The present invention relates generally to the construction of buildings, and more particularly to a system and method of constructing buildings utilizing modular components.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
When constructing any new building, there is a tremendous amount of architectural and engineering work that must be performed to ensure the building meets applicable safety standards and industry requirements. With particular regard to multi-story steel buildings, such as those utilized in the storage industry, engineers design the structure utilizing a plurality of vertical support columns each having different lengths, widths and load bearing capacities.
Upon approval of the building design, a factory must construct a multitude of different shaped and sized columns, which then must be delivered to the building construction site in the particular order in which they are to be used. Finally, each individual column must be placed at the specified location within the building and welded on-site. One example of the current state of the art includes U.S. Patent publication no. 2006/0010825, to Schubert.
Unfortunately, this process of design, delivery and construction results in most of these storage unit steel buildings taking several months to design and complete. Additionally, because each column must be welded on-site, and then inspected, there is a tremendous amount of costs associated with skilled labor that adds to the overall cost of the building. Moreover, because the columns are designed for use at particular locations within the building, it is not uncommon for some of the columns to be left sitting at the construction site for days or weeks until being installed.
Accordingly, it would be beneficial to provide a building system wherein each of the vertical columns comprise substantially identical shapes and sizes, and that do not need to be welded on-site so as to eliminate each of the drawbacks described above.
The present invention is directed to a system and method of constructing a building structure using modular components. One embodiment of the present invention can include a plurality of columns each having a uniform shape and size, a plurality of baseplates, a plurality of sleeves, and a plurality of support beams each having a uniform shape and size.
In one embodiment, each of the columns include protrusions that are disposed a set distance from each end of the column, each of the protrusions are configured to engage the outer edge of a sleeve or baseplate that is connected to the respective end of the column.
In one embodiment, the sleeves are sized to receive two columns vertically and to position the ends of the received columns together while the protrusions of each of the received columns engage both ends of the sleeve. Apertures located along the sleeves and columns are aligned and can receive a connector.
Each of the uniform beams are positioned horizontally between the columns and are joined to a sleeve at both ends. When so positioned, the top end of the sleeve will extend above the beam and flooring material so as to receive another column after the flooring material has cured.
This summary is provided merely to introduce certain concepts and not to identify key or essential features of the claimed subject matter.
Presently preferred embodiments are shown in the drawings. It should be appreciated, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the description in conjunction with the drawings. As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the inventive arrangements in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting but rather to provide an understandable description of the invention.
As described herein, the term “uniform shape” and “uniform size” shall be used to describe components whose shape and size are identical, or substantially identical within a tolerance such as, for example, manufacturing tolerances, measurement tolerances or the like.
As described throughout this document, the term “complementary shape,” and “complementary dimension,” shall be used to describe a shape and size of a component that is substantially identical to the shape and size of another identified component within a tolerance such as, for example, manufacturing tolerances, measurement tolerances or the like.
As shown in
As will be described below, each of the floor beams 15 can be positioned horizontally during the building construction. In various embodiments each of the beams can comprise elongated wide flange steel beams having a I-beam profile, but there is nothing within the spirit and scope of the present invention limiting these structural members to this type of beam. In the preferred embodiment, each of the beams will include a uniform shape and size that is of sufficient strength to withstand the load demands placed on them by the weight of building and any external forces acting thereon.
As will be described below, each of the columns 20 can be positioned vertically during the building construction. In various embodiments each of the columns can comprise uniformly shaped and sized elongated steel members having an I-beam profile. Of course, other embodiments are contemplated wherein the columns 20 can be constructed from other materials and/or can include other uniform shapes such as a cylindrical profile, for example, that are of sufficient strength to withstand the load demands placed on them by the weight of building and any external forces acting thereon. In such situations, the described sleeves and baseplates will include complementary shapes as the column, so as to receive the same in the manner described below.
As shown best in
In the preferred embodiment, each of the protrusions 25 can comprise generally rectangular shaped pieces of one-half inch thick steel stock having a leading edge that is perpendicular to the major axis of the column. Each of the protrusions preferably being welded onto the main body 21 at a time of manufacture or any other time prior to being shipped to the building construction site.
In this regard, it is noted that previous methodologies that relied on on-site welding are performed under a process called shielded metal arc welding (SMAW), wherein the worker uses a less robust form of arc welding, must often reach overhead to engage the area, and must do so in an outdoor environment under less than optimal conditions. This system provides that building structure welds are spot checked by a welding inspector but not every weld is actually checked.
Conversely, under the present system each of the welds can be performed at a certified welding fabricator using a process called dual shield Flux-covered arc welding (FCAW) in optimal conditions. Such a process ensures that each weld is individually inspected and logged, thereby providing traceability records that can be easily searched in the event of a building collapse or other instance where such information would be useful.
Although described above as including a particular number of protrusions each having a specific shape, size and location, this is for illustrative purposes only. To this end, other embodiments are contemplated wherein any number of protrusions can be positioned along each end of each column. The protrusions may be constructed from any number of other construction materials, shapes, thicknesses and sizes, and may be secured to the column body utilizing other known construction methodologies.
Each of the sleeves 30 can function to join a pair of columns together vertically and can also engage one or more of the support beams. As shown best at
Each of the baseplates 40 can function to secure one end of a column 20 to the ground. As shown best at
In the preferred embodiment, each of the columns can include a length (e.g., distance between the proximal and distal ends) of approximately 10 feet, and the first distance d can be approximately 1 foot. The 10 foot length of the columns being sufficient to ensure the building has a finished ceiling height of at least 8 feet. Likewise, each of the beams 15 can include a length of approximately 10 feet. Such dimensions functioning to create a 10 ft by 10 ft grid, which is particularly advantageous for use in storage buildings, where uniform grids allow for even spacing and distribution of rentable units.
