The present application relates to methods and devices for aligning an antenna implanted under the skin with an external device.
Obesity is becoming a growing concern, particularly in the United States, as the number of obese people continues to increase, and more is learned about the negative health effects of obesity. Morbid obesity, in which a person is 100 pounds or more over ideal body weight, in particular poses significant risks for severe health problems. Accordingly, a great deal of attention is being focused on treating obese patients. One method of treating morbid obesity has been to place a restriction device, such as an elongated band, about the upper portion of the stomach. Gastric bands have typically comprised a fluid-filled elastomeric balloon with fixed endpoints that encircles the stomach just inferior to the esophageal-gastric junction to form a small gastric pouch above the band and a reduced stoma opening in the stomach. When fluid is infused into the balloon, the band expands against the stomach creating a food intake restriction or stoma in the stomach. To decrease this restriction, fluid is removed from the band. The effect of the band is to reduce the available stomach volume and thus the amount of food that can be consumed before becoming “full.”
Food restriction devices have also comprised mechanically adjusted bands that similarly encircle the upper portion of the stomach. These bands include any number of resilient materials or gearing devices, as well as drive members, for adjusting the bands. Additionally, gastric bands have been developed that include both hydraulic and mechanical drive elements. It is also known to restrict the available food volume in the stomach cavity by implanting an inflatable elastomeric balloon within the stomach cavity itself. The balloon is filled with a fluid to expand against the stomach walls and, thereby, decrease the available food volume within the stomach.
With each of the above-described food restriction devices, safe, effective treatment requires that the device be regularly monitored and adjusted to vary the degree of restriction applied to the stomach. Traditionally, adjusting a gastric band required a scheduled clinician visit during which a Huber needle and syringe were used to penetrate the patient's skin and remove fluid from the balloon via an injection port. More recently, implantable pumps have been developed which enable non-invasive adjustments of the band. An external programmer communicates with the implanted pump using telemetry to control the pump. During a scheduled visit, a physician places a hand-held portion of the programmer near the gastric implant and transmits command signals to the implant. The implant in turn adjusts the band and transmits a response command to the programmer.
Implants such as those described above include electronics, such as an antenna, which are used to transmit information to an external device in order to control adjustment of the band. It is important for the implanted antenna to be properly aligned with the external device to allow for successful information transmissions. It can be difficult and time-consuming to properly align the internal antenna with the external devices as to power the implant and/or transmit data therebetween as the antenna can shift locations and orientations beneath the skin.
Thus, there remains a need for a system and method capable of aligning an antenna implanted under the skin with an external device.
Various methods and devices for aligning an internal antenna with an external device are provided. In one embodiment, an implantable restriction system is provided and includes an implantable restriction device configured to form a restriction in a pathway, and an implantable housing associated with the implantable restriction device. The housing has at least one antenna that can be configured to communicate telemetrically with a transceiver regardless of a rotational orientation of the housing about an axis. The at least one antenna can extend along an axis aligned with the longitudinal axis of a catheter extending from the housing. The transceiver can have a variety of forms. For example, the transceiver can be an external device located adjacent to a tissue surface, or the transceiver can be disposed on a device that can be configured to be delivered internally within a patient's body. In one embodiment, the implantable housing can contain a sensor that can be configured, for example, to measure at least one of a system parameter and a physiological parameter, and the antenna can be effective to communicate the measured parameter to the transceiver. The at least one antenna can also be configured to receive energy to power the sensor, or data, or other information. In another embodiment, the implantable housing can be an injection port.
The antenna can be positioned in the housing in a variety of ways. For example, the implantable housing can include a support disposed therein having proximal and distal ends and extending along the longitudinal axis of the catheter. In an exemplary embodiment, the at least one antenna can include a plurality of antennae with each antenna disposed around the proximal and distal ends of the support and spaced radially about the support from an adjacent antenna. The antenna can be spaced around the support in a number of configurations. For example, each of the plurality of antennae can be spaced radially apart from one another, such as by about 180 degrees, about 120 degrees, about 90 degrees, or about 60 degrees, or at some other angular increment. In another exemplary embodiment, the at least one antenna can be in the form of a cylindrical coil antenna.
In another embodiment, a restriction system is provided and includes an implantable band configured to form a restriction in a pathway, and a housing associated with the band and having a catheter extending therefrom defining a longitudinal axis along a length thereof. An implantable sensor can be configured to measure at least one of a restriction system parameter and a physiological parameter, for example a fluid pressure of fluid in the band. At least one antenna can be associated with the housing and configured to emit a magnetic field toward an external device positioned on a tissue surface directly adjacent the housing regardless of a rotational orientation of the housing about an axis of the catheter extending from the housing. The antenna can have a variety of configurations, including a plurality of antennae extending along an axis aligned with the longitudinal axis of the catheter, and a cylindrical coil antenna having a longitudinal axis that is aligned with the longitudinal axis of the catheter.
