The present disclosure relates to a system and method of controlling combustion within an internal combustion engine having an in-cylinder pressure sensor for monitoring combustion occurring within a cylinder, such that adjustments may be made to operating parameters of the internal combustion engine. The adjustments of the operating parameters allow combustion to function properly, i.e. without an usually high number of misfires, while allowing a very high rate of exhaust gas recirculation (“EGR”) to be used in combustion, and allowing fuel injection to begin after a cylinder has passed top dead center.
Many modern diesel engines have an exhaust system that features an exhaust gas recirculation (“EGR”) system that routes a portion of engine exhaust gas into an air intake system, such that a mixture of fresh air and engine exhaust is supplied to a combustion chamber during engine operation. In order to reduce certain pollutants found in exhaust gas of an internal combustion engine, such as NOx and particulate matter, several approaches have been tried, including using an after-treatment chemical in conjunction with a catalytic converter, a system often referred to as a selective catalyst reduction system or an “SCR system.” An SCR system adds complexity to an engine, and requires a catalyst that must be periodically replenished, which increases operating costs. If the catalyst is not replenished, the engine exhaust typically will not meet emissions standards, and the engine may be required to cease operations.
Therefore, a need exists for an engine capable of meeting emissions standards without the use of an after-treatment system to control parameters useful in reducing emissions of the engine.
According to one embodiment, a control system for an internal combustion engine comprises pressure sensing means, memory means, processing means, and fuel injection control means. The pressure sensing means generate in-cylinder pressure data used to calculate the total heat generated during a combustion cycle. The memory means stores predetermined CA50 crank angle data for a variety of engine operating conditions. A CA50 crank angle is a crank angle position where fifty percent of the total heat during a combustion cycle is generated. The memory means additionally stores allowable start of injection crank angle data. The processing means determines an observed CA50 crank angle. The processing means conducts a comparison of at least one of the predetermined CA50 crank angle data against the observed CA50 crank angle to generate a start of fuel injection crank angle which impacts the observed CA50 crank angle during a subsequent combustion cycle. The fuel injection control means controls the start of fuel injection crank angle generated by the processing means.
According to one process, a method of controlling operation of an internal combustion engine is provided. An angular position of a crankshaft of the engine is monitored using a crank position sensor. A pressure reading is generated with a first in-cylinder pressure sensor for a first cylinder. An electronic control module is utilized to calculate the heat generated during the combustion cycle within the first cylinder based upon the pressure reading. An observed crank angle within the first cylinder is determined with the electronic control module based upon output of the crank position sensor and the first in-cylinder pressure sensor, wherein the observed crank angle is a crank angle position where a predetermined percent of the total heat is generated. The observed crank angle is compared against a predetermined crank angle stored in the electronic control module. A provisional start of injection crank angle is generated for the first cylinder in response to the comparison of the observed crank angle and the predetermined crank angle. A difference between the provisional start of injection crank angle of the first cylinder is compared to an average start of injection crank angle for a remainder of a plurality of cylinders to a preset phasing limit value. The fuel injector is utilized to match an actual start of fuel injection crank angle in the first cylinder to the provisional start of injection crank angle when the difference between the provisional start of injection crank angle and the average start of injection crank angle for the remainder of the plurality of cylinders is less than the preset phasing limit value.
According to another process, a method of controlling operation of an internal combustion engine is provided. An angular position of a crankshaft of the engine is monitored using a crank position sensor. A pressure reading is generated with a first in-cylinder pressure sensor for a first cylinder. An electronic control module is utilized to calculate the heat generated during the combustion cycle within the first cylinder based upon the pressure reading. An observed CA50 crank angle within the first cylinder is determined with the electronic control module based upon output of the crank position sensor and the first in-cylinder pressure sensor. The observed CA50 crank angle is compared against a predetermined CA50 crank angle stored in the electronic control module. A provisional start of injection crank angle is generated for the first cylinder in response to the comparison of the observed CA50 and the predetermined CA50. The provisional start of injection crank angle for the first cylinder is compared to a range of predetermined start of injection crank angles stored in the electronic control module. A difference between the provisional start of injection crank angle of the first cylinder is compared to an average start of injection crank angle for a remainder of a plurality of cylinders to a preset phasing limit value. The fuel injector is utilized to match an actual start of fuel injection crank angle in the first cylinder to the provisional start of injection crank angle when the provisional start of injection crank angle is within the range of predetermined start of injection crank angles, and when the difference between the provisional start of injection crank angle and the average start of injection crank angle for the remainder of the plurality of cylinders is less than the preset phasing limit value. An exhaust gas recirculation valve position is generated for the first cylinder when one of the difference between the provisional start of injection crank angle for the first cylinder and the average start of injection crank angle for the remainder of the plurality of cylinders exceeds the preset phasing limit and the provisional start of injection crank angle is outside of the range of predetermined start of injection crank angles. The fuel injector is utilized to match an actual start of fuel injection crank angle into the first cylinder to an adjusted start of injection crank angle when one of the difference between the provisional start of injection crank angle for the first cylinder and the average start of injection crank angle for the remainder of the plurality of cylinders exceeds the preset phasing limit, and the provisional start of injection crank angle is outside of the range of predetermined start of injection crank angles. A position of the exhaust gas recirculation valve is adjusted to the generated exhaust gas recirculation valve position.
a and 6b are a flow chart showing one process of controlling an engine; and
a and 7b are a flow chart showing another process of controlling an engine.