In the preferred embodiment, each of the sleeves 30 can include a longitudinal length (e.g., between the openings 32) of 2 feet. Such a dimension ensures that the flat ends 22/23 of two individual columns positioned within a single sleeve will be in direct contact with each other, while simultaneously ensuring the entire leading edge of each of the protrusions 25 that are spaced 1 foot from the end of the columns are in direct contact with the edge of the sleeve body.
In the preferred embodiment, each of the baseplates 40 can include a longitudinal length (e.g., between plate 43 and opening 42) of 1 foot. Such a dimension ensures that the flat end of a column positioned within the baseplate will be in direct contact with the top of the plate 43, while simultaneously ensuring the entire leading edge of each of the protrusions 25 are in direct contact with the edge of the baseplate body.
Although described above as including specific dimensions, this is for illustrative purposes only. To this end, each of the above noted components can include any number of other dimensions.
As shown, a plurality of uniform columns 20 can be anchored to the foundation 1 by the baseplates 40 and extend upward therefrom. Sleeves 30 are positioned along the distal ends of each column 20 and function to support the horizontal beams 15 that form each floor of the building. Any number of subsequent floors can be constructed by placing additional vertical columns 20 into the top of the prior-floor's sleeves 30, and by providing additional horizontal beams 15. At this time, a roof, sidewalls and other such components can be provided in the customary fashion.
Once the baseplate is secured to the ground, the bottom end 22 of a column 20 can be positioned within the open end 42 of the baseplate until the leading edge of the protrusions 25 engage the outer edge of the baseplate body 41. When so positioned, the entire flat bottom end 22 of the column 20 will be in contact with the flat surface of the plate 43, and apertures 46 and 22 will be aligned so as to receive a bolt 5 or other such connector.
In this regard, it is specifically noted that the engagement of the protrusions 25 with the baseplate provide the necessary structural support for allowing the assembly to receive and transfer vertical loads to the ground. As a result, the system advantageously does not require a worker to weld each column to the associated baseplate.
Next, a sleeve 30 can be positioned above the columns and the upper end 23 of each column can be slid into one of the sleeve openings 32 until the leading edge of the protrusions 25 engage the outer edge of the sleeve body 31. When so positioned, the upper end 23 of the column will be located midway along the length of the sleeve, and apertures 35 and 22 will be aligned so as to receive a bolt 5 or other such connector.
As shown at
As shown at
As shown at
As shown at cutout
Accordingly, the above described system and method can utilize a plurality of uniform modular components (e.g., columns, beams, sleeves and baseplates) to construct buildings having any number of different sizes and floors. Moreover, by providing pre-welded protrusions onto each column, the building components are interchangeable and can be assembled on-site without requiring time consuming welds and inspections of the same.
As described herein, one or more elements of the system 10 can be secured together utilizing any number of known attachment means such as, for example, screws, compression fittings and welds, among others. Moreover, although the above embodiments have been described as including separate individual elements, the inventive concepts disclosed herein are not so limiting. To this end, one of skill in the art will recognize that one or more individually identified elements may be formed together as one or more continuous elements, either through manufacturing processes, such as welding, casting, or molding, or through the use of a singular piece of material milled or machined with the aforementioned components forming identifiable sections thereof.
As to a further description of the manner and use of the present invention, the same should be apparent from the above description. Accordingly, no further discussion relating to the manner of usage and operation will be provided.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Likewise, the terms “consisting” shall be used to describe only those components identified. In each instance where a device comprises certain elements, it will inherently consist of each of those identified elements as well.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This application claims the benefit of U.S. application Ser. No. 62/770,524 filed on 21 Nov. 2018, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
949394 | Daly | Feb 1910 | A |
1555847 | Hudson | Oct 1925 | A |
1915023 | Lizaso | Jun 1933 | A |
3304683 | Ferreira | Feb 1967 | A |
3462021 | Hawke | Aug 1969 | A |
4630550 | Weitzman | Dec 1986 | A |
4691818 | Weber | Sep 1987 | A |
4903354 | Yeh | Feb 1990 | A |
5199919 | Glickman | Apr 1993 | A |
5298681 | Swift | Mar 1994 | A |
5568909 | Timko | Oct 1996 | A |
6151851 | Carter | Nov 2000 | A |
6219989 | Tumura | Apr 2001 | B1 |
6336620 | Belli | Jan 2002 | B1 |
D521361 | Kish | May 2006 | S |
7722286 | Heald | May 2010 | B2 |
9004439 | Gross | Apr 2015 | B2 |
9447573 | Schubert | Sep 2016 | B2 |
10179991 | Houghton | Jan 2019 | B2 |
10316508 | Hendry | Jun 2019 | B1 |
20030041549 | Simmons | Mar 2003 | A1 |
20060010825 | Schubert | Jan 2006 | A1 |
20080053020 | Collins | Mar 2008 | A1 |
20160097209 | Angelo | Apr 2016 | A1 |
20170233996 | Abernathy | Aug 2017 | A1 |
20170314254 | Houghton | Nov 2017 | A1 |
20180245329 | Yu | Aug 2018 | A1 |
20190323223 | Theriot | Oct 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200157795 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62770524 | Nov 2018 | US |