Methods for communicating with an implantable restriction system are also provided, and in one embodiment the method can include providing a restriction system that is implantable within a patient to form a restriction in a pathway, positioning a communication device adjacent to a tissue surface of the patient, and activating the communication device to communicate with at least one antenna disposed within a housing forming part of the restriction system. The at least one antenna can emit a magnetic field toward the communication device regardless of a rotational orientation of the housing containing the at least one antenna about an axis of a catheter extending from the housing. In one embodiment, the communication device can communicate energy to provide power to a sensor in the restriction system that can be configured to measure at least one of a system parameter and a physiological parameter. The operational value(s) or the physiological value(s) measured by the sensor can be communicated to the external device by the at least one antenna in the restriction system. The communication device can have a variety of forms. For example, the communication device can be an external device located outside the body of the patient, or the communication device can be an internal device configured to be delivered internally within a patient's body. The antenna can have a variety of configurations. For example, the at least one antenna can include a plurality of antennae with each antenna oriented parallel to the longitudinal axis of the catheter and spaced radially therearound. The plurality of antennae can be configured to emit field lines in a plurality of planes extending through the longitudinal axis. The at least one antenna can also include a cylindrical coil antenna having a longitudinal axis that is aligned with the longitudinal axis of the catheter. The cylindrical coil antenna can emit field lines radially outward from the longitudinal axis of the housing.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Various exemplary methods and devices are provided for communicating with an implantable restriction system. In one embodiment, the implantable restriction system includes a housing having at least one internal antenna that can be in communication with an implantable sensor configured to measure system parameters (e.g., pressure) and/or physiological parameters. The internal antenna can be configured to emit a magnetic field toward an external device or an internally delivered device regardless of the rotational orientation of the housing about any axis to allow communication with the external device or the internally delivered device, for example, to transmit power to the implantable sensor and/or transfer and/or receive data between the internal antenna and the external or internally delivered device.
While the present invention can be used with a variety of restriction systems known in the art,
The internal portion 10a can also include a sensing or measuring device that is in fluid communication with the closed fluid circuit in the implantable portion 10a. In one embodiment, the sensing device is a pressure sensing device configured to measure the fluid pressure of the closed fluid circuit. While the pressure measuring device can have various configurations and can be positioned anywhere along the internal portion 10a, including within the injection port 30 and as described further below, in the illustrated embodiment the pressure measuring device is in the form of a pressure sensor that is disposed within a sensor housing 60 positioned adjacent to the injection port 30. The catheter 50 can include a first portion that is coupled between the gastric band 20 and the pressure sensor housing 60 and a second portion that is coupled between the pressure sensor housing 60 and the injection port 30. While it is understood that the sensing device can be configured to obtain data relating to one or more relevant parameters, including physiological parameters, generally it will be described herein in a context of a pressure sensing device.
As further shown in
In some embodiments, the external portion 10b can include a sensing system configured to obtain data related to one or more relevant parameters, such as fluid pressure of the closed fluid circuit of the internal portion 10a. For example, pressure in the closed fluid circuit can be measured through a Huber needle in fluid communication with the injection port 30. An exemplary external pressure reading system is described in U.S. Publication No. 2006/0211912, entitled “External Pressure-Based Gastric Band Adjustment System and Method” which is hereby incorporated by reference.
A person skilled in the art will appreciate that the gastric band can have a variety of other configurations. Moreover, the various methods and devices disclosed herein have equal applicability to other types of implantable bands. For example, bands are used for the treatment of fecal incontinence, as described in U.S. Pat. No. 6,461,292 which is hereby incorporated by reference. Bands can also be used to treat urinary incontinence, as described in U.S. Publication No. 2003/0105385 which is hereby incorporated by reference. Bands can also be used to treat heartburn and/or acid reflux, as disclosed in U.S. Pat. No. 6,470,892 which is hereby incorporated by reference. Bands can also be used to treat impotence, as described in U.S. Publication No. 2003/0114729 which is hereby incorporated by reference.
The fluid injection port 30 can also have a variety of configurations. In the embodiment shown in
The reading device 70 can also have a variety of configurations, and one exemplary pressure reading device is disclosed in more detail in commonly-owned U.S. Publication No. 2006/0189888 and U.S. Publication No. 2006/0199997, which are hereby incorporated by reference. In general, the reading device 70 can non-invasively measure the pressure of the fluid within the implanted portion 10a even when the pressure sensing device is implanted beneath thick (at least over 10 cm, and possibly over 15 cm) subcutaneous fat tissue. The physician can hold the reading device 70 against the patient's skin near the location of the sensor housing 60 and/or other pressure sensing device location(s), obtain sensed pressure data and possibly other information as discussed herein, and observe the pressure reading (and/or other data) on a display on the control box 90. The data reading device 70 can also be removably attached to the patient, as discussed further below, such as during a prolonged examination, using straps, adhesives, and other well-known methods. The data reading device 70 can operate through conventional cloth or paper surgical drapes, and can also include a disposal cover (not shown) that may be replaced for each patient.