The engine 10 additionally has an air intake system 22. The air intake system 22 has a first turbocharger compressor 24 and a second turbocharger compressor 26. A charge air cooler 28 is additionally provided to cool intake air within the air intake system 22. A first throttle valve 30 and a second throttle valve 32 are also disposed within the air intake system 22. The first turbocharger turbine 18 and the first turbocharger compressor 24 form a first turbocharger and the second turbocharger turbine 20 and the second turbocharger compressor 26 form a second turbocharger. It is contemplated that the first turbocharger and the second turbocharger may be variable geometry turbochargers.
Turning now to
The fuel system control component 44 additionally utilizes the group 41 of in-cylinder pressure sensors 40 that communicate with a combustion monitoring processor 64 that contains a fuel system memory 66 containing fuel injection timing correction data (block 612,
The air system control component 44 of the control system 42 for the engine 10 additionally utilizes the group 41 of in-cylinder pressure sensors 40 that communicate with the combustion monitoring processor 64 that has an air intake system memory 68 (blocks 620, 630,
The EGR system data 76 from the air intake system controller 72 is transmitted to an EGR system comparator 80 where the EGR system comparator 80 compares it to the output of the air intake system memory 68 (block 634,
Turning now to
The CA50 crank angle is the crank angle where 50% of the heat is generated for a particular combustion cycle. In order to determine when 50% of the heat has been generated, the in-cylinder pressure sensor 40 is utilized to determine a total heat release for the combustion of fuel within the cylinder 34 based upon the pressure within the cylinder 34. The output of the in-cylinder pressure sensor 40 may also be utilized by a torque estimator 102 of the processor 88.
While the CA50 crank angle is described in this disclosure, it is contemplated that a different crank angle may be utilized that corresponds to a specific percentage of heat generated for a particular combustion cycle, and the invention is not limited to the specific crank angles or specific percentages heat generated. For instance, it is additionally contemplated that a range of a CA10 crank angle to a CA90 crank angle may be utilized, wherein the CA10 crank angle is the crank angle where 10% of the heat is generated for a particular combustion cycle, and CA90 is the crank angle where 90% of the heat is generated for a particular combustion cycle. Therefore, it is contemplated that CA50 may be substituted by a crank angle (CA) corresponding to another predetermined percentage amount of heat generated during combustion without altering the principals of this disclosure.
The in-cylinder pressure sensor 40 is utilized to determine the pressure within the cylinder from combustion by comparing the actual pressure within the cylinder, to the pressure that would be within the cylinder without any combustion occurring. This is done by comparing the output of the in-cylinder pressure sensor 40 at a crank angle after a piston within the cylinder has passed top dead center (“TDC”) with the output of the in-cylinder pressure sensor 40 at a corresponding crank angle before the position within the cylinder has reached TDC. For example, the output of the in-cylinder pressure sensor 40 at a crank angle 25 degrees after TDC is compared to the output of the in-cylinder pressure sensor 40 at a crank angle 25 degrees before TDC, wherein the pressure difference is based upon combustion of fuel within the cylinder 34. The pressure within the cylinder 34 attributed to combustion from the in-cylinder pressure sensor 40 may be used to generate a heat release amount, such that a crank angle may be determined where various percentages of the total amount of heat released from a particular fuel injection into a particular cylinder may be calculated. Thus, the CA50 estimator 100 may calculate a CA50 crank angle that corresponds to the crank angle where 50% of the heat released during combustion of a particular combustion cycle within a particular cylinder occurs.
Similarly, the torque estimator 102 may utilize the output of the in-cylinder pressure sensor 40 to calculate a torque output of the engine 10. The torque estimator 102 utilizes the output of the in-cylinder pressure sensor 40 and a known equation of the relationship between pressure within the cylinder 34 and the geometry the engine 10 to calculate an estimate of torque produced by the engine 10. The torque can be calculated by the following formula: Torque=BMEP*V/4II, where BMEP is the brake mean effective pressure and V is the volume of the piston. BMEP may be calculated using the formula BMEP=IMEP−FMEP, where IMEP is the indicated mean effective pressure and FMEP is the friction mean effective pressure. IMEP may be generated from the output of the in-cylinder pressure sensor 40 when fuel in injected into a cylinder 34, and FMEP may be calculated using the in-cylinder pressure sensor 40 when no fuel is injected into a cylinder 34 during a cycle, or may be estimated.
