The present invention generally relates to forge welding processes and to controlling the parameters of a forge welding machine in response to an inputted width of the heat affected zone and weld temperature for the forge welding process, and in particular to setting the operating frequency of the forge welding machine in response to the inputted width of the heat affect zone and weld temperature for the forge welding process.
Forge welding includes the bonding together of metal parts, such as plates. For example
In a forge welding process high pressure is applied at the weld point, which is heated to the welding temperature, to produce the weld. Generally the welding temperature is below, but possibly near to, the melting point of the metal being weld. Heating the metal to welding temperature may be accomplished by using a suitable source of energy, such as a laser, electron beam, electric resistance or high frequency electric induction.
A forge welding process results in the creation of a heat affected zone (HAZ), which is the portion of the metal that was not melted during the welding process, but whose microstructure and mechanical properties were altered by the heat from the process. For example in
One particular application of induction forge welding is high frequency induction tube and pipe welding wherein high pressures are applied for very short periods of time, but right at the melt point temperature, to two edges of a strip forced into an oval shape by a tube forming machine before the adjacent edges of the strip reach the weld point as diagrammatically illustrated in
The effective width of the HAZ is a complex function of many welding parameters including, but not limited to, the welding frequency, component wall thickness, component geometry, weld heating length and angle, part joining speed, and part material. The following illustrates how these parameters can be mathematically applied.
The electrical reference depth, ξ, or penetration depth, which defines the distance from the edge of the metal part at which the induced current decreases approximately exponentially to e−1 (0.368) of its value at the surface, when the process is an induction forge welding process, can be calculated from equation (1):
where ρ is the electrical resistivity of the metal part, μ is the relative magnetic permeability of the metal part, f is the electrical welding frequency of the supplied power, and π is the constant pi (3.14159).
The thermal reference depth, δ, or thermal diffusion depth, which represents how deeply the edge is heated by thermal conduction, may be calculated from equation (2):
where ε is the thermal diffusivity of the metal part, y is the length of the “V,” which is also referred to as the weld heating length, and v is the speed at which the metal part passes the weld point, which is also referred to as the weld velocity.
There is a functional relationship between the electrical reference depth and width of the HAZ when both of these quantities are normalized by the thermal diffusion depth.
A normalized electrical reference depth, Zn, can be calculated from equation (3):
Normalized width of the HAZ, Xn, can be calculated from equation (4):
X
n
=a
o
+a
1
Z
n
+a
2
Z
n
2
+a
3
Z
n
3.
Equation (4), or the normalized width of the HAZ polynomial, can be established by experimental forge welding of specific types of metal materials. For example each of empirical data points x1 through x18 in
Effective weld power, PE, can be calculated from equation (5):
P
E
=H·γ·X
E
·h·v
where H is equal to the enthalpy of the forge welding process; that is, the change in enthalpy (measured in joules when PE is calculated in watts) of a metal in a forge welding process wherein the temperature of the metal is raised from its pre-weld temperature to its weld temperature;
γ is the density of the metal (measured in kilograms per cubic meters);
XE is the effective width of the heat affected zone (measured in meters);
h is the thickness of the metal being welded together (measured in meters); and
and v is the speed of the metal being welded at the weld point, or weld velocity (measured in meters per second).
One object of the present invention is to achieve a forge weld with a forge welding machine by specifying the preferred width of the heat affected zone for the weld and preferred weld temperature in the forge welding of one or more materials without knowledge of the required forge welding machine operating frequency or operating power setting.
Another object of the present invention is to set the operating frequency and operating power setting of a forge welding machine in a forge welding process to achieve a desired weld without input of the frequency and power settings by an operator of the forge welding machine.
In one aspect the present invention is a system for controlling the parameters of a forge welding machine for the forge welding of one or more materials. The system comprises a computer, one or more computer memory storage devices and a computer program. The computer program executes a self-tuning routine to compute the operating frequency and operating power setting for the forge welding machine in response to an inputted width of the heat affected zone and an inputted weld temperature.