As indicated above, the system 10 can also include one or more sensors for monitoring the operation of the gastric restriction system 10. The sensor(s) can be configured to measure various operational parameters of the system 10 including, but not limited to, a pressure within the system, a temperature within the system, a peristaltic pulse event or frequency, the peristaltic pulse width, the peristaltic pulse duration, and the peristaltic pulse amplitude. In one exemplary embodiment, the system can include a sensor in the form of a pressure measuring device that is in communication with the closed fluid circuit and that is configured to measure the fluid pressure within the system, which corresponds to the amount of restriction applied by the adjustable gastric band to the patient's stomach. The sensor can also be configured to measure a variety of other parameters, for example, pulse count and pulse width. In use, measuring the fluid pressure, or any other control parameter of the system, can enable a physician (or other medical professionals) to evaluate the performance of the restriction system. In the illustrated embodiment, shown in
Various pressure sensors known in the art can be used as the pressure sensor 62, such as a wireless pressure sensor provided by CardioMEMS, Inc. of Atlanta, Ga., though a suitable Micro-Electro-Mechanical Systems (“MEMS”) pressure sensor may be obtained from any other source, including but not limited to Integrated Sensing Systems, Inc. (ISSYS) of Ypsilanti, Mich. and Remon Medical Technologies, Inc. of Waltham, Mass. One exemplary MEMS pressure sensor is described in U.S. Pat. No. 6,855,115, the disclosure of which is incorporated by reference herein for illustrative purposes only. It will also be appreciated by a person skilled in the art that suitable pressure sensors can include, but are not limited to, capacitive, piezoresistive, silicon strain gauge, or ultrasonic (acoustic) pressure sensors, as well as various other devices capable of measuring pressure.
One embodiment of a configuration of the sensor housing 60 having the sensor 62 disposed within it is shown in
In use, fluid can enter the sensor housing 60 through an opening 66 located anywhere on the housing's surface (here, the bottom surface) and come into contact with a pressure sensing surface 68 of the sensor 62. The sensor 62 is typically hermetically sealed to the motherboard such that fluid entering the opening 66 cannot infiltrate and affect operation of the sensor 62 except at the pressure sensing surface 68. The sensor 62 can measure the pressure of fluid coming into contact with the pressure sensing surface 68 as fluid flows in and out of the opening 66. For example, the pressure sensing surface 68 can include a diaphragm having a deformable surface such that when fluid flows through the opening 66, the fluid impacts the surface of the diaphragm, causing the surface to mechanically displace. The mechanical displacement of the diaphragm can be converted to an electrical signal by a variable resistance circuit including a pair of variable resistance, silicon strain gauges. One strain gauge can be attached to a center portion of diaphragm to measure the displacement of the diaphragm, while the second, matched strain gauge can be attached near the outer edge of diaphragm. The strain gauges can be attached to the diaphragm with adhesives or can be diffused into the diaphragm structure. As fluid pressure within band 20 fluctuates, the surface of the diaphragm can deform up or down, thereby producing a resistance change in the center strain gauge.
One embodiment of a variable resistance circuit for the sensor 62 is shown in
The external portion 10b also includes a primary telemetry transceiver 142 for transmitting interrogation commands to and receiving response data, including sensed pressure data, from the implanted microcontroller 65. The primary transceiver 142 is electrically connected to the microprocessor 136 for inputting and receiving command and data signals. The primary transceiver 142 drives the telemetry coil 144 to resonate at a selected RF communication frequency. The resonating circuit can generate a downlink alternating magnetic field 146 that transmits command data to the microcontroller 65. Alternatively, the transceiver 142 can receive telemetry signals transmitted from a secondary TET/telemetry coil 114 in the internal portion 10a. The received data can be stored in the memory 138 associated with the microprocessor 136. A power supply 150 can supply energy to the control box 90 in order to power element(s) in the internal portion 10a. An ambient pressure sensor 152 is connected to microprocessor 136. The microprocessor 136 can use a signal from the ambient pressure sensor 152 to adjust the received pressure measurements for variations in atmospheric pressure due to, for example, variations in barometric conditions or altitude, in order to increase the accuracy of pressure measurements.
