fire hose. The system comprises a target device coupled to the at least one fire hose, a proximity sensor coupled to the hose bay and operable to detect the presence and absence of the target device, and a controller coupled to the proximity sensor and control valve and operable to enable opening of the control valve in response to the proximity sensor detecting the absence of the target device indicative of a substantially complete removal of the at least one fire hose from the hose bay of the fire truck, and operable to disable opening of the control valve in response to the proximity sensor detecting the presence of the target device indicative of the at least one fire hose remaining in the hose bay of the fire truck.
A method of preventing jamming of at least one fire hose laid in a hose bay of a fire truck, the fire truck having a pump operable to pump water to charge the fire hose, a hose coupling connecting the at least one fire hose to an outlet of the pump, and a control valve operable to open or shut water flow from the outlet of the pump to the at least one fire hose, the comprises receiving input to open the control valve, receiving sensed data from a proximity sensor coupled to the hose bay and a target device coupled to the at least one fire hose, the proximity sensor operable to detect the presence and absence of the target device, and enabling the opening of the control valve in response to the proximity sensor detecting the absence of the target device indicative of a substantially complete removal of the at least one fire hose from the hose bay of the fire truck.
A memory having encoded therein computer software code executable by a computer to implement a method of preventing jamming of at least one fire hose laid in a hose bay of a fire truck, a hose coupling connecting the at least one fire hose to an outlet of a pump, and a control valve operable to open or shut water flow from the outlet of the pump to the at least one fire hose, the computer-implemented method comprises receiving input to open the control valve, receiving sensed data from a proximity sensor coupled to the hose bay and a target device coupled to the at least one fire hose, the proximity sensor operable to detect the presence and absence of the target device, and enabling the opening of the control valve in response to the proximity sensor detecting the absence of the target device indicative of a substantially complete removal of the at least one fire hose from the hose bay of the fire truck.
For example in a preferred embodiment, the controller 26 may compare the pump discharge pressure to a low set point and a high set point. If the pump pressure is above the high set point or below the low set point, the controller 26 is operable to keep the control valve 22 closed.
The controller 26 also includes a user interface 28 that is operable to provide status information and visual/audio alerts, as well as receive user input. The user interface 28 may include one or more lights, light-emitting-diodes, or other visual alerts, a liquid crystal display panel or other displays using technology now known or later developed, and one or more buttons or switches. The user interface 28 further includes one or more buttons, switches, keys, and other means of user input. The user may use the buttons to set the high and low pressure set points, for example.
Coupled to the wall 16 of the hose bay 14 is a proximity sensor 30 that is operable to sense whether a target device 32 is located proximately thereto. The target device 32 is coupled to the hose 12 near the coupling 18. The proximity sensor 30 and the target device 32 may operate using magnetic, electromagnetic, capacitive, electrostatic, inductive, and other now known or later developed principles. The target device 32 is coupled to a location on the hose 12 such that when substantially the entire length of the hose 12 is removed from the hose bay 14 and deployed for action, the target device 32 is outside the nominal range of the proximity sensor 30.
Although
Although not explicitly described above, it is contemplated that a manual override capability may be provided to permit an operator to exert control notwithstanding the operations of the control system.
Accordingly, the disclosed method automatically checks whether the fire hose has been completely removed from the hose bay before allowing the hose control valve to be opened. In other words, the system automatically determines whether the fire hose is in a “ready” state prior to charging the hose with water. In this manner, human error is avoided and undue delays associated with hoses jammed in the hose bay because of premature charging is prevented.
It should be noted that the word “water” is used herein to generally convey the concept of a fluid used for firefighting purposes, and “water” may include water, foam, chemicals, and other types of fire-suppression fluids.
Further notice should be given regarding the actual implementation of the system in that certain changes and modifications to the described system, though not described explicitly or in detail, are contemplated herein. For example, the controller may be implemented using one or more CPU, microprocessor, or micro-controller circuits. Further, it is understood that a CPU is typically in operation with its attendant circuitry and software, such as memory, interfaces, drivers, etc. as known in the art.
The features of the present invention which are believed to be novel are set forth below with particularity in the appended claims. However, modifications, variations, and changes to the exemplary embodiments described above will be apparent to those skilled in the art, and the system and method of automatic hose bay jam prevention for firefighting applications described herein thus encompasses such modifications, variations, and changes and are not limited to the specific embodiments described herein.