In another aspect the present invention is a method for computing the operating frequency and operating power setting for a forge welding machine in a forge welding of one or more materials. The method includes inputting a width for the heat affected zone and inputting a weld temperature for computing the operating frequency and operating power setting of the forge welding machine. Forge welding machine data, such as weld velocity and weld heating length, and parameters of the one or more materials, such as their thickness, density and enthalpy, are referenced for computing the operating frequency and operating power setting. The width of the heat affected zone and weld temperature may be measured during the forge welding to adjust the computed operating frequency or operating power frequency so that the measured width of the heat affected zone and measured weld temperature are equal to the inputted width of the heat affected zone and the inputted weld temperature within any allowed tolerance.
Other aspects of the invention are set forth in this specification and the appended claims.
For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
a) illustrates a typical partial T-joint forge weld and
a) further illustrates parameters associated with the forge welding together of the opposing longitudinal edges of a metal plate or strip to form a tube.
b) is a cross sectional view through line A-A in
a) and
There is illustrated in
In routine 12, material parameters of the metal are entered by any suitable means. For example the operator of a forge welding machine may enter a value for each parameter by a suitable input device, such as a keyboard, or the operator may enter a code representing a specific material for which the values of the required parameters are stored in a suitable memory device, which data is referenced by the system or process of the present invention. Material parameters may include the thickness (h) of the metal; the electrical resistivity (ρ) of the metal; the relative magnetic permeability (μ) of the metal; the thermal diffusivity (ε) of the metal; the enthalpy (H) of the metal, and the density (γ) of the metal.
In routine 14 forge welder parameters are entered by any suitable means. For example the operator of a forge welding machine may enter a value for each parameter by a suitable input device, or values for one or more of the parameters may be inputted from a lookup table of values stored in a suitable memory device. The stored values may be based upon the entered material parameters and/or the operating parameters of a specific forge welder, which data is referenced by the system or process of the present invention. Forge welding machine parameters may include the weld heating length and the weld velocity.
In routine 16 forge weld parameters are entered by any suitable means. For example the operator of the forge welder may enter each parameter by a suitable input device, or one or more of the parameters may be inputted from a lookup table of values stored in a suitable memory device based upon the enter material parameters and/or the operating parameters of a specific welding machine. Inputted weld parameters may include an effective width of the HAZ (XE) and the weld point temperature (TE).
In routine 18 a trial thermal reference depth can be computed from equation (2) above in this non-limiting example of the invention. In routine 20 an initial trial electrical welding frequency, F0, is inputted. For example if the forge welder with which the process is being used has a power operating frequency range of from 10 kilohertz to 100 kilohertz, the initial trial frequency may be preset and stored in a suitable memory device as 10 kilohertz, and inputted from the memory device. Alternatively the operator of the forge welding machine may manually enter the initial trial frequency via a suitable input device. In any event since the operating frequency for the selected effective width of the HAZ, XE, is determine by an iterative process as further described below, selection of a particular initial trial frequency is not critical. In routine 22 a trial electrical reference depth can be computed from equation (1) above for this non-limiting example of the invention.
In routine 24 a trial normalized electrical referenced depth, Zn, is calculated from equation (3) above in this non-limiting example of the invention. This value of trial normalized electrical reference depth is inputted into routine 26, which computes a corresponding trial normalized width of the HAZ, Xn, from the normalized width of the HAZ equation (4) above in this non-limiting example of the invention.
In routine 28 the trial normalized width of the HAZ, Xn, is converted to a calculated width of the HAZ, Xc, by multiplying Xn, by the trial thermal reference depth, which was computed in routine 18.