As indicated above, the sensor housing can include at least at one antenna that can be configured to allow the implantable restriction system 10 to be powered by and/or communicate with an external device or an internally delivered device. A person skilled in the art will appreciate, however, that the at least one antenna can be located in various places, including but not limited to being located within the injection port 30, with or without a separate housing. The antenna can be disposed in the housing in such a way as to allow effective communication between the antenna and an external device located adjacent to a skin surface or a device configured to be delivered internally within a patient's body, for example, to the gastro-intestinal tract. For example, the antenna can be disposed in a housing to allow the antenna to emit a magnetic field towards the external device or the internally delivered device regardless of the rotational orientation of the housing about an axis. This can be achieved in a variety of ways, including by orienting the antenna parallel to a longitudinal axis of a catheter extending from the housing.
While the housing that can contain the antenna, such as sensor housing 60 described above, is shown in
The housing 200 can also include circuitry, as described above in
The at least one antenna 204 can also be disposed within the housing 200 in the housing in a variety of ways. In one embodiment, the housing 200 can include a support 202 disposed therein and configured to support the antenna 204. The support 202 can have a variety of configurations, and can include proximal and distal ends 202p, 202d that define a longitudinal axis therebetween that can be parallel to or co-axial with the longitudinal axis of the catheter 50 extending from the housing 200. In the illustrated embodiment, the proximal end 202p of the support 202 is coupled to the proximal end 200p of the housing 200 using an attachment member 206 that is configured to couple the support 202 to an inner proximal wall of the housing 200. A person skilled in the art will appreciate, however, that the support 202 can be coupled to the housing 200 using a variety of techniques. For example, the support 202 can be fixedly coupled to the housing 200 using, for example, adhesives or fasteners, or the support 202 can be removably coupled to the housing 200. A person skilled in the art will appreciate that the support 202 can be coupled to the housing 200 in any way that allows the antenna 204 to be positioned along the support 202. The support 202 can also include features to accommodate any number of antennae 204 configured in any manner along the support 202, as will be discussed in more detail below.
In order to facilitate communication with a device, such as a transceiver, that can be an external device or a device configured to be delivered internally within the body, such as in the gastro-intestinal tract, the housing 200 can include any number of antennae 204 in a variety of configurations to emit and/or receive field lines that are directed towards a tissue surface regardless of the orientation of the housing 200 about the axis, for example, the axis of the catheter 50 extending from the housing 200. In one exemplary embodiment, this allows the antenna 204 to communicate with any device, including external and internal devices, regardless of the orientation of the housing 200 about any axis, for example, including an axis of the catheter 50 extending from the housing as the housing 200 rotates and/or flips about the axis of the catheter 50 when it is implanted. A person skilled in the art will appreciate that the housing 200 can include a plurality of antennae positioned in any configuration as long each antenna 204 is oriented substantially parallel to the longitudinal axis of the catheter 50 to allow the antennae 204 to emit magnetic field lines towards a location on a tissue surface about the housing 200 to facilitate communication with an external device or an internally delivered device.
For example, in one exemplary embodiment, the housing 200 can include a plurality of antennae 204 disposed around the proximal and distal ends 202p, 202d of the support 202 and spaced radially therearound in order to emit fields lines that allow the antennae 204 to communicate with the external device. The plurality of antennae can be spaced radially apart from one another by any angular increment, such as about 180 degrees, 120 degrees, 90 degrees, 60 degrees, 30 degrees, or some other increment. In the exemplary embodiment of
The support can be also have a variety of configurations to support a plurality of antennae spaced radially therearound. For example,
In another exemplary embodiment, first, second, and third antennae 304a, 304b, 304c can be spaced radially apart from one another by about 120 degrees. As shown in
A person skilled in the art will appreciate that the antenna can have any configuration and can be configured to emit a field in all directions. For example, the antenna illustrated in
In another exemplary embodiment, as shown in
While the catheter 50 illustrated in
In use, the restriction system 10 shown in
After implantation, it is necessary to be able to communicate with the implantable portion 10a of the restriction system 10, for example, to transmit power to the restriction system and/or communicate system information to and from the restriction system 10. The antennae are configured within the housing, for example, the housing of the sensor or the injection port, in any of the configurations described above in order to facilitate communication with an external device. The magnetic field lines emitted and/or received by the implanted antenna are emitted and/or received in such a manner as to allow an external antenna on the external device or an internal antenna on an internally delivered device to communicate with the implanted antennae regardless of the orientation of the antennae and the housing in which they are disposed about any axis. The implantable antenna can communicate with the external antenna of the external device or the internal antenna of the internally delivered device thereby allowing the implantable system to be powered and/or various system and/or physiological parameters (e.g., pressure readings) to be transmitted and/or received from the implantable antenna to/from the external or internal antenna.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present invention.
Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
It is preferred that device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.
One of ordinary skill in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.