The processor 88 still further has a misfire prevention module 104 adapted to monitor combustion characteristics within the engine 10. The misfire prevention module 104 is adapted to compare an output of the CA50 estimator 100 with an output from the ECM 92 that contains a target CA50 value retrieved from a memory of the ECM 92. The misfire prevention module 104 will generate an output signal to adjust at least one of fuel injection timing, EGR valve position, VGT settings, and variable valve timing settings to adjust the actual CA50 value calculated by the CA50 estimator 100 to match the target CA50 value stored in a memory of the ECM 92 as will be explained in further detail below.
The interface 90 of the control system 86 allows for control of parameters used for the misfire prevention module 104 of the processor 88. The interface 90 allows limits for the adjustments of the fuel injection timing, and airflow to the engine 10 to be corrected. The interface 90 additionally allows in-cylinder pressure sensor 40 feedback to be turned on and off, depending on expected operating conditions of the engine 10.
The model based portion 108 has a memory that contains an air flow estimate 112 based upon observed operating conditions of the engine 10, such as torque output, and engine speed. The output of the air flow estimate 112 is transmitted to an air flow comparator 114. As explained below, the air flow comparator 114 also receives an input based upon air flow estimated by the in-cylinder pressure sensor 40. The output of the air flow comparator 114 is transmitted to a throttle controller 116 and an EGR controller 118. The throttle controller 116 receives input from an engine speed and torque monitor 120, while the EGR controller 118 further receives input from an engine speed and torque monitor 120.
Output from the EGR controller 118 is transmitted to an EGR emission limiter 124, to ensure that the EGR setting is sufficient to allow the engine to meet emission standards. Output of the throttle controller 116 is transmitted to an intake air comparator 126 where it is compared to a predetermined intake air setting 128. Output of the intake air comparator 126 is transmitted to an intake manifold air estimator 134.
Similarly, output from the EGR emission limiter 124 is transmitted to an EGR comparator 130 where it is compared to a predetermined EGR setting 132. Output of the EGR comparator 130 is also transmitted to the intake manifold air estimator 134. Output from the intake manifold air estimator 134 is transmitted to a fuel injector controller 136, and EGR valve controller 138, and a variable geometry turbocharger (VGT) controller 140, to be used in helping to control fuel injection timing, the amount of EGR delivered to the engine, and the VGT setting.
The intake manifold air estimator 134 also communicates with an in-cylinder pressure sensor based air estimator 142. The in-cylinder pressure sensor based air estimator 142 also receives input from an in-cylinder pressure sensor 40, an intake manifold pressure sensor 146, and an EGR rate estimator 148. The in-cylinder pressure sensor based air estimator 142 generates an output that is communicated with the airflow comparator 114, so that the airflow comparator 114 may calculate a correction to the air flow estimate 112 stored in the memory. The correction of the airflow estimate 112 allows for better control of the air/fuel ratio of the engine.
Turning now to the empirical portion 110 of the control system 106, as well as the flow chart shown in
The provisional EGR valve adjustment is also compared to an EGR valve adjustment limit (block 718,
The feedback controller 154 communicates with an instability predictor 156. The instability predictor 156 is used by an engine having a plurality of cylinders to compare the corrections required by one cylinder to settings for the remaining cylinders. If the instability predictor 156 detects that the setting for the start of injection crank angle for a first cylinder is outside of a range from an average start of injection crank angle for all of the cylinders of the engine, the instability predictor 156 will set an adjusted start of injection crank angle, and will adjust at least one of the EGR valve adjustment and the VGT position setting to compensate for the adjusted start of injection crank angle. The instability predictor 156 therefore generates a final start of injection crank angle 158, a final EGR valve adjustment position 160, and a final VGT position setting 162. The final start of injection crank angle 158 is transmitted to the fuel injector controller 136, the final EGR valve adjustment position 160 is transmitted to the EGR valve controller 138, and the final VGT position setting 162 is transmitted to the VGT controller 140.
It is additionally contemplated that an intake throttle position setting and a variable valve actuation setting may also be generated as described above with respect to the EGR valve position and the VGT position setting. It is contemplated that the control system 106 may be executed by an ECM, or that separate controllers may be utilized that simply communicate with each other.
The present disclosure is adapted to allow an engine to operate with high levels of EGR, i.e. above 35%, and with a start of fuel injection occurring after a piston within a cylinder has passed top dead center. These aspects of this disclosure allow combustion to remain stable, even with fuel injection starting after the piston has passed top dead center. Fuel injection occurring after the piston has passed top dead center while utilizing EGR rates above 35% have been found to reduce engine emissions of NOx and particulate matter significantly. However, combustion tends to become unstable with increasing amounts of EGR as less oxygen is present within EGR for use in combustion. Additionally, initiating fuel injection after TDC may lead to unstable combustion as mixing of fuel with air within the cylinder may not sufficiently atomize the fuel for stable combustion to occur, thus, combustion under such conditions must be carefully monitored and controlled.
As described above, the present disclosure may be applied on a per-cylinder basis, such that fuel injection timing, and EGR valve position setting are adjusted to ensure proper combustion within a single cylinder, or operations of a plurality of cylinders may be controlled by an instability predictor to ensure that proper combustion phasing is maintained between the plurality of cylinders.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/34256 | 4/28/2011 | WO | 00 | 10/28/2013 |