In routine 30 the calculated width of the HAZ is compared with the previously inputted effective width of the, XE. If Xc, is not equal to XE within any allowable tolerance, the trial frequency, F0, is changed to a new value in routine 32. For example if XC>XE+Δε, where Δε is an allowed tolerance value, then the new trial value of F0 would be the old trial value of F0 plus a selected initial incremental frequency change, ΔF. Conversely if XC<XE−Δε, then the new trial value of F0 would be the old trial value of F0 minus a selected initial incremental frequency change, ΔF. On subsequent iterations, the incremental frequency change, ΔF, is decreased, for example, by half, so that the iterative process ultimately results in a calculated Xc=XE±ε, where ε is an allowed tolerance value, if used, for the desired effective width of the HAZ. The trial value of F0 for which Xc=XE±ε is set equal to the set frequency, FSET, in routine 34. Any alternative type of suitable iterative method may be used to converge to the set frequency.
In some examples of the invention, the system and method of computing the operating parameters of a forge welding machine may include computing the operating frequency of the forge welding machine. In other examples of the invention, the system and method further includes computing the operating power setting of the forge welding machine.
When Xc=XE±ε is set to the set frequency, FSET, in routine 34, effective power, PE, can be computed from equation (5) above in this non-limiting example of the invention in routine 36, and the value of the effective power can be set equal to the set operating power, PSET. Routine 38 executes a test forge weld at operating frequency FSET and operating power PSET. The actual measured width of the HAZ, XTEST, from the test run is inputted in routine 40 from a suitable sensing means, such as a thermal imaging camera. The thermal image analysis may produce a graphical temperature magnitude display versus the cross sectional width of the metal. For example in
Routine 42 compares the test run width of the HAZ, XTEST, with the inputted effective width of the HAZ, XE. If XTEST is not equal to XE within any allowable tolerance, the width of the HAZ empirically fitted curve is changed by routine 44 wherein the point defined by the Zn and Xn resulting from set frequency, FSET, and set power, PSET, and used in the test run, is added to the set of points used to generate the fitted curve, and a new curve fit analysis is conducted.
Routines 26 through 42 are iteratively repeated until the test run width of the HAZ, XTEST, is equal to the inputted width of the HAZ, XE, within any allowable tolerance. Then routine 43 continues the test run and actual test weld point temperature, TMAX, is compared with inputted effective weld point temperature, TE, in routine 48. Actual test weld point temperature is inputted in routine 46 using a suitable sensor, such as a pyrometer. If TMAX is not equal to the effective weld point temperature, TE, within an allowable tolerance, the value of enthalpy (H) for the material is changed to a new value in routine 50 and a new value for effective power, PE, is calculated in routine 36. For example if TMAX>TE+Δε, where Δε is an allowed tolerance value, then the new value of the enthalpy (H) would be the old value minus a selected incremental change, ΔH. Conversely if TMAX>TE−Δε, then the new value of enthalpy (H) would be the old value of enthalpy (H) plus a selected incremental change, ΔH. On subsequent iterations, the incremental change in enthalpy, ΔH, is decreased, for example, by half, so that the iterative process ultimately results in a calculated TMAX>TE+Δε, where ε is an allowed tolerance value, if used, for the desired effective width of the HAZ. Routines 36 through 48 are iteratively executed until TMAX=TE±ε, where ε is an allowed tolerance value for the desired effective weld point temperature. When this condition is satisfied routine 52 sets the production run at forge welder operating frequency, FSET, and operating power, PSET.
U.S. Pat. No. 5,902,506 and No. 5,954,985 disclose apparatus for and methods of adjusting the frequency and power magnitude of an induction forge welder power source that can be used in the process of the present invention.
Therefore in one example of the system and method of computing the operating parameters of a forge welding machine of the present invention, a computer program can be used to compute the operating frequency and operating power setting for the forge welding machine in response to an inputted width of the heat affected zone and an inputted weld temperature. The computation may be based upon forge welding machine data and data of parameters of the one or more materials to be welded in the forge welding process. The above examples of the invention illustrate some of the non-limiting forge welding machine data and data of parameters of the one or more materials that can be used in the system or process of the present invention.
The foregoing examples do not limit the scope of the disclosed invention. The scope of the disclosed invention is further set forth in the appended claims.
This is a divisional application of application Ser. No. 11/203,363, filed Aug. 12, 2005, which application is hereby incorporated herein by reference in its entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 11203363 | Aug 2005 | US |
Child | 12728714